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The median of an ordered array of n values is the middle value. If n is odd, this is A[n/2]; if n 
is even, we also opt for A[n/2] rather than averaging the middle two values.

(Recall that / is integer division when  both operands are integers, where the fractional part is 
truncated. Thus, for example,  5/2 is 2, and 6/2 is 3.)
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The median of an ordered array of n values is the middle value. If n is odd, this is A[n/2]; if n 
is even, we also opt for A[n/2] rather than averaging the middle two values.

(Recall that / is integer division when  both operands are integers, where the fractional part is 
truncated. Thus, for example,  5/2 is 2, and 6/2 is 3.)

But what if the array is not ordered. How would you find the median then?

You could sort the array and select A[n/2]. But sorting requires n log n operations. 

Is it possible to do better? Try it. You will find that everyday experience is no help.
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The median of an ordered array of n values is the middle value. If n is odd, this is A[n/2]; if n 
is even, we also opt for A[n/2] rather than averaging the middle two values.

(Recall that / is integer division when  both operands are integers, where the fractional part is 
truncated. Thus, for example,  5/2 is 2, and 6/2 is 3.)

But what if the array is not ordered. How would you find the median then?

You could sort the array and select A[n/2]. But sorting requires n log n operations. 

Is it possible to do better? Try it. You will find that everyday experience is no help.

We need principles to follow in such cases. 
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Three principles that can help are:

0 1 2 3 4 n

A 50 30 10 40 20

0 1 2 3 4 5 n

A 50 30 10 60 20 40

☞ Consider generalizing a problem when designing an algorithm.
☞ Consider Divide and Conquer when designing an algorithm.
☞ Consider recursion when designing an algorithm.

We will use them to derive:

• An Average-Case Linear-Time Median Algorithm
• A Worst-Case Linear-Time Median Algorithm

It is astounding that it is possible to find the median of an unordered array of length n in 
linear time, i.e., time proportional to n.



The median of an ordered array of n values is the middle value. If n is odd, this is A[n/2]; 
if n is even, we opt for A[n/2] rather than averaging the middle two values.
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☞ Consider generalizing a problem when designing an algorithm.

Selection: Given a set of n rank-ordered values, select the jth smallest value of the set. 



Selection: Given a set of n rank-ordered values, select the jth smallest value of the set. 
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☞ Consider Divide and Conquer when designing an algorithm.

Recall: Partitioning, based on the Dutch National Flag problem, for some pivot p:

0 w b n

A <p ==p >p

0≤j<w. The jth smallest value is the jth smallest value of A[0..w-1]
w≤j<b. The jth smallest value is the pivot, p
b≤j<n. The jth smallest value is the (j-b)th smallest value in A[b..n-1]

Choose one of the three regions based on a Partition (Divide) and repeat (Conquer).



Start with the code for Partition, and morph it into QuickSelect:
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/* Given A[L..R-1] and pivot value p, Partition(A,L,R,p) rearranges A[L..R-1]
   into all <p, then all ==p, then all >p. */
static void Partition( int A[], int L, int R, int p ) {
   ⟨body of Partition⟩
   } /* Partition */

☞ Don’t type if you can avoid it; clone. Cut and paste, then adapt.



Start with the code for Partition, and morph it into QuickSelect:
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/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
    smallest value in A[0..n-1]. */
static void QuickSelect( int A[], int L, int R, int p ) {
   ⟨body of Partition⟩
   } /* Partition */

Change the name and header comment.

☞ Don’t type if you can avoid it; clone. Cut and paste, then adapt.
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/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
    smallest value in A[0..n-1]. */
static void QuickSelect( int A[], int n, int j ) {
   int L = 0; int R = n;
   int p = value-of-pivot;
   ⟨body of Partition⟩
   } /* QuickSelect */

Move parameters L, R, and p into the body of QuickSelect, and introduce parameters n and j.

☞ Don’t type if you can avoid it; clone. Cut and paste, then adapt.

Start with the code for Partition, and morph it into QuickSelect:
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/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
    smallest value in A[0..n-1]. */
static int QuickSelect( int A[], int n, int j ) {
   int L = 0; int R = n;
   int p = value-of-pivot;
   ⟨body of Partition⟩
   return ____;
   } /* QuickSelect */

Change return type to int, and introduce a return statement for the result.

☞ Don’t type if you can avoid it; clone. Cut and paste, then adapt.

Start with the code for Partition, and morph it into QuickSelect:



Could consider recursion, but it is not needed because we can just …
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/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
    smallest value in A[0..n-1]. */
static int QuickSelect( int A[], int n, int j ) {
   int L = 0; int R = n;
   int p = value-of-pivot;
   ⟨body of Partition⟩
   return ____;
   } /* QuickSelect */



Update L, R, and p iteratively using the INVARIANT shown.

/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
    smallest value in A[0..n-1]. */
static int QuickSelect( int A[], int n, int j ) {
   int L = 0; int R = n;
   int p = value-of-pivot;
   ⟨body of Partition⟩
   return ____
   } /* QuickSelect */

/* Initialize. */
while ( not-finished ) {
   /* Compute. */
   /* Go-on-to-next. */
   }

0 L R n

A jth smallest is in here INVARIANT

iterant

iterant
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/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
    smallest value in A[0..n-1]. */
static int QuickSelect( int A[], int n, int j ) {
   int L = 0; int R = n;
   while ( not-finished ) {
      int p = value-of-pivot;
      ⟨body of Partition⟩
      /* Go-on-to-next. */
  return ____;
   } /* QuickSelect */

L w b R

A <p ==p >p

0 L R n

A jth smallest is in here

Update L, R, and p iteratively using the INVARIANT shown.
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L w b R

A <p ==p >p

0 L R n

A jth smallest is in here

/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
    smallest value in A[0..n-1]. */
static int QuickSelect( int A[], int n, int j ) {
   int L = 0; int R = n;
   while ( not-finished ) {
      int p = value-of-pivot;
      ⟨body of Partition⟩
     /* Go-on-to “<p” or “>p” region if j-th smallest there; else return p. */       
   return ____;
   } /* QuickSelect */

Update L, R, and p iteratively using the INVARIANT shown.
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L w b R

A <p ==p >p

0 L R n

A jth smallest is in here

/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
    smallest value in A[0..n-1]. */
static int QuickSelect( int A[], int n, int j ) {
   int L = 0; int R = n;
   while ( not-finished ) {
      int p = value-of-pivot;
      ⟨body of Partition⟩
      /* Go-on-to “<p” or “>p” region if j-th smallest there; else return p. */            
         if ( j<w ) R = w;
            else if ( j<b ) return p;
            else L = b;       
   return ____;
   } /* QuickSelect */

Update L, R, and p iteratively using the INVARIANT shown.
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L w b R

A <p ==p >p

0 L R n

A jth smallest is in here

/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
    smallest value in A[0..n-1]. */
static int QuickSelect( int A[], int n, int j ) {
   int L = 0; int R = n;
   while ( R-L > 1 ) {
      int p = value-of-pivot;
      ⟨body of Partition⟩
      /* Go-on-to “<p” or “>p” region if j-th smallest there; else return p. */            
         if ( j<w ) R = w;
            else if ( j<b ) return p;
            else L = b;       
   return A[j];
   } /* QuickSelect */

Update L, R, and p iteratively using the INVARIANT shown.
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L w b R

A <p ==p >p

0 L R n

A jth smallest is in here

/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
    smallest value in A[0..n-1]. */
static int QuickSelect( int A[], int n, int j ) {
   int L = 0; int R = n;
   while ( R-L > 1 ) {
      int p = value-of-pivot;
      ⟨body of Partition⟩
      /* Go-on-to “<p” or “>p” region if j-th smallest there; else return p. */            
         if ( j<w ) R = w;
            else if ( j<b ) return p;
            else L = b;       
   return A[j];
   } /* QuickSelect */

Q. Where was j ever updated?

Update L, R, and p iteratively using the INVARIANT shown.
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L w b R

A <p ==p >p

0 L R n

A jth smallest is in here

/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
    smallest value in A[0..n-1]. */
static int QuickSelect( int A[], int n, int j ) {
   int L = 0; int R = n;
   while ( R-L > 1 ) {
      int p = value-of-pivot;
      ⟨body of Partition⟩
      /* Go-on-to “<p” or “>p” region if j-th smallest there; else return p. */            
         if ( j<w ) R = w;
            else if ( j<b ) return p;
            else L = b;       
   return A[j];
   } /* QuickSelect */

Q. Where was j ever updated?
A. Nowhere. Partitioning moved values so the jth smallest ended up in A[j].

Update L, R, and p iteratively using the INVARIANT shown.
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L w b R

A <p ==p >p

/* Given A[L..n-1], and int 0≤j<n, quick_select(A,n,j) returns the j-th
    smallest value in A[0..n-1]. */
static int QuickSelect( int A[], int n, int j ) {
   int L = 0; int R = n;
   while ( R-L > 1 ) {
      int p = (A[L]+A[R-1])/2;
      ⟨body of Partition⟩
      /* Go-on-to “<p” or “>p” region if j-th smallest there; else return p. */            
         if ( j<w ) R = w;
            else if ( j<b ) return p;
            else L = b;       
   return A[j];
   } /* QuickSelect */

Update L, R, and p iteratively using the INVARIANT shown.



Performance: Pivots computed as (A[L]+A[R-1])/2

• Best case. On each iteration, pivot is (serendipitously) the median of A[L..R-1], 
so region sizes reduced by ½. Partitioning time is linear in size.

Total effort. 1·n + ½·n + ¼·n + … = 2·n, i.e., linear in n

• Worst case. On each iteration, pivot  is (serendipitously) the min or max of A[L..R-
1], so region sizes reduced by 1. Partitioning time is linear in size.

Total effort. n +(n-1) + (n-2) + … + 1 = n·(n-1)/2, i.e., quadratic in n.

• Average case, i.e., summed over all permutations of values in A[0..n-1].

Total effort. Linear in n

(offered without proof)
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Bad News: QuickSelect can have quadratic-time performance on some arrays.

Imagine telling the widow:

But Mrs. Jones, on average the code would have been fast enough to have saved 
your husband’s life. 

Goal. Linear-time performance on every array.



Performance Goal: Pivots computed as ________ in the hope that

• Every case. 

(1) On each iteration, region sizes reduced by constant ratio r.

Partitioning time is linear in region size. 

      Total effort for partitioning. 1·n + r·n + r2·n + r3·n + … = n/(1-r) 

      I.e., linear in n, not counting time to compute the pivot.

(2) On each iteration, the cost to compute the pivot is also linear in region size.

Thus, total effort, would be linear in n. In particular, even in the worst-case. 
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Performance Goal: Pivots computed as approximations to median of A[L..R-1].

• Every case. 

(1) On each iteration, region sizes reduced by constant ratio r.

Partitioning time is linear in region size. 

      Total effort for partitioning. 1·n + r·n + r2·n + r3·n + … = n/(1-r) 

      I.e., linear in n, not counting time to compute the pivot.

(2) On each iteration, the cost to compute the pivot is also linear in region size.

Thus, total effort, would be linear in n. In particular, even in the worst-case. 
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Idea: Pivots computed as approximations to median of A[L..R-1].

Imagine that this array, with median 61:

were laid out in a 3-high 2-D array in row major order:

The median of each column is shown in red.

W
o

rst-C
ase

 Lin
e

ar-Tim
e

 A
lgo

rith
m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 60 73 92 57 54 75 59 91 58 71 62 67 66 59 52 61 72 55 60 79

51 60 73 92 57 54 75

59 91 58 71 62 67 66

59 52 61 72 55 60 79



Idea: Pivots computed as approximations to median of A[L..R-1].

Imagine that this array, with median 61:

were laid out in a 3-high 2-D array in row major order:

The median of each column is shown in red.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 60 73 92 57 54 75 59 91 58 71 62 67 66 59 52 61 72 55 60 79

51 52 58 71 55 54 66

59 60 61 72 57 60 75

59 91 73 92 62 67 79

Now, imagine that each column were sorted, 
so its median comes to middle row.



Idea: Pivots computed as approximations to median of A[L..R-1].

Imagine that this array, with median 61:

were laid out in a 3-high 2-D array in row major order:

The median of each column is shown in red.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 60 73 92 57 54 75 59 91 58 71 62 67 66 59 52 61 72 55 60 79

55 51 52 54 58 66 71

57 59 60 60 61 75 72

62 59 91 67 73 79 92

Next, imagine that the columns were sorted 
by their medians. The median of the medians 
is shown with a green background.



Idea: Pivots computed as approximations to median of A[L..R-1].

Imagine that this array, with median 61:

were laid out in a 3-high 2-D array in row major order:

The median of each column is shown in red.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 60 73 92 57 54 75 59 91 58 71 62 67 66 59 52 61 72 55 60 79

Finally, color code the values:
   pink, if ≤ median of medians
   blue, if ≥ median of medians

55 51 52 54 58 66 71

57 59 60 60 61 75 72

62 59 91 67 73 79 92



Idea: Pivots computed as approximations to median of A[L..R-1].

Imagine that this array, with median 61:

were laid out in a 3-high 2-D array in row major order:

Choose the median of medians (60) as the pivot p, and partition A.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 60 73 92 57 54 75 59 91 58 71 62 67 66 59 52 61 72 55 60 79

Finally, color code the values:
   pink, if ≤ median of medians
   blue, if ≥ median of medians

55 51 52 54 58 66 71

57 59 60 60 61 75 72

62 59 91 67 73 79 92

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 55 57 54 52 59 59 58 60 60 62 67 66 71 91 61 72 75 92 79 73



Idea: Pivots computed as approximations to median of A[L..R-1].

Imagine that this array, with median 61:

were laid out in a 3-high 2-D array in row major order:

Choose the median of medians (60) as the pivot p, and partition A.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 60 73 92 57 54 75 59 91 58 71 62 67 66 59 52 61 72 55 60 79

We seek the median, i.e., the n/2th smallest 
(n/2 = 21/2 = 10), which falls into >p region

55 51 52 54 58 66 71

57 59 60 60 61 75 72

62 59 91 67 73 79 92

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 55 57 54 52 59 59 58 60 60 62 67 66 71 91 61 72 75 92 79 73



Idea: Pivots computed as approximations to median of A[L..R-1].

Imagine that this array, with median 61:

were laid out in a 3-high 2-D array in row major order:

Thus, the >p region is no larger than r = 1-1/3 = 2/3 the size of the whole.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 60 73 92 57 54 75 59 91 58 71 62 67 66 59 52 61 72 55 60 79

We seek the median, i.e., the n/2th smallest 
(n/2 = 21/2 = 10), which falls into >p region, 
eliminating at least 2/3 · ½ = 1/3 the values.

55 51 52 54 58 66 71

57 59 60 60 61 75 72

62 59 91 67 73 79 92

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 55 57 54 52 59 59 58 60 60 62 67 66 71 91 61 72 75 92 79 73



Performance Goal: Pivots computed as approximations to median of A[L..R-1].

• Every case. 

(1) On each iteration, region sizes reduced by constant ratio r.

Partitioning time is linear in region size. 

      Total effort for partitioning. n + r·n + r2·n + r3·n + … = n/(1-r) 

      I.e., linear in n, not counting time to compute the pivot.

(2) On each iteration, the cost to compute the pivot is also linear in region size.

Thus, total effort, would be linear in n. In particular, even in the worst-case. 
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Performance Goal: Pivots computed as median of medians of A[L..R-1].

• Every case. 

(1) On each iteration, region sizes reduced by constant ratio r.

Partitioning time is linear in region size. 

      Total effort for partitioning. n + (2/3)·n + (2/3)2·n + (2/3)3·n + … = n/(1-2/3) = 3·n

      I.e., linear in n, not counting time to compute the pivot.

(2) On each iteration, the cost to compute the pivot is also linear in region size.

Thus, total effort, would be linear in n. In particular, even in the worst-case.
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Performance Goal: Pivots computed as median of medians of A[L..R-1].

• Every case. 

(1) On each iteration, region sizes reduced by constant ratio r.

Partitioning time is linear in region size. 

      Total effort for partitioning. n + (2/3)·n + (2/3)2·n + (2/3)3·n + … = n/(1-2/3) = 3·n

      I.e., linear in n, not counting time to compute the pivot.

(2) On each iteration, the cost to compute the pivot is also linear in region size.

But how will we compute the median of medians of A[L..R-1]?

Thus, total effort, would be linear in n. In particular, even in the worst-case.
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Performance Goal: Pivots computed as median of medians of A[L..R-1] using 
recursion, i.e., apply the worst-case median algorithm to the n/3 medians of 
groups of 3 elements.
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☞ Consider recursion when designing an algorithm.



Performance Goal: Pivots computed as median of medians of A[L..R-1] using 
recursion, i.e., apply the worst-case median algorithm to the n/3 medians of 
groups of 3 elements.

This works, but alas, there are too many groups of 3, so the total cost is super- linear.
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☞ Consider recursion when designing an algorithm.



Performance Goal: Pivots computed as median of medians of A[L..R-1] using 
recursion, i.e., apply the worst-case median algorithm to the n/3 medians of 
groups of 3 elements.

This works, but alas, there are too many groups of 3, so the total cost is super- linear.

But don’t loose heart. All is not lost, because … 

W
o

rst-C
ase

 Lin
e

ar-Tim
e

 A
lgo

rith
m



Performance Goal: Pivots computed as median of medians of A[L..R-1] using 
recursion, i.e., apply the worst-case median algorithm to the n/5 medians of 
groups of 5 elements.

This works, and is linear.

Selection of a partition region eliminates at least 3/5 · ½ = 3/10 the values.

Thus, the selected region is no larger than r = 1-3/10 = 7/10 the size of the whole.

Total effort for partitioning. n + (7/10)·n + (7/10)2·n + (7/10)3·n + … = n/(1-7/10) = 3.33·n

In effect, the reduction ratio r shrinks slightly (from 2/3 to 3/10), but the number of 
groups shrinks more than enough (from n/3 to n/5) to render the total linear.

W
o

rst-C
ase

 Lin
e

ar-Tim
e

 A
lgo

rith
m



Summary:

Presented three algorithm-design principles that can serve in lieu of everyday 
experience:

☞ Consider generalizing a problem when designing an algorithm.
☞ Consider Divide and Conquer when designing an algorithm.
☞ Consider recursion when designing an algorithm.

Used the principles to derive two algorithms for finding the median as a special case of 
finding the  jth smallest value in A[0..n-1]:

• Linear average-time performance
• Linear worst-case-time performance.
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