
Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor

Department of Computer Science
Cornell University

Median

Copyright©2023 by Tim Teitelbaum; Most recent revision, 11/15/2024

The median of an ordered array of n values is the middle value. If n is odd, this is A[n/2]; if n
is even, we also opt for A[n/2] rather than averaging the middle two values.

(Recall that / is integer division when both operands are integers, where the fractional part is
truncated. Thus, for example, 5/2 is 2, and 6/2 is 3.)

0 1 2 3 4 n

A 10 20 30 40 50

0 1 2 3 4 5 n

A 10 20 30 40 50 60

The median of an ordered array of n values is the middle value. If n is odd, this is A[n/2]; if n
is even, we also opt for A[n/2] rather than averaging the middle two values.

(Recall that / is integer division when both operands are integers, where the fractional part is
truncated. Thus, for example, 5/2 is 2, and 6/2 is 3.)

But what if the array is not ordered. How would you find the median then?

You could sort the array and select A[n/2]. But sorting requires n log n operations.

Is it possible to do better? Try it. You will find that everyday experience is no help.

0 1 2 3 4 n

A 50 30 10 40 20

0 1 2 3 4 5 n

A 50 30 10 60 20 40

The median of an ordered array of n values is the middle value. If n is odd, this is A[n/2]; if n
is even, we also opt for A[n/2] rather than averaging the middle two values.

(Recall that / is integer division when both operands are integers, where the fractional part is
truncated. Thus, for example, 5/2 is 2, and 6/2 is 3.)

But what if the array is not ordered. How would you find the median then?

You could sort the array and select A[n/2]. But sorting requires n log n operations.

Is it possible to do better? Try it. You will find that everyday experience is no help.

We need principles to follow in such cases.

0 1 2 3 4 n

A 50 30 10 40 20

0 1 2 3 4 5 n

A 50 30 10 60 20 40

Three principles that can help are:

0 1 2 3 4 n

A 50 30 10 40 20

0 1 2 3 4 5 n

A 50 30 10 60 20 40

☞ Consider generalizing a problem when designing an algorithm.
☞ Consider Divide and Conquer when designing an algorithm.
☞ Consider recursion when designing an algorithm.

We will use them to derive:

• An Average-Case Linear-Time Median Algorithm
• A Worst-Case Linear-Time Median Algorithm

It is astounding that it is possible to find the median of an unordered array of length n in
linear time, i.e., time proportional to n.

The median of an ordered array of n values is the middle value. If n is odd, this is A[n/2];
if n is even, we opt for A[n/2] rather than averaging the middle two values.

A
ve

rage
-C

ase
 Lin

e
ar-Tim

e
 A

lgo
rith

m

☞ Consider generalizing a problem when designing an algorithm.

Selection: Given a set of n rank-ordered values, select the jth smallest value of the set.

Selection: Given a set of n rank-ordered values, select the jth smallest value of the set.

A
ve

rage
-C

ase
 Lin

e
ar-Tim

e
 A

lgo
rith

m

☞ Consider Divide and Conquer when designing an algorithm.

Recall: Partitioning, based on the Dutch National Flag problem, for some pivot p:

0 w b n

A <p ==p >p

0≤j<w. The jth smallest value is the jth smallest value of A[0..w-1]
w≤j<b. The jth smallest value is the pivot, p
b≤j<n. The jth smallest value is the (j-b)th smallest value in A[b..n-1]

Choose one of the three regions based on a Partition (Divide) and repeat (Conquer).

Start with the code for Partition, and morph it into QuickSelect:

A
ve

rage
-C

ase
 Lin

e
ar-Tim

e
 A

lgo
rith

m

/* Given A[L..R-1] and pivot value p, Partition(A,L,R,p) rearranges A[L..R-1]
 into all <p, then all ==p, then all >p. */
static void Partition(int A[], int L, int R, int p) {
 ⟨body of Partition⟩
 } /* Partition */

☞ Don’t type if you can avoid it; clone. Cut and paste, then adapt.

Start with the code for Partition, and morph it into QuickSelect:

A
ve

rage
-C

ase
 Lin

e
ar-Tim

e
 A

lgo
rith

m

/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
 smallest value in A[0..n-1]. */
static void QuickSelect(int A[], int L, int R, int p) {
 ⟨body of Partition⟩
 } /* Partition */

Change the name and header comment.

☞ Don’t type if you can avoid it; clone. Cut and paste, then adapt.

A
ve

rage
-C

ase
 Lin

e
ar-Tim

e
 A

lgo
rith

m

/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
 smallest value in A[0..n-1]. */
static void QuickSelect(int A[], int n, int j) {
 int L = 0; int R = n;
 int p = value-of-pivot;
 ⟨body of Partition⟩
 } /* QuickSelect */

Move parameters L, R, and p into the body of QuickSelect, and introduce parameters n and j.

☞ Don’t type if you can avoid it; clone. Cut and paste, then adapt.

Start with the code for Partition, and morph it into QuickSelect:

A
ve

rage
-C

ase
 Lin

e
ar-Tim

e
 A

lgo
rith

m

/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
 smallest value in A[0..n-1]. */
static int QuickSelect(int A[], int n, int j) {
 int L = 0; int R = n;
 int p = value-of-pivot;
 ⟨body of Partition⟩
 return ____;
 } /* QuickSelect */

Change return type to int, and introduce a return statement for the result.

☞ Don’t type if you can avoid it; clone. Cut and paste, then adapt.

Start with the code for Partition, and morph it into QuickSelect:

Could consider recursion, but it is not needed because we can just …

A
ve

rage
-C

ase
 Lin

e
ar-Tim

e
 A

lgo
rith

m

/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
 smallest value in A[0..n-1]. */
static int QuickSelect(int A[], int n, int j) {
 int L = 0; int R = n;
 int p = value-of-pivot;
 ⟨body of Partition⟩
 return ____;
 } /* QuickSelect */

Update L, R, and p iteratively using the INVARIANT shown.

/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
 smallest value in A[0..n-1]. */
static int QuickSelect(int A[], int n, int j) {
 int L = 0; int R = n;
 int p = value-of-pivot;
 ⟨body of Partition⟩
 return ____
 } /* QuickSelect */

/* Initialize. */
while (not-finished) {
 /* Compute. */
 /* Go-on-to-next. */
 }

0 L R n

A jth smallest is in here INVARIANT

iterant

iterant

A
ve

rage
-C

ase
 Lin

e
ar-Tim

e
 A

lgo
rith

m

A
ve

rage
-C

ase
 Lin

e
ar-Tim

e
 A

lgo
rith

m

/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
 smallest value in A[0..n-1]. */
static int QuickSelect(int A[], int n, int j) {
 int L = 0; int R = n;
 while (not-finished) {
 int p = value-of-pivot;
 ⟨body of Partition⟩
 /* Go-on-to-next. */
 return ____;
 } /* QuickSelect */

L w b R

A <p ==p >p

0 L R n

A jth smallest is in here

Update L, R, and p iteratively using the INVARIANT shown.

A
ve

rage
-C

ase
 Lin

e
ar-Tim

e
 A

lgo
rith

m
L w b R

A <p ==p >p

0 L R n

A jth smallest is in here

/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
 smallest value in A[0..n-1]. */
static int QuickSelect(int A[], int n, int j) {
 int L = 0; int R = n;
 while (not-finished) {
 int p = value-of-pivot;
 ⟨body of Partition⟩
 /* Go-on-to “<p” or “>p” region if j-th smallest there; else return p. */
 return ____;
 } /* QuickSelect */

Update L, R, and p iteratively using the INVARIANT shown.

A
ve

rage
-C

ase
 Lin

e
ar-Tim

e
 A

lgo
rith

m
L w b R

A <p ==p >p

0 L R n

A jth smallest is in here

/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
 smallest value in A[0..n-1]. */
static int QuickSelect(int A[], int n, int j) {
 int L = 0; int R = n;
 while (not-finished) {
 int p = value-of-pivot;
 ⟨body of Partition⟩
 /* Go-on-to “<p” or “>p” region if j-th smallest there; else return p. */
 if (j<w) R = w;
 else if (j<b) return p;
 else L = b;
 return ____;
 } /* QuickSelect */

Update L, R, and p iteratively using the INVARIANT shown.

A
ve

rage
-C

ase
 Lin

e
ar-Tim

e
 A

lgo
rith

m
L w b R

A <p ==p >p

0 L R n

A jth smallest is in here

/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
 smallest value in A[0..n-1]. */
static int QuickSelect(int A[], int n, int j) {
 int L = 0; int R = n;
 while (R-L > 1) {
 int p = value-of-pivot;
 ⟨body of Partition⟩
 /* Go-on-to “<p” or “>p” region if j-th smallest there; else return p. */
 if (j<w) R = w;
 else if (j<b) return p;
 else L = b;
 return A[j];
 } /* QuickSelect */

Update L, R, and p iteratively using the INVARIANT shown.

A
ve

rage
-C

ase
 Lin

e
ar-Tim

e
 A

lgo
rith

m
L w b R

A <p ==p >p

0 L R n

A jth smallest is in here

/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
 smallest value in A[0..n-1]. */
static int QuickSelect(int A[], int n, int j) {
 int L = 0; int R = n;
 while (R-L > 1) {
 int p = value-of-pivot;
 ⟨body of Partition⟩
 /* Go-on-to “<p” or “>p” region if j-th smallest there; else return p. */
 if (j<w) R = w;
 else if (j<b) return p;
 else L = b;
 return A[j];
 } /* QuickSelect */

Q. Where was j ever updated?

Update L, R, and p iteratively using the INVARIANT shown.

A
ve

rage
-C

ase
 Lin

e
ar-Tim

e
 A

lgo
rith

m
L w b R

A <p ==p >p

0 L R n

A jth smallest is in here

/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
 smallest value in A[0..n-1]. */
static int QuickSelect(int A[], int n, int j) {
 int L = 0; int R = n;
 while (R-L > 1) {
 int p = value-of-pivot;
 ⟨body of Partition⟩
 /* Go-on-to “<p” or “>p” region if j-th smallest there; else return p. */
 if (j<w) R = w;
 else if (j<b) return p;
 else L = b;
 return A[j];
 } /* QuickSelect */

Q. Where was j ever updated?
A. Nowhere. Partitioning moved values so the jth smallest ended up in A[j].

Update L, R, and p iteratively using the INVARIANT shown.

A
ve

rage
-C

ase
 Lin

e
ar-Tim

e
 A

lgo
rith

m
L w b R

A <p ==p >p

/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
 smallest value in A[0..n-1]. */
static int QuickSelect(int A[], int n, int j) {
 int L = 0; int R = n;
 while (R-L > 1) {
 int p = (A[L]+A[R-1])/2;
 ⟨body of Partition⟩
 /* Go-on-to “<p” or “>p” region if j-th smallest there; else return p. */
 if (j<w) R = w;
 else if (j<b) return p;
 else L = b;
 return A[j];
 } /* QuickSelect */

Update L, R, and p iteratively using the INVARIANT shown.

Performance: Pivots computed as (A[L]+A[R-1])/2

• Best case. On each iteration, pivot is (serendipitously) the median of A[L..R-1],
so region sizes reduced by ½. Partitioning time is linear in size.

Total effort. 1·n + ½·n + ¼·n + … = 2·n, i.e., linear in n

• Worst case. On each iteration, pivot is (serendipitously) the min or max of A[L..R-
1], so region sizes reduced by 1. Partitioning time is linear in size.

Total effort. n +(n-1) + (n-2) + … + 1 = n·(n-1)/2, i.e., quadratic in n.

• Average case, i.e., summed over all permutations of values in A[0..n-1].

Total effort. Linear in n

(offered without proof)

A
ve

rage
-C

ase
 Lin

e
ar-Tim

e
 A

lgo
rith

m

W
o

rst-C
ase

 Lin
e

ar-Tim
e

 A
lgo

rith
m

Bad News: QuickSelect can have quadratic-time performance on some arrays.

Imagine telling the widow:

But Mrs. Jones, on average the code would have been fast enough to have saved
your husband’s life.

Goal. Linear-time performance on every array.

Performance Goal: Pivots computed as ________ in the hope that

• Every case.

(1) On each iteration, region sizes reduced by constant ratio r.

Partitioning time is linear in region size.

 Total effort for partitioning. 1·n + r·n + r2·n + r3·n + … = n/(1-r)

 I.e., linear in n, not counting time to compute the pivot.

(2) On each iteration, the cost to compute the pivot is also linear in region size.

Thus, total effort, would be linear in n. In particular, even in the worst-case.

W
o

rst-C
ase

 Lin
e

ar-Tim
e

 A
lgo

rith
m

Performance Goal: Pivots computed as approximations to median of A[L..R-1].

• Every case.

(1) On each iteration, region sizes reduced by constant ratio r.

Partitioning time is linear in region size.

 Total effort for partitioning. 1·n + r·n + r2·n + r3·n + … = n/(1-r)

 I.e., linear in n, not counting time to compute the pivot.

(2) On each iteration, the cost to compute the pivot is also linear in region size.

Thus, total effort, would be linear in n. In particular, even in the worst-case.

W
o

rst-C
ase

 Lin
e

ar-Tim
e

 A
lgo

rith
m

Idea: Pivots computed as approximations to median of A[L..R-1].

Imagine that this array, with median 61:

were laid out in a 3-high 2-D array in row major order:

The median of each column is shown in red.

W
o

rst-C
ase

 Lin
e

ar-Tim
e

 A
lgo

rith
m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 60 73 92 57 54 75 59 91 58 71 62 67 66 59 52 61 72 55 60 79

51 60 73 92 57 54 75

59 91 58 71 62 67 66

59 52 61 72 55 60 79

Idea: Pivots computed as approximations to median of A[L..R-1].

Imagine that this array, with median 61:

were laid out in a 3-high 2-D array in row major order:

The median of each column is shown in red.

W
o

rst-C
ase

 Lin
e

ar-Tim
e

 A
lgo

rith
m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 60 73 92 57 54 75 59 91 58 71 62 67 66 59 52 61 72 55 60 79

51 52 58 71 55 54 66

59 60 61 72 57 60 75

59 91 73 92 62 67 79

Now, imagine that each column were sorted,
so its median comes to middle row.

Idea: Pivots computed as approximations to median of A[L..R-1].

Imagine that this array, with median 61:

were laid out in a 3-high 2-D array in row major order:

The median of each column is shown in red.

W
o

rst-C
ase

 Lin
e

ar-Tim
e

 A
lgo

rith
m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 60 73 92 57 54 75 59 91 58 71 62 67 66 59 52 61 72 55 60 79

55 51 52 54 58 66 71

57 59 60 60 61 75 72

62 59 91 67 73 79 92

Next, imagine that the columns were sorted
by their medians. The median of the medians
is shown with a green background.

Idea: Pivots computed as approximations to median of A[L..R-1].

Imagine that this array, with median 61:

were laid out in a 3-high 2-D array in row major order:

The median of each column is shown in red.

W
o

rst-C
ase

 Lin
e

ar-Tim
e

 A
lgo

rith
m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 60 73 92 57 54 75 59 91 58 71 62 67 66 59 52 61 72 55 60 79

Finally, color code the values:
 pink, if ≤ median of medians
 blue, if ≥ median of medians

55 51 52 54 58 66 71

57 59 60 60 61 75 72

62 59 91 67 73 79 92

Idea: Pivots computed as approximations to median of A[L..R-1].

Imagine that this array, with median 61:

were laid out in a 3-high 2-D array in row major order:

Choose the median of medians (60) as the pivot p, and partition A.

W
o

rst-C
ase

 Lin
e

ar-Tim
e

 A
lgo

rith
m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 60 73 92 57 54 75 59 91 58 71 62 67 66 59 52 61 72 55 60 79

Finally, color code the values:
 pink, if ≤ median of medians
 blue, if ≥ median of medians

55 51 52 54 58 66 71

57 59 60 60 61 75 72

62 59 91 67 73 79 92

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 55 57 54 52 59 59 58 60 60 62 67 66 71 91 61 72 75 92 79 73

Idea: Pivots computed as approximations to median of A[L..R-1].

Imagine that this array, with median 61:

were laid out in a 3-high 2-D array in row major order:

Choose the median of medians (60) as the pivot p, and partition A.

W
o

rst-C
ase

 Lin
e

ar-Tim
e

 A
lgo

rith
m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 60 73 92 57 54 75 59 91 58 71 62 67 66 59 52 61 72 55 60 79

We seek the median, i.e., the n/2th smallest
(n/2 = 21/2 = 10), which falls into >p region

55 51 52 54 58 66 71

57 59 60 60 61 75 72

62 59 91 67 73 79 92

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 55 57 54 52 59 59 58 60 60 62 67 66 71 91 61 72 75 92 79 73

Idea: Pivots computed as approximations to median of A[L..R-1].

Imagine that this array, with median 61:

were laid out in a 3-high 2-D array in row major order:

Thus, the >p region is no larger than r = 1-1/3 = 2/3 the size of the whole.

W
o

rst-C
ase

 Lin
e

ar-Tim
e

 A
lgo

rith
m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 60 73 92 57 54 75 59 91 58 71 62 67 66 59 52 61 72 55 60 79

We seek the median, i.e., the n/2th smallest
(n/2 = 21/2 = 10), which falls into >p region,
eliminating at least 2/3 · ½ = 1/3 the values.

55 51 52 54 58 66 71

57 59 60 60 61 75 72

62 59 91 67 73 79 92

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 55 57 54 52 59 59 58 60 60 62 67 66 71 91 61 72 75 92 79 73

Performance Goal: Pivots computed as approximations to median of A[L..R-1].

• Every case.

(1) On each iteration, region sizes reduced by constant ratio r.

Partitioning time is linear in region size.

 Total effort for partitioning. n + r·n + r2·n + r3·n + … = n/(1-r)

 I.e., linear in n, not counting time to compute the pivot.

(2) On each iteration, the cost to compute the pivot is also linear in region size.

Thus, total effort, would be linear in n. In particular, even in the worst-case.

W
o

rst-C
ase

 Lin
e

ar-Tim
e

 A
lgo

rith
m

Performance Goal: Pivots computed as median of medians of A[L..R-1].

• Every case.

(1) On each iteration, region sizes reduced by constant ratio r.

Partitioning time is linear in region size.

 Total effort for partitioning. n + (2/3)·n + (2/3)2·n + (2/3)3·n + … = n/(1-2/3) = 3·n

 I.e., linear in n, not counting time to compute the pivot.

(2) On each iteration, the cost to compute the pivot is also linear in region size.

Thus, total effort, would be linear in n. In particular, even in the worst-case.

W
o

rst-C
ase

 Lin
e

ar-Tim
e

 A
lgo

rith
m

Performance Goal: Pivots computed as median of medians of A[L..R-1].

• Every case.

(1) On each iteration, region sizes reduced by constant ratio r.

Partitioning time is linear in region size.

 Total effort for partitioning. n + (2/3)·n + (2/3)2·n + (2/3)3·n + … = n/(1-2/3) = 3·n

 I.e., linear in n, not counting time to compute the pivot.

(2) On each iteration, the cost to compute the pivot is also linear in region size.

But how will we compute the median of medians of A[L..R-1]?

Thus, total effort, would be linear in n. In particular, even in the worst-case.

W
o

rst-C
ase

 Lin
e

ar-Tim
e

 A
lgo

rith
m

Performance Goal: Pivots computed as median of medians of A[L..R-1] using
recursion, i.e., apply the worst-case median algorithm to the n/3 medians of
groups of 3 elements.

W
o

rst-C
ase

 Lin
e

ar-Tim
e

 A
lgo

rith
m

☞ Consider recursion when designing an algorithm.

Performance Goal: Pivots computed as median of medians of A[L..R-1] using
recursion, i.e., apply the worst-case median algorithm to the n/3 medians of
groups of 3 elements.

This works, but alas, there are too many groups of 3, so the total cost is super- linear.

W
o

rst-C
ase

 Lin
e

ar-Tim
e

 A
lgo

rith
m

☞ Consider recursion when designing an algorithm.

Performance Goal: Pivots computed as median of medians of A[L..R-1] using
recursion, i.e., apply the worst-case median algorithm to the n/3 medians of
groups of 3 elements.

This works, but alas, there are too many groups of 3, so the total cost is super- linear.

But don’t loose heart. All is not lost, because …

W
o

rst-C
ase

 Lin
e

ar-Tim
e

 A
lgo

rith
m

Performance Goal: Pivots computed as median of medians of A[L..R-1] using
recursion, i.e., apply the worst-case median algorithm to the n/5 medians of
groups of 5 elements.

This works, and is linear.

Selection of a partition region eliminates at least 3/5 · ½ = 3/10 the values.

Thus, the selected region is no larger than r = 1-3/10 = 7/10 the size of the whole.

Total effort for partitioning. n + (7/10)·n + (7/10)2·n + (7/10)3·n + … = n/(1-7/10) = 3.33·n

In effect, the reduction ratio r shrinks slightly (from 2/3 to 3/10), but the number of
groups shrinks more than enough (from n/3 to n/5) to render the total linear.

W
o

rst-C
ase

 Lin
e

ar-Tim
e

 A
lgo

rith
m

Summary:

Presented three algorithm-design principles that can serve in lieu of everyday
experience:

☞ Consider generalizing a problem when designing an algorithm.
☞ Consider Divide and Conquer when designing an algorithm.
☞ Consider recursion when designing an algorithm.

Used the principles to derive two algorithms for finding the median as a special case of
finding the jth smallest value in A[0..n-1]:

• Linear average-time performance
• Linear worst-case-time performance.

	Title
	Slide 1

	Introduction
	Slide 2
	Slide 3
	Slide 4
	Slide 5

	Average-Case
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

	Worst-Case
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

