
Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor

Department of Computer Science
Cornell University

Sorting

Copyright©2024 by Tim Teitelbaum; Most recent revision, 12/19/2024

To sort is to rearrange values according to some defined order.

Sorting an array is a fundamental operation, and a way to do so is built into every language.

We study sorting to illustrate these principles:

• Creativity in code development can be inspired by starting with an invariant.

• Different invariants lead to different algorithms, some better than others.

• Algorithms based on Divide and Conquer can have superior performance.

• Algorithms based on everyday experience can have inferior performance.

• Divide-and-Conquer approaches are naturally implemented by recursive procedures.

• Fast algorithms are not necessarily harder to code than slow algorithms.

• Implementations often draw on established code patterns.

• Precise specifications support careful reasoning during implementation.

0 1 2 3 4 5 n

A 10 20 30 40 50 60

0 1 2 3 4 5 n

A 50 30 10 60 20 40

(before) (after)

The specification for sorting an array is:

#.Rearrange values of A[0..n-1] into non-decreasing order.

We consider four implementations of this specification:

• QuickSort

• Merge Sort

• Selection Sort

• Insertion Sort

0 1 2 3 4 5 n

A 10 20 30 40 50 60

0 1 2 3 4 5 n

A 50 30 10 60 20 40

(before) (after)

Recall that partitioning divides an array segment A[L..R-1] into “<p”, “==p”, and “>p” regions.

def partition(A: list[int], L: int, R: int, p: int) -> None:
 """
 Given A[L..R-1] and pivot value p, partition(A,L,R,p) rearranges A[L..R-1]
 into all <p, then all ==p, then all >p.
 """

 ⟨body of partition⟩

L R

A <p ==p >p

All values in the “<p” region are less than p, which is less than all values in the “>p” region.

Also, on average, appropriate choice of pivot yields “<p” and “>p” regions of near equal size.

This is a basis for a Divide and Conquer algorithm.

☞ Consider Divide and Conquer when designing an algorithm.

Start with the code for partition, and morph it into quick_sort_aux:

def quick_sort_aux(A: list[int], L: int, R: int) -> None:
 """
 Given A[L..R-1], quick_sort_aux(A,L,R) rearranges A[L..R-1] into
 non-decreasing order.
 """

 p = value-of-pivot
 ⟨body of partition⟩

L R

A <p ==p >p

☞ Don’t type if you can avoid it; clone. Cut and paste, then adapt.

Change the name and header comment. Move pivot parameter p into the body of the method.

Introduce the base case for regions of size 1 or 0, which perforce are sorted and require no work.

def quick_sort_aux(A: list[int], L: int, R: int) -> None:
 """
 Given A[L..R-1], quick_sort_aux(A,L,R) rearranges A[L..R-1] into
 non-decreasing order.
 """

 if R > L:
 p = value-of-pivot
 ⟨body of partition⟩

L R

A <p ==p >p

☞ Don’t type if you can avoid it; clone. Cut and paste, then adapt.

def quick_sort_aux(A: list[int], L: int, R: int) -> None:
 """
 Given A[L..R-1], quick_sort_aux(A,L,R) rearranges A[L..R-1] into
 non-decreasing order.
 """

 if R > L:
 p = value-of-pivot
 ⟨body of partition⟩
 quick_sort_aux(A, L, w)
 quick_sort_aux(A, b, R)

L w b R

A <p ==p >p

☞ Consider recursion when designing an algorithm.

Recursively sort the “<p” and “>p” regions.

def quick_sort_aux(A: list[int], L: int, R: int) -> None:
 """
 Given A[L..R-1], quick_sort_aux(A,L,R) rearranges A[L..R-1] into
 non-decreasing order.
 """

 if R > L:
 p = (A[L] + A[R - 1]) // 2
 ⟨body of partition⟩
 quick_sort_aux(A, L, w)
 quick_sort_aux(A, b, R)

L w b R

A <p ==p >p

Compute pivot p designed to produce near-equal size “<p” and “>p” regions (on average).

Invoke quick_sort_aux from the top-level routine quick_sort.

def quick_sort(A: list[int], n: int) -> None:
 """Rearrange values of A[0..n-1] into non-decreasing order."""
 quick_sort_aux(A, 0, n)

L w b R

A <p ==p >p

Performance: Pivots computed as (A[L] + A[R - 1]) / 2

• Best case. On each iteration, pivot is (serendipitously) the median of A[L..R-1],
so region sizes reduced by ½, leading to recursion depth log n. At each level of
recursion, total partitioning cost is linear in n. Total effort: Proportional to n log n.

• Worst case. On each iteration, pivot is (serendipitously) the min or max of
A[L..R-1], so region sizes reduced by 1, leading to recursion depth n. Total
effort: n +(n-1) + (n-2) + … + 1 = n·(n-1)/2, i.e., quadratic in n.

• Average case, i.e., summed over all permutations of values in A[0..n-1]. Total
effort: Proportional to n log n.

def merge_sort_aux(A: list[int], L: int, R: int) -> None:
 """Rearrange values of A[L..R] into non-decreasing order."""

Method quick_sort recursively partitions, but region sizes are unpredictable. In contrast,
merge_sort divides regions into (approximate) halves, quarters, eighths, etc.

Note: In analogy with Binary Search, R is changed to the index of
the last element of the region rather than one passed the last.

0 L R n

A ? unordered ?

def merge_sort_aux(A: list[int], L: int, R: int) -> None.
 """Rearrange values of A[L..R] into non-decreasing order."""
 if R > L:
 m = (L + R) // 2
 merge_sort_aux(A, L, m)
 merge_sort_aux(A, m + 1, R)
 #.Given A[L..m] and A[m+1..R], both already
 # in non-decreasing order, collate them so
 # A[L..R] is in non-decreasing order.

Method merge_sort divides (unordered) regions (approximately) in half at each recursion,
sorts the halves, and collates those (ordered) halves into an (ordered) whole.

0 L R n

A ? unordered ?

Method merge_sort divides (unordered) regions (approximately) in half at each recursion,
sorts the halves, and collates those (ordered) halves into an (ordered) whole.

def merge_sort_aux(A: list[int], L: int, R: int) -> None.
 """Rearrange values of A[L..R] into non-decreasing order."""
 if R > L:
 m = (L + R) // 2
 merge_sort_aux(A, L, m)
 merge_sort_aux(A, m + 1, R)
 #.Given A[L..m] and A[m+1..R], both already
 # in non-decreasing order, collate them so
 # A[L..R] is in non-decreasing order.

0 L R n

A ? ordered ordered ?

0 L R n

A ? unordered ?

Method merge_sort divides (unordered) regions (approximately) in half at each recursion,
sorts the halves, and collates those (ordered) halves into an (ordered) whole.

def merge_sort_aux(A: list[int], L: int, R: int) -> None.
 """Rearrange values of A[L..R] into non-decreasing order."""
 if R > L:
 m = (L + R) // 2
 merge_sort_aux(A, L, m)
 merge_sort_aux(A, m + 1, R)
 #.Given A[L..m] and A[m+1..R], both already
 # in non-decreasing order, collate them so
 # A[L..R] is in non-decreasing order.

0 L R n

A ? ordered ordered ?

0 L R n

A ? ordered ?

Invoke merge_sort_aux from the top-level routine merge_sort.

0 n

A unordered

def merge_sort(A: list[int], n: int) -> None:
 """Rearrange values of A[0..n-1] into non-decreasing order."""
 merge_sort_aux(A, 0, n - 1)

Performance:

• All cases. On each iteration, region sizes reduced by (approximately) ½, leading to recursion
depth (approximately) log n. At each level of recursion, total collation cost is linear in n. Total
effort: Proportional to n log n.

Positive: Guaranteed n log n performance. Negative: Not in situ.

Selection Sort scans across array A from left to right with index j.

0 j n

A

Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(___, ___): _________

INVARIANT: Values in A[0..j-1] are in their correct and final positions.

0 j n

A in correct position ?

Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(___, ___): _________

To maintain the INVARIANT as j is increased by 1, guarantee that A[j] is also in its final position.

0 j k n

A in correct position A[k] is minimal

Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(___, _____):
 #.Let k be s.t. A[k] is a minimal value in A[j..n-1].
 #.Swap A[j] and A[k].

If A[0..n-2] are in their correct and final positions, so too is A[n-1].

0 n

A in correct position

Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(___, n - 1):
 #.Let k be s.t. A[k] is a minimal value in A[j..n-1]. */
 #.Swap A[j] and A[k].

When j==0, the INVARIANT that all values in A[0..-1] are in their correct and final positions is
trivially true.

0 n

A ?

Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(0, n - 1):
 #.Let k be s.t. A[k] is a minimal value in A[j..n-1].
 #.Swap A[j] and A[k].

The first step in the loop body is an application of Find Minimal (from Chapter 7).

Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(0, n - 1):
 # Let k be s.t. A[k] is a minimal value in A[j..n-1].
 k = j
 for i in range(j + 1, n):
 if A[i] < A[k]: k = j

 #.Swap A[j] and A[k].

Swap is standard.

Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(0, n - 1):
 # Let k be s.t. A[k] is a minimal value in A[j..n-1].
 k = j
 for i in range(j + 1, n):
 if A[i] < A[k]: k = j

 # Swap A[j] and A[k]. */
 temp = A[j]; A[j] = A[k]; A[k] = temp

Performance: Quadratic in n.

• All cases. The sum of the successive efforts to find the minimal value in A[j..n-1]
is n +(n-1) + (n-2) + … + 2 = n·(n-1)/2 – 1, i.e., proportional to n^2.

Insertion Sort scans across array A from left to right with index j.

Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(___, ___): _________

0 j n

A

INVARIANT: Values in A[0..j-1] are in non-decreasing order.

Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(___, ___): _________

0 j n

A ordered ?

To maintain the INVARIANT as j is increased by 1, insert A[j] into A[0..j] appropriately.

Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(___, ___):
 #.Given A[0..j-1] ordered in non-decreasing order, rearrange values of
 # A[0..j] so it is ordered.

0 j n

A ordered ?

The last element of A[0..n-1] may have to move, just like the others.

Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(___, n):
 #.Given A[0..j-1] ordered in non-decreasing order, rearrange values of
 # A[0..j] so it is ordered.

0 j n

A ordered ?

Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(1, n):
 #.Given A[0..j-1] ordered in non-decreasing order, rearrange values of
 # A[0..j] so it is ordered.

When j==1, the INVARIANT that all values in A[0..0] is ordered is trivially true.

0 j n

A ordered ?

Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(1, n):
 # Given A[0..j-1] ordered in non-decreasing order, rearrange values of
 # A[0..j] so it is ordered.
 # --
 temp = A[j]
 #.Shift A[k..j-1] right one place, where k is the largest
 # integer s.t. A[k-1]≤temp, or 0 if temp is smallest.
 A[k] = temp

0 k j n

A ordered, all ≤ A[j] ordered, all > A[j] ?

Right-shift values of A[0..j-1] that are larger than A[j]. Then insert A[j] appropriately.

Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(1, n):
 # Given A[0..j-1] ordered in non-decreasing order, rearrange values of
 # A[0..j] so it is ordered.
 # --
 temp = A[j]

 # Shift A[k..j-1] right one place, where k is the largest
 # integer s.t. A[k-1]≤temp, or 0 if temp is smallest.
 k = ____
 while ______:
 A[____] = A[____]
 k -= 1

 A[k] = temp

0 k j n

A ordered, all ≤ A[j] ordered, all > A[j] ?

Treat the inner loop as a right-to-left search for rightmost k s.t. A[k]≤A[j].

Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(1, n):
 # Given A[0..j-1] ordered in non-decreasing order, rearrange values of
 # A[0..j] so it is ordered.
 # --
 temp = A[j]

 # Shift A[k..j-1] right one place, where k is the largest
 # integer s.t. A[k-1]≤temp, or 0 if temp is smallest.
 k = j
 while ______:
 A[____] = A[____]
 k -= 1

 A[k] = temp

0 k j n

A ordered, all ≤ A[j] ordered, all > A[j] ?

Treat loop as a right-to-left search for rightmost k s.t. A[k]≤A[j].

Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(1, n):
 # Given A[0..j-1] ordered in non-decreasing order, rearrange values of
 # A[0..j] so it is ordered.
 # --
 temp = A[j]

 # Shift A[k..j-1] right one place, where k is the largest
 # integer s.t. A[k-1]≤temp, or 0 if temp is smallest.
 k = j
 while A[k - 1] ____ temp:
 A[____] = A[____]
 k -= 1

 A[k] = temp

0 k j n

A ordered, all ≤ A[j] ordered, all > A[j] ?

Treat loop as a right-to-left search for rightmost k s.t. A[k]≤A[j].

Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(1, n):
 # Given A[0..j-1] ordered in non-decreasing order, rearrange values of
 # A[0..j] so it is ordered.
 # --
 temp = A[j]

 # Shift A[k..j-1] right one place, where k is the largest
 # integer s.t. A[k-1]≤temp, or 0 if temp is smallest.
 k = j
 while A[k - 1] > temp:
 A[____] = A[____]
 k -= 1

 A[k] = temp

0 k j n

A ordered, all ≤ A[j] ordered, all > A[j] ?

Treat loop as a right-to-left search for rightmost k s.t. A[k]≤A[j].

Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(1, n):
 # Given A[0..j-1] ordered in non-decreasing order, rearrange values of
 # A[0..j] so it is ordered.
 # --
 temp = A[j]

 # Shift A[k..j-1] right one place, where k is the largest
 # integer s.t. A[k-1]≤temp, or 0 if temp is smallest.
 k = j
 while (k > 0) and (A[k - 1] > temp) :
 A[____] = A[____]
 k -= 1

 A[k] = temp

0 k j n

A ordered, all ≤ A[j] ordered, all > A[j] ?

Allow for A[j] being minimum.

Rearrange values of A[0..n-1] into non-decreasing order.
for j in range(1, n):
 # Given A[0..j-1] ordered in non-decreasing order, rearrange values of
 # A[0..j] so it is ordered.
 # --
 temp = A[j]

 # Shift A[k..j-1] right one place, where k is the largest
 # integer s.t. A[k-1]≤temp, or 0 if temp is smallest.
 k = j
 while (k > 0) and (A[k - 1] > temp):
 A[k] = A[k - 1]
 k -= 1

 A[k] = temp

0 k j n

A ordered, all ≤ A[j] ordered, all > A[j] ?

Do the shift at the same time as the search. Could end up putting A[j] right back where it started.

Performance: Quadratic in n.

• Worst case. Array starts out in non-increasing order. The sum of the successive shifts
is 1 + 2 + … + (n-2) + (n-1) = n·(n-1)/2, i.e., proportional to n^2.

• Best case. Array starts out already ordered. Linear in n.

	Title
	Slide 1

	Introduction
	Slide 2
	Slide 3

	QuickSort
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

	Merge Sort
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

	SelectionSort
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

	InsertionSort
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

