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To sort is to rearrange values according to some defined order.

Sorting an array is a fundamental operation, and a way to do so is built into every language.

We study sorting to illustrate these principles:

• Creativity in code development can be inspired by starting with an invariant.

• Different invariants lead to different algorithms, some better than others.

• Algorithms based on Divide and Conquer can have superior performance.

• Algorithms based on everyday experience can have inferior performance.

• Divide-and-Conquer approaches are naturally implemented by recursive procedures.

• Fast algorithms are not necessarily harder to code than slow algorithms.

• Implementations often draw on established code patterns.

• Precise specifications support careful reasoning during implementation.
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The specification for sorting an array is:

#.Rearrange values of A[0..n-1] into non-decreasing order.

We consider four implementations of this specification:

• QuickSort

• Merge Sort

• Selection Sort

• Insertion Sort
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Recall that partitioning divides an array segment A[L..R-1] into “<p”, “==p”, and “>p” regions.

def partition(A: list[int], L: int, R: int, p: int) -> None:
    """
    Given A[L..R-1] and pivot value p, partition(A,L,R,p) rearranges A[L..R-1]
    into all <p, then all ==p, then all >p.
    """

    ⟨body of partition⟩

L R

A <p ==p >p

All values in the “<p” region are less than p, which is less than all values in the “>p” region.

Also, on average, appropriate choice of pivot yields “<p” and “>p” regions of near equal size.

This is a basis for a Divide and Conquer algorithm.

☞ Consider Divide and Conquer when designing an algorithm.



Start with the code for partition, and morph it into quick_sort_aux:

def quick_sort_aux(A: list[int], L: int, R: int) -> None:
    """
    Given A[L..R-1], quick_sort_aux(A,L,R) rearranges A[L..R-1] into 
    non-decreasing order.
    """
    
    p = value-of-pivot
    ⟨body of partition⟩

L R

A <p ==p >p

☞ Don’t type if you can avoid it; clone. Cut and paste, then adapt.

Change the name and header comment. Move pivot parameter p into the body of the method.



Introduce the base case for regions of size 1 or 0, which perforce are sorted and require no work.

def quick_sort_aux(A: list[int], L: int, R: int) -> None:
    """
    Given A[L..R-1], quick_sort_aux(A,L,R) rearranges A[L..R-1] into 
    non-decreasing order.
    """

    if R > L:
        p = value-of-pivot
        ⟨body of partition⟩

L R

A <p ==p >p

☞ Don’t type if you can avoid it; clone. Cut and paste, then adapt.



def quick_sort_aux(A: list[int], L: int, R: int) -> None:
    """
    Given A[L..R-1], quick_sort_aux(A,L,R) rearranges A[L..R-1] into 
    non-decreasing order.
    """
    
    if R > L:
        p = value-of-pivot
        ⟨body of partition⟩
        quick_sort_aux(A, L, w)
        quick_sort_aux(A, b, R)

L w b R

A <p ==p >p

☞ Consider recursion when designing an algorithm.

Recursively sort the “<p” and “>p” regions.



def quick_sort_aux(A: list[int], L: int, R: int) -> None:
    """
    Given A[L..R-1], quick_sort_aux(A,L,R) rearranges A[L..R-1] into 
    non-decreasing order.
    """

    if R > L:
        p = (A[L] + A[R - 1]) // 2
        ⟨body of partition⟩
        quick_sort_aux(A, L, w)
        quick_sort_aux(A, b, R)

L w b R

A <p ==p >p

Compute pivot p designed to produce near-equal size “<p” and “>p”  regions (on average).



Invoke quick_sort_aux from the top-level routine quick_sort.

def quick_sort(A: list[int], n: int) -> None:
    """Rearrange values of A[0..n-1] into non-decreasing order."""
    quick_sort_aux(A, 0, n)

L w b R

A <p ==p >p



Performance: Pivots computed as (A[L] + A[R - 1]) / 2

• Best case. On each iteration, pivot is (serendipitously) the median of A[L..R-1], 
so region sizes reduced by ½, leading to recursion depth log n. At each level of 
recursion, total partitioning cost is linear in n. Total effort: Proportional to n log n.

• Worst case. On each iteration, pivot is (serendipitously) the min or max of 
A[L..R-1], so region sizes reduced by 1, leading to recursion depth n. Total 
effort: n +(n-1) + (n-2) + … + 1 = n·(n-1)/2, i.e., quadratic in n.

• Average case, i.e., summed over all permutations of values in A[0..n-1]. Total 
effort: Proportional to n log n.



def merge_sort_aux(A: list[int], L: int, R: int) -> None:
    """Rearrange values of A[L..R] into non-decreasing order."""

Method quick_sort recursively partitions, but region sizes are unpredictable. In contrast, 
merge_sort divides regions into (approximate) halves, quarters, eighths, etc.

Note: In analogy with Binary Search, R is changed to the index of 
the last element of the region rather than one passed the last. 
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def merge_sort_aux(A: list[int], L: int, R: int) -> None.
    """Rearrange values of A[L..R] into non-decreasing order."""
    if R > L:
        m = (L + R) // 2
        merge_sort_aux(A, L, m) 
        merge_sort_aux(A, m + 1, R)
        #.Given A[L..m] and A[m+1..R], both already
        #   in non-decreasing order, collate them so 
        #   A[L..R] is in non-decreasing order.

Method merge_sort divides (unordered) regions (approximately) in half at each recursion, 
sorts the halves, and collates those (ordered) halves into an (ordered) whole. 
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Method merge_sort divides (unordered) regions (approximately) in half at each recursion, 
sorts the halves, and collates those (ordered) halves into an (ordered) whole. 

def merge_sort_aux(A: list[int], L: int, R: int) -> None.
    """Rearrange values of A[L..R] into non-decreasing order."""
    if R > L:
        m = (L + R) // 2
        merge_sort_aux(A, L, m)
        merge_sort_aux(A, m + 1, R) 
        #.Given A[L..m] and A[m+1..R], both already
        #   in non-decreasing order, collate them so 
        #   A[L..R] is in non-decreasing order.
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0 L R n

A ? unordered ?

Method merge_sort divides (unordered) regions (approximately) in half at each recursion, 
sorts the halves, and collates those (ordered) halves into an (ordered) whole. 

def merge_sort_aux(A: list[int], L: int, R: int) -> None.
    """Rearrange values of A[L..R] into non-decreasing order."""
    if R > L:
        m = (L + R) // 2
        merge_sort_aux(A, L, m)
        merge_sort_aux(A, m + 1, R)
        #.Given A[L..m] and A[m+1..R], both already
        #   in non-decreasing order, collate them so 
        #   A[L..R] is in non-decreasing order. 
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A ? ordered ordered ?
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Invoke merge_sort_aux from the top-level routine merge_sort.

0 n

A unordered

def merge_sort(A: list[int], n: int) -> None:
    """Rearrange values of A[0..n-1] into non-decreasing order."""
    merge_sort_aux(A, 0, n - 1)



Performance: 

• All cases. On each iteration, region sizes reduced by (approximately) ½, leading to recursion 
depth (approximately) log n. At each level of recursion, total collation cost is linear in n. Total 
effort: Proportional to n log n.

Positive: Guaranteed n log n performance. Negative: Not in situ.



Selection Sort scans across array A from left to right with index j.

0 j n

A

# Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(___, ___): _________



INVARIANT: Values in A[0..j-1] are in their correct and final positions.

0 j n

A in correct position ?

# Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(___, ___): _________



To maintain the INVARIANT as j is increased by 1, guarantee that A[j] is also in its final position.

0 j k n

A in correct position A[k] is minimal

# Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(___, _____):
    #.Let k be s.t. A[k] is a minimal value in A[j..n-1].
    #.Swap A[j] and A[k].



If A[0..n-2] are in their correct and final positions, so too is A[n-1].

0 n

A in correct position

# Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(___, n - 1):
    #.Let k be s.t. A[k] is a minimal value in A[j..n-1]. */
    #.Swap A[j] and A[k]. 



When j==0, the INVARIANT that all values in A[0..-1] are in their correct and final positions is 
trivially true.

0 n

A ?

# Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(0, n - 1):
    #.Let k be s.t. A[k] is a minimal value in A[j..n-1].
    #.Swap A[j] and A[k].



The first step in the loop body is an application of Find Minimal (from Chapter 7).

# Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(0, n - 1):
    # Let k be s.t. A[k] is a minimal value in A[j..n-1].
    k = j
    for i in range(j + 1, n):
        if A[i] < A[k]: k = j

    #.Swap A[j] and A[k].



Swap is standard.

# Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(0, n - 1):
    # Let k be s.t. A[k] is a minimal value in A[j..n-1]. 
    k = j
    for i in range(j + 1, n):
        if A[i] < A[k]: k = j

    # Swap A[j] and A[k]. */
    temp = A[j];  A[j] = A[k];  A[k] = temp



Performance: Quadratic in n.

• All cases. The sum of the successive efforts to find the minimal value in A[j..n-1] 
is n +(n-1) + (n-2) + … + 2 = n·(n-1)/2 – 1, i.e., proportional to n^2.



Insertion Sort scans across array A from left to right with index j.

# Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(___, ___): _________

0 j n

A



INVARIANT: Values in A[0..j-1] are in non-decreasing order.

# Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(___, ___): _________

0 j n

A ordered ?



To maintain the INVARIANT as j is increased by 1, insert A[j] into A[0..j] appropriately.

# Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(___, ___):
    #.Given A[0..j-1] ordered in non-decreasing order, rearrange values of 
    #   A[0..j] so it is ordered.

0 j n

A ordered ?



The last element of A[0..n-1] may have to move, just like the others.

# Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(___, n):
    #.Given A[0..j-1] ordered in non-decreasing order, rearrange values of 
    #   A[0..j] so it is ordered.

0 j n

A ordered ?



# Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(1, n):
    #.Given A[0..j-1] ordered in non-decreasing order, rearrange values of 
    #   A[0..j] so it is ordered.

When j==1, the INVARIANT that all values in A[0..0] is ordered is trivially true.

0 j n

A ordered ?



# Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(1, n):
    # Given A[0..j-1] ordered in non-decreasing order, rearrange values of 
    #   A[0..j] so it is ordered.
    # --------------------------------------------------------------------
    temp = A[j]
    #.Shift A[k..j-1] right one place, where k is the largest
    #   integer s.t. A[k-1]≤temp, or 0 if temp is smallest.
    A[k] = temp

0 k j n

A ordered, all ≤ A[j] ordered, all > A[j] ?

Right-shift values of A[0..j-1] that are larger than A[j]. Then insert A[j] appropriately.



# Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(1, n):
    # Given A[0..j-1] ordered in non-decreasing order, rearrange values of 
    #   A[0..j] so it is ordered.
    # --------------------------------------------------------------------
    temp = A[j]

    # Shift A[k..j-1] right one place, where k is the largest
    #   integer s.t. A[k-1]≤temp, or 0 if temp is smallest.
    k = ____
    while ______:
        A[ ____ ] = A[ ____ ]
        k -= 1

    A[k] = temp

0 k j n

A ordered, all ≤ A[j] ordered, all > A[j] ?

Treat the inner loop as a right-to-left search for rightmost k s.t. A[k]≤A[j].



# Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(1, n):
    # Given A[0..j-1] ordered in non-decreasing order, rearrange values of 
    #   A[0..j] so it is ordered.
    # --------------------------------------------------------------------
    temp = A[j]

    # Shift A[k..j-1] right one place, where k is the largest
    #   integer s.t. A[k-1]≤temp, or 0 if temp is smallest.
    k = j
    while ______:
        A[ ____ ] = A[ ____ ]
        k -= 1

    A[k] = temp

0 k j n

A ordered, all ≤ A[j] ordered, all > A[j] ?

Treat loop as a right-to-left search for rightmost k s.t. A[k]≤A[j].



# Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(1, n):
    # Given A[0..j-1] ordered in non-decreasing order, rearrange values of 
    #   A[0..j] so it is ordered.
    # --------------------------------------------------------------------
    temp = A[j]

    # Shift A[k..j-1] right one place, where k is the largest
    #   integer s.t. A[k-1]≤temp, or 0 if temp is smallest.
    k = j
    while A[k - 1] ____ temp:
        A[ ____ ] = A[ ____ ]
        k -= 1

    A[k] = temp

0 k j n

A ordered, all ≤ A[j] ordered, all > A[j] ?

Treat loop as a right-to-left search for rightmost k s.t. A[k]≤A[j].



# Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(1, n):
    # Given A[0..j-1] ordered in non-decreasing order, rearrange values of 
    #   A[0..j] so it is ordered.
    # --------------------------------------------------------------------
    temp = A[j]

    # Shift A[k..j-1] right one place, where k is the largest
    #   integer s.t. A[k-1]≤temp, or 0 if temp is smallest.
    k = j
    while A[k - 1] > temp:
        A[ ____ ] = A[ ____ ]
        k -= 1

    A[k] = temp

0 k j n

A ordered, all ≤ A[j] ordered, all > A[j] ?

Treat loop as a right-to-left search for rightmost k s.t. A[k]≤A[j].



# Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(1, n):
    # Given A[0..j-1] ordered in non-decreasing order, rearrange values of 
    #   A[0..j] so it is ordered.
    # --------------------------------------------------------------------
    temp = A[j]

    # Shift A[k..j-1] right one place, where k is the largest
    #   integer s.t. A[k-1]≤temp, or 0 if temp is smallest.
    k = j
    while (k > 0) and (A[k - 1] > temp) :
        A[ ____ ] = A[ ____ ]
        k -= 1

    A[k] = temp

0 k j n

A ordered, all ≤ A[j] ordered, all > A[j] ?

Allow for A[j] being minimum.



# Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(1, n):
    # Given A[0..j-1] ordered in non-decreasing order, rearrange values of 
    #   A[0..j] so it is ordered.
    # --------------------------------------------------------------------
    temp = A[j]

    # Shift A[k..j-1] right one place, where k is the largest
    #   integer s.t. A[k-1]≤temp, or 0 if temp is smallest.
    k = j
    while (k > 0) and (A[k - 1] > temp):
        A[k] = A[k - 1]
        k -= 1

    A[k] = temp

0 k j n

A ordered, all ≤ A[j] ordered, all > A[j] ?

Do the shift at the same time as the search. Could end up putting A[j] right back where it started.



Performance: Quadratic in n.

• Worst case. Array starts out in non-increasing order. The sum of the successive shifts 
is 1 + 2 + … + (n-2) + (n-1) = n·(n-1)/2, i.e., proportional to n^2.

• Best case. Array starts out already ordered. Linear in n.
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