
Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor

Department of Computer Science
Cornell University

Introduction

Copyright©2023 by Tim Teitelbaum; Most recent revision, 12/09/2024

You can learn a programming language but still not know how to program.

You can learn a programming language but still not know how to program.

You learned the constructs, but have little idea how to use them.

You can learn a programming language but still not know how to program.

You learned the constructs, but have little idea how to use them.

You’ve seen finished programs, but struggle to produce one yourself.

You can learn a programming language but still not know how to program.

You learned the constructs, but have little idea how to use them.

You’ve seen finished programs, but struggle to produce one yourself.

You will grope in the dark until someone shows you a methodology.

You can learn a programming language but still not know how to program.

You learned the constructs, but have little idea how to use them.

You’ve seen finished programs, but struggle to produce one yourself.

You will grope in the dark until someone shows you a methodology.

I aim to provide you with that methodology.

You can learn a programming language but still not know how to program.

You learned the constructs, but have little idea how to use them.

You’ve seen finished programs, but struggle to produce one yourself.

You will grope in the dark until someone shows you a methodology.

I aim to provide you with that methodology.

Since I don’t want to teach a language, I’ll stick to a tiny, universal one.

You can learn a programming language but still not know how to program.

You learned the constructs, but have little idea how to use them.

You’ve seen finished programs, but struggle to produce one yourself.

You will grope in the dark until someone shows you a methodology.

I aim to provide you with that methodology.

Since I don’t want to teach a language, I’ll stick to a tiny, universal one.

It’s a subset of Java, Python, C/C++, JavaScript, …, (any imperative language).

Can programming be mechanized?

Can programming be mechanized?

R
eq

u
irem

e
n

ts

Can programming be mechanized?

R
eq

u
irem

e
n

ts

Program

Can programming be mechanized?

R
eq

u
irem

e
n

ts

In
p

u
t

Output

Program

Can programming be mechanized?

R
eq

u
irem

e
n

ts

Program

Rules

Fully-automatic programming
would need rules that are:
• Effective
• Produce good code
• Efficient
• Complete

Can programming be mechanized?

R
eq

u
irem

e
n

ts

Program

Rules

Fall back
• Rules for people
• Make programming

▪ Easy
▪ Accurate

R
eq

u
irem

e
n

ts

pre·cept
 A command or principle intended especially as a general rule of action

ProgramYOU

Precepts

Fall back
• Rules for people
• Make programming

▪ Easy
▪ Accurate

pre·cept
 A command or principle intended especially as a general rule of action

☞ Follow programming precepts.

pre·cept
 A command or principle intended especially as a general rule of action

pre·cept
 A command or principle intended especially as a general rule of action

pre·cept
 A command or principle intended especially as a general rule of action

☞ Ignore precepts, when appropriate.

pre·cept
 A command or principle intended especially as a general rule of action

INCONSISTENCIES

☞ Code with deliberation. Be mindful.

Sample precept

Sample precept

☞ Aspire to making code self-documenting by choosing descriptive names.

amount = price * quantity;

Sample precept, with an application:

☞ Aspire to making code self-documenting by choosing descriptive names.

piece = board[row+deltaRow[direction]][column+deltaColumn[direction]];

Same precept, with a different application:

☞ Aspire to making code self-documenting by choosing descriptive names.

piece = board[row+deltaRow[direction]][column+deltaColumn[direction]];

piece = B[r+deltaR[d]][c+deltaC[d]];

☞ Aspire to making code self-documenting by choosing descriptive names.

Same precept, with a different application:

☞ Use single-letter variable names when it makes code more understandable.

piece = B[r+deltaR[d]][c+deltaC[d]];

Alternative precept

piece = board[row+deltaRow[direction]][column+deltaColumn[direction]];

☞ Resolve contradictory precepts with care.

☞ Resolve contradictory precepts with care.

Exercise judgement

Make tradeoffs

Don’t make decisions casually

Indulge in personal preference

☞ Be humble. Programming is hard and error prone. Respect it.

☞ Be humble. Programming is hard and error prone. Respect it.

Despite your humility, aim for perfection

• The quality of the code you write

• The quality of the process you use to write it

☞ Aspire to code it right the first time.

Process quality

☞ Aspire to code it right the first time. Do no harm. Avoid writing code that
must be redone.

Process quality: Hippocratic Coding

An approach to Hippocratic Coding: Patterns

☞ Master stylized code patterns, and use them.

An approach to Hippocratic Coding: Patterns

A pattern is a structure containing placeholders.

The structure is an arrangement of computational elements.

The placeholders are named slots to be filled in:

They may be words or phrases in italics.

They may be comments, which are hash marks (#) followed by text.

Pattern: compute-use

/* Compute. */
/* Use. */

☞ Master stylized code patterns, and use them.

Pattern: compute-use

/* Compute. */
/* Use. */

☞ Master stylized code patterns, and use them.

• The structure of the compute-use pattern is a
sequence of two statements that command
actions to be performed one after the other.

• The placeholders describe the actions: compute
something, then use it.

Pattern: compute-use

/* Compute. */
/* Use. */

☞ Master stylized code patterns, and use them.

• The structure of the compute-use pattern is a
sequence of two statements that command
actions to be performed one after the other.

• The placeholders describe the actions: compute
something, then use it.

How does this pattern help?

Sample programming problem

☞ Master stylized code patterns, and use them.

Big hairy mess

/* Compute k. */
/* Use k. */

☞ Master stylized code patterns, and use them.

Apply the compute-use pattern

/* Compute k. */
/* Use k. */

☞ Master stylized code patterns, and use them.

Apply the compute-use pattern

How does this pattern help?

• It divides the problem into two smaller parts.
• It describes those parts, and clarifies that the first

step computes something named k, and the
second step uses k.

/* Compute k. */
/* Use k. */

☞ Master stylized code patterns, and use them.

Apply the compute-use pattern

How does this pattern help?

• It divides the problem into two smaller parts.
• It describes those parts, and clarifies that the first

step computes something named k, and the
second step uses k.

• It’s Hippocratic: A baby step that does no harm.

k = thus-and-such;
/* Use k. */

☞ Master stylized code patterns, and use them.

Apply the compute-use pattern

How does this pattern help?

• It divides the problem into two smaller parts.
• It describes those parts, and clarifies that the first

step computes something named k, and the
second step uses k.

• It’s Hippocratic: A baby step that does no harm.
• We can then:

▪ Replace the first placeholder with code.

k = thus-and-such;
if (k-has-some-desired-property)
 /* Do-this-and-that. */

☞ Master stylized code patterns, and use them.

Apply the compute-use pattern

How does this pattern help?

• It divides the problem into two smaller parts.
• It describes those parts, and clarifies that the first

step computes something named k, and the
second step uses k.

• It’s Hippocratic: A baby step that does no harm.
• We can then:

▪ Replace the first placeholder with code.
▪ Replace the second placeholder with code.

and we’re making progress.

k = thus-and-such;
if (k-has-some-desired-property)
 /* Do-this-and-that. */

☞ Master stylized code patterns, and use them.

Apply the compute-use pattern

How does this pattern help?

• It divides the problem into two smaller parts.
• It describes those parts, and clarifies that the first

step computes something named k, and the
second step uses k.

• It’s Hippocratic: A baby step that does no harm.
• We can then:

▪ Replace the first placeholder with code.
▪ Replace the second placeholder with code.

and we’re making progress.
• The Compute and Use placeholders are gone, but

the compute-use pattern is the skeleton that
underlies the code.

/* Compute k. */
/* Use k. */

☞ Master stylized code patterns, and use them.

Apply the compute-use pattern

• An alternative to replacing a placeholders is to …

☞ Master stylized code patterns, and use them.

Apply the compute-use pattern

/* Compute k, some aspect of the big-hairy-mess. */
/* Use k, the aspect of the big-hairy-mess that has been computed. */

• An alternative to replacing a placeholders is to
amplify it with specifics that say exactly what a
step must do, effectively turning it into a
specification.

Application of compute-use

/* Compute k. */
 k = thus-and-such;
/* Use k. */
 if (k-has-some-desired-property) /* Do-this-and-that. */

☞ Master stylized code patterns, and use them.

• An alternative to replacing a placeholder is to
amplify it with specifics that say exactly what a
step must do, effectively turning it into a
specification.

• The specification can then be implemented, either
by code, or by an instance of another pattern, and
remains to show the intent of its refinement.

Application of compute-use

/* Compute k. */
 k = thus-and-such;
/* Use k. */
 if (k-has-some-desired-property) /* Do-this-and-that. */

☞ Master stylized code patterns, and use them.

• When a specification is implemented:
▪ The implementation is indented to show that it

is a refinement.

• An alternative to replacing a placeholder is to
amplify it with specifics that say exactly what a
step must do, effectively turning it into a
specification.

• The specification can then be implemented, either
by code, or by an instance of another pattern, and
remains to show the intent of its refinement.

Application of compute-use

/* Compute k. */
 k = thus-and-such;

/* Use k. */
 if (k-has-some-desired-property) /* Do-this-and-that. */

☞ Master stylized code patterns, and use them.

• When a specification is implemented:
▪ The implementation is indented to show that it

is a refinement.
▪ A blank line may optionally be inserted after it.

• An alternative to replacing a placeholder is to
amplify it with specifics that say exactly what a
step must do, effectively turning it into a
specification.

• The specification can then be implemented, either
by code, or by an instance of another pattern, and
remains to show the intent of its refinement.

Another pattern: indeterminate iteration

/* Enumerate from start. */
 int k = start;
 while (condition) k++;

☞ Master stylized code patterns, and use them.

Another pattern: indeterminate iteration

/* Enumerate from start. */
 int k = start;
 while (condition) k++;

Effect
 Initialize k to start
 Repeatedly add 1 to k
 provided condition is true

☞ Master stylized code patterns, and use them.

Yet another pattern: general iterative computation

/* Initialize. */
while (not-finished) {
 /* Compute. */
 /* Go-on-to-next. */
 }

☞ Master stylized code patterns, and use them.

Yet another pattern: general iterative computation

/* Initialize. */
while (not-finished) {
 /* Compute. */
 /* Go-on-to-next. */
 }

☞ Master stylized code patterns, and use them.

Effect
 Get ready by initializing
 Repeatedly make progress by:

computing something
moving on to the next thing

/* Initialize. */
while (not-finished) {
 /* Compute. */
 /* Go-on-to-next. */
 }

int k = start;
while (condition) k++;

☞ Master stylized code patterns, and use them.

Indeterminate iteration is a special case of general iterative computation.

/* Initialize. */
while (not-finished) {
 /* Compute. */
 /* Go-on-to-next. */
 }

int k = start;
while (condition) k++;

☞ Master stylized code patterns, and use them.

Indeterminate iteration is a special case of general iterative computation.

Indeterminate iteration is a special case of general iterative computation.

/* Initialize. */
while (not-finished) {
 /* Compute. */
 /* Go-on-to-next. */
 }

int k = start;
while (condition) k++;

☞ Master stylized code patterns, and use them.

Indeterminate iteration is a special case of general iterative computation.

/* Initialize. */
while (not-finished) {
 /* Compute. */
 /* Go-on-to-next. */
 }

int k = start;
while (condition) k++;

☞ Master stylized code patterns, and use them.

/* Initialize. */
while (not-finished) {

 /* Go-on-to-next. */
 }

int k = start;
while (condition) k++;

☞ Master stylized code patterns, and use them.

Indeterminate iteration is a special case of general iterative computation.

for (initialize; condition; go-on-to-next) compute

☞ Master stylized code patterns, and use them.

Shorthand: general iterative computation

Shorthand: general iterative computation

/* Initialize. */
while (not-finished) {
 /* Compute. */
 /* Go-on-to-next. */
 }

for (initialize; condition; go-on-to-next) compute

☞ Master stylized code patterns, and use them.

Shorthand: general iterative computation

/* Initialize. */
while (not-finished) {
 /* Compute. */
 /* Go-on-to-next. */
 }

for (initialize; condition; go-on-to-next) compute

☞ Master stylized code patterns, and use them.

Shorthand: general iterative computation

/* Initialize. */
while (not-finished) {
 /* Compute. */
 /* Go-on-to-next. */
 }

for (initialize; condition; go-on-to-next) compute

☞ Master stylized code patterns, and use them.

Shorthand: general iterative computation

/* Initialize. */
while (not-finished) {
 /* Compute. */
 /* Go-on-to-next. */
 }

for (initialize; condition; go-on-to-next) compute

☞ Master stylized code patterns, and use them.

Shorthand: general iterative computation

/* Initialize. */
while (not-finished) {
 /* Compute. */
 /* Go-on-to-next. */
 }

for (initialize; condition; go-on-to-next) compute

☞ Master stylized code patterns, and use them.

Convention: We could use a for-statement to express indeterminate iteration

int k = start;
while (condition) k++;

for (initialize; condition; go-on-to-next) compute

☞ Master stylized code patterns, and use them.

int k = start;
while (condition) k++;

for (int k=start; condition; go-on-to-next) compute

☞ Master stylized code patterns, and use them.

Convention: We could use a for-statement to express indeterminate iteration

int k = start;
while (condition) k++;

for (int k=start; condition; k++) compute

☞ Master stylized code patterns, and use them.

Convention: We could use a for-statement to express indeterminate iteration

int k = start;
while (condition) k++;

for (int k=start; condition; k++);

☞ Master stylized code patterns, and use them.

Convention: We could use a for-statement to express indeterminate iteration

int k = start;
while (condition) k++;

for (int k=start; condition; k++);

But, by convention: Never use a for-statements for indeterminate iteration

☞ Master stylized code patterns, and use them.

Convention: Reserve for-statements for determinate iteration

for (int k=start; k<limit; k++) compute
for (int k=start; k<=limit; k++) compute

for (int k=start; k>limit; k--) compute
for (int k=start; k>=limit; k--) compute

k goes up

k goes down

☞ Master stylized code patterns, and use them.

Determinate: for when the number of iterations is known beforehand

for (int k=start; condition; go-on-to-next) compute

☞ Master stylized code patterns, and use them.

Indeterminate: for when the number of iterations is not known beforehand

Key Distinction: determinate iteration vs indeterminate iteration

k = start;
while (condition)
 k++;

Determinate: for when the number of iterations is known beforehand

for (int k=start; condition; go-on-to-next) compute

☞ Master stylized code patterns, and use them.

Indeterminate: for when the number of iterations is not known beforehand

Key Distinction: determinate iteration vs indeterminate iteration

• “Known” in the sense that the number of
iterations is determined on arrival at the
for-statement.

k = start;
while (condition)
 k++;

Another approach to Hippocratic Coding: Analysis

☞ Aspire to code it right the first time. Do no harm. Avoid writing code that
must be redone.

Another approach to Hippocratic Coding: Analysis

☞ Analyze first.

Example: Running a Maze

Background. Define a maze to be a square two-dimensional grid of cells
separated (or not) from adjacent cells by walls. One can move between
adjacent cells if and only if no wall divides them. A solid wall surrounds
the entire grid of cells, so there is no escape from the maze.
Problem Statement. Write a program that inputs a maze, and outputs a
direct path from the upper-left cell to the lower-right cell if such a path
exists, or outputs “Unreachable” otherwise. A path is direct if it never
visits any cell more than once.

1 2 3

5 4

6 7

8

9 10 11

Analysis

• Problem
• Architecture
• Data
• Components

☞ Analyze first.

Problem

☞ Make sure you understand the problem.

Example: Running a Maze

Background. Define a maze to be a square two-dimensional grid of cells
separated (or not) from adjacent cells by walls. One can move between
adjacent cells if and only if no wall divides them. A solid wall surrounds
the entire grid of cells, so there is no escape from the maze.
Problem Statement. Write a program that inputs a maze, and outputs a
direct path from the upper-left cell to the lower-right cell if such a path
exists, or outputs “Unreachable” otherwise. A path is direct if it never
visits any cell more than once.

1 2 3

5 4

6 7

8

9 10 11

☞ Make sure you understand the problem.

Example: Running a Maze

• Do I understand each noun: maze, grid, cell, wall, path, and direct path?
• Do I understand the verbs: Specifically, how does one move between cells?
• How is a maze represented in the input?
• Is there any upper limit on the size of a maze? Is there a lower limit?
• What is the expected program behavior if the input is not well-formed?
• Is a direct path the same as a shortest path?
• What if there is more than one direct path?
• How is a path to be displayed in the output?

1 2 3

5 4

6 7

8

9 10 11

☞ Make sure you understand the problem.

Architecture: What sort of computation will it be?

Architecture: What sort of computation will it be?

• Online. Read a sequence of inputs, and process them on the fly.
• Offline. Read all inputs, perform a computation, output result.
• Other.

Architecture: Offline computation pattern

/* Input. */
/* Compute. */
/* Output. */

Architecture: Restate the problem on the architecture

/* Input a maze of arbitrary size, or output “malformed input” and stop if the
 input is improper. Input format: TBD. */
/* Compute a direct path through the maze, if one exists. */
/* Output the direct path found, or “unreachable” if there is none. Output
 format: TBD. */

Programs: Instructions for manipulating values

Instructions: code

Values: data

Patterns and Architecture: Code-centered perspective

☞ Dovetail thinking about code and data.

Code

/* Input a maze of arbitrary size, or output “malformed input” and stop if the
 input is improper. Input format: TBD. */
/* Compute a direct path through the maze, if one exists. */
/* Output the direct path found, or “unreachable” if there is none. Output
 format: TBD. */

☞ Dovetail thinking about code and data.

Data

/* Input a maze of arbitrary size, or output “malformed input” and stop if the
 input is improper. Input format: TBD. */
/* Compute a direct path through the maze, if one exists. */
/* Output the direct path found, or “unreachable” if there is none. Output
 format: TBD. */

maze

path

☞ Dovetail thinking about code and data.

External Data

/* Input a maze of arbitrary size, or output “malformed input” and stop if the
 input is improper. Input format: TBD. */
/* Compute a direct path through the maze, if one exists. */
/* Output the direct path found, or “unreachable” if there is none. Output
 format: TBD. */

external data (maze)

external data (path)

☞ Dovetail thinking about code and data.

Variables

☞ Specify how individual program steps will cooperate with one another.

/* Input a maze of arbitrary size, or output “malformed input” and stop if the
 input is improper. Input format: TBD. */

/* Compute a direct path through the maze, if one exists. */

/* Output the direct path found, or “unreachable” if there is none. Output
 format: TBD. */

maze

path

Internal Data

☞ A program’s internal data representation is central to the code; consider it early.

/* Input a maze of arbitrary size, or output “malformed input” and stop if the
 input is improper. Input format: TBD. */

/* Compute a direct path through the maze, if one exists. */

/* Output the direct path found, or “unreachable” if there is none. Output
 format: TBD. */

internal data (maze)

internal data (path)

/* Input a maze of arbitrary size, or output “malformed input” and stop if the
 input is improper. Input format: TBD. */
/* Compute a direct path through the maze, if one exists. */
/* Output the direct path found, or “unreachable” if there is none. Output
 format: TBD. */

External Data

☞ Consider a program’s external data representation late.

external data (maze)

external data (path)

Components

• A program can be organized into components.
• Distinguish between the maze-running algorithm (a client of data) and the data

itself (housed in a server).
• What operations are needed by the client?
• What operations can be provided by the server?
• Resolve differences by negotiation.

CLIENT
algorithm

SERVER
maze
path

Components

• Some aspects of data are static, i.e., don’t change (maze)
• The client learns of static data by queries.
• Other aspects of data are dynamic, i.e., change (path)
• The client is an actor that effects changes by actions:

▪ extend path (if possible); retract path (if necessary)
▪ The cumulative effect of actions is recorded in state.

CLIENT
algorithm

SERVER
maze
path

Components

• A client may have/want global perspective
▪ algorithm is aware of the full maze

CLIENT
algorithm

SERVER
maze
path

Components

• A client may have/want global perspective
▪ algorithm is aware of the full maze

• Other clients have/want only local perspective
▪ rat is unaware of full maze

↑ → ↓ ←

CLIENT
algorithm

SERVER
maze
path

Components

• A client may have/want global perspective
▪ algorithm is aware of the full maze

• Other clients have/want only local perspective
▪ rat is unaware of full maze

↑ → ↓ ←

CLIENT
algorithm

SERVER
maze
path

Another programming problem

☞ Analyze first.

Example: Ricocheting Bee-Bee
Background. A square tin box measuring one foot on each side has a slit
of size d centered on one side. Insert a bee-bee gun at the center of the
slit at angle Θ, and shoot. The bee-bee ricochets off sides, one after
another. On each ricochet, the angle of reflection is equal to the angle of
incidence.
Problem Statement. Write a program that inputs d and Θ, and outputs
the total distance the bee-bee travels before it exits.

Example: Ricocheting Bee-Bee
Background. A square tin box measuring one foot on each side has a slit
of size d centered on one side. Insert a bee-bee gun at the center of the
slit at angle Θ, and shoot. The bee-bee ricochets off sides, one after
another. On each ricochet, the angle of reflection is equal to the angle of
incidence.
Problem Statement. Write a program that inputs d and Θ, and outputs
the total distance the bee-bee travels before it exits.

☞ Analyze first.

An analogous example: Output the sum of the integers between 1 and n.

/* Output the sum of 1 through n. */

An analogous example: Output the sum of the integers between 1 and n.

/* Output the sum of 1 through n. */
 int sum = 0;
 for (int k=1; k<=n; k++) sum = sum + k;
 System.out.println(sum);

knee-jerk, brute force

An analogous example: Output the sum of the integers between 1 and n.

/* Output the sum of 1 through n. */
 int sum = 0;
 for (int k=1; k<=n; k++) sum = sum + k;
 System.out.println(sum);

☞ Analyze first.

An analogous example: Output the sum of the integers between 1 and n.

n

n+1

/* Output the sum of 1 through n. */
System.out.println(n*(n+1)/2);

☞ Analyze first.

n

n+1

An analogous example: Output the sum of the integers between 1 and n.

Integer division, with fractional part truncated.

☞ Sometimes iteration is unnecessary because a closed-form solution is available.

/* Output the sum of 1 through n. */
System.out.println(n*(n+1)/2);

An analogous example: Output the sum of the integers between 1 and n.

n

n+1

Example: Ricocheting Bee-Bee
Background. A square tin box measuring one foot on each side has a slit
of size d centered on one side. Insert a bee-bee gun at the center of the
slit at angle Θ, and shoot. The bee-bee ricochets off sides, one after
another. On each ricochet, the angle of reflection is equal to the angle of
incidence.
Problem Statement. Write a program that inputs d and Θ, and outputs
the total distance the bee-bee travels before it exits.

☞ Sometimes iteration is unnecessary because a closed-form solution is available.

Another analogy: A possible source of inspiration.

Another analogy: Computing the arc length s of a curve y=f(x), between a and b.

x

y

a b

f

Another analogy: Computing the arc length s of a curve y=f(x), between a and b.

x

y

a b

f

n

x

y

a b

f

ba

f

Another analogy: Where does the analogy faulter?

ba

f

Another analogy: In the calculus problem, we seek s, the length of f.

ba

f

Another analogy: In the bee-bee problem, we seek the sum of the piece lengths.

ba

f

Another analogy: In general, they are only the same in the infinite limit.Another analogy: In general, they are only the same in the infinite limit.

ba

Another analogy: How can we unify the two disparate points of view?

f

ba

f

Another analogy: By finding an instance of the problem where they are the same.

ba

f

Another analogy: By finding an instance of the problem where they are the same.

ba

f

Another analogy: By finding an instance of the problem where they are the same.

ba

f

Another analogy: By finding an instance of the problem where they are the same.

Another analogy: By finding an instance of the problem where they are the same.

ba

f

Example: Ricocheting Bee-Bee
Background. A square tin box measuring one foot on each side has a slit
of size d centered on one side. Insert a bee-bee gun at the center of the
slit at angle Θ, and shoot. The bee-bee ricochets off sides, one after
another. On each ricochet, the angle of reflection is equal to the angle of
incidence.
Problem Statement. Write a program that inputs d and Θ, and outputs
the total distance the bee-bee travels before it exits.

☞ Solve a different problem, and use that solution to solve the original problem.

Example: Ricocheting Bee-Bee
Background. A square tin box measuring one foot on each side has a slit
of size d centered on one side. Insert a bee-bee gun at the center of the
slit at angle Θ, and shoot. The bee-bee ricochets off sides, one after
another. On each ricochet, the angle of reflection is equal to the angle of
incidence.
Problem Statement. Write a program that inputs d and Θ, and outputs
the total distance the bee-bee travels before it exits.

☞ Solve a different problem, and use that solution to solve the original problem.

Example: Ricocheting Bee-Bee
Background. A square tin box measuring one foot on each side has a slit
of size d centered on one side. Insert a bee-bee gun at the center of the
slit at angle Θ, and shoot. The bee-bee ricochets off sides, one after
another. On each ricochet, the angle of reflection is equal to the angle of
incidence.
Problem Statement. Write a program that inputs d and Θ, and outputs
the total distance the bee-bee travels before it exits.

☞ Solve a different problem, and use that solution to solve the original problem.

Hippocratic Coding:

☞ Aspire to code it right the first time.

Hippocratic Coding:

Patterns:

☞ Aspire to code it right the first time.

☞ Master stylized code patterns, and use them.

Hippocratic Coding:

Patterns:

Analysis:

☞ Aspire to code it right the first time.

☞ Master stylized code patterns, and use them.

☞ Analyze first.

Hippocratic Coding:

Patterns:

Analysis:

☞ Aspire to code it right the first time.

☞ Master stylized code patterns, and use them.

☞ Analyze first.

Process:

☞ Reduce errors.

Process: Don’t make mistakes

☞ Avoid debugging like the plague.

• Hope for the best, but

• Plan for the worst.

Process: Find mistakes as soon as possible

☞ Test programs incrementally.

Process: Stay in control

☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.

• Hope for the best, but

• Plan for the worst.

/* Input a maze of arbitrary size, or output “malformed input” and stop if the
 input is improper. Input format: TBD. */
/* Compute a direct path through the maze, if one exists. */
/* Output the direct path found, or “unreachable” if there is none. Output
 format: TBD. */

☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.

Process: End-to-end correctness of subproblems

/* Input a maze of arbitrary size, or output “malformed input” and stop if the
 input is improper. Input format: TBD. */
/* Compute a direct path through the maze, if one exists. */
/* Output the direct path found, or “unreachable” if there is none. Output
 format: TBD. */

☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.

Process: End-to-end correctness of subproblems

/* Compute a direct path through the maze, if one exists. */

jury rig a specific maze

provide simple diagnostic output

☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.

Process: End-to-end correctness of subproblems

/* Compute a direct path through the maze, if one exists. */

jury rig a specific maze

provide simple diagnostic output

☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.

Process: End-to-end correctness of subproblems

Process: Undo if necessary

☞ Don’t be wedded to code. Revise and rewrite when you discover a better way.

Process: Stepwise refinement

☞ Program top-down, outside-in.

Example: Print the integer part of the square root of an integer n≥0.

☞ Write comments as an integral part of the coding process, not as afterthoughts.

Example: Print the integer part of the square root of an integer n≥0.

/* Given n≥0, output the Integer Square Root of n. */ 1

Example: Print the integer part of the square root of an integer n≥0.

☞ Write comments as an integral part of the coding process, not as afterthoughts.

/* Given n≥0, output the Integer Square Root of n. */ 1

/* Given n≥0, output the Integer Square Root of n. */ 1

☞ Make sure you understand the problem.

/* Given n≥0, output the Integer Square Root of n. */ 1

☞ Make sure you understand the problem.

Q. Where did n come from?

/* Given n≥0, output the Integer Square Root of n. */ 1

☞ Make sure you understand the problem.

Q. Where did n come from?
• A1. It is a program variable.

/* Given n≥0, output the Integer Square Root of n. */ 1

☞ Make sure you understand the problem.

Q. Where did n come from?
• A1. It is a program variable.
• A2. It is assumed to already contain a value ≥ 0.

/* Given n≥0, output the Integer Square Root of n. */ 1

☞ Make sure you understand the problem.

Q. Where did n come from?
• A1. It is a program variable.
• A2. It is assumed to already contain a value ≥ 0.
• A3. We are only asked to write a program segment.

/* Given n≥0, output the Integer Square Root of n. */ 1

☞ Make sure you understand the problem.

/* Given n≥0, output the Integer Square Root of n. */ 1

☞ Make sure you understand the problem.

Q. Can’t we just do this using a few library routines?

/* Given n≥0, output the Integer Square Root of n. */
 System.out.println(Math.floor(Math.sqrt(n)));

2

☞ Make sure you understand the problem.

Q. Can’t we just do this using a few library routines?
• A. Yes.

/* Given n≥0, output the Integer Square Root of n. */
 System.out.println(Math.floor(Math.sqrt(n)));

2

☞ Make sure you understand the problem.

Q. Can’t we just do this using a few library routines?
• A. Yes.
• But that would deprive us of a good example.
• So, we amend our problem statement.

/* Given n≥0, output the Integer Square Root of n. */
 System.out.println(Math.floor(Math.sqrt(n)));

2

Example: Print the integer part of the square root of an integer n≥0 without
using built-in functions.

☞ Make sure you understand the problem.

Q. Can’t we just do this using a few library routines?
• A. Yes.
• But that would deprive us of a good example.
• So, we amend our problem statement.

/* Given n≥0, output the Integer Square Root of n. */ 1

Example: Print the integer part of the square root of an integer n≥0 without
using built-in functions.

/* Given n≥0, output the Integer Square Root of n. */ 1

☞ Master stylized code patterns, and use them.

//* Given n≥0, output the Integer Square Root of n. */ 1

☞ Master stylized code patterns, and use them.

//* Given n≥0, output the Integer Square Root of n. */ 1

/* Compute. */
/* Use. */

☞ Master stylized code patterns, and use them.

//* Given n≥0, output the Integer Square Root of n. */ 1

☞ Specify how individual program steps will cooperate with one another.

/* Compute r. */
/* Use r. */

/
/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 System.out.println(r);

2

/* Compute r. */
/* Use r. */

☞ Specify how individual program steps will cooperate with one another.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 System.out.println(r);

2

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 System.out.println(r);

2

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 System.out.println(r);

2

☞ Master stylized code patterns, and use them.

☞ If you “smell a loop”, write it down.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 System.out.println(r);

2

☞ Decide first whether an iteration is indeterminate (use while) or determinate
(use for).

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 System.out.println(r);

2

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 System.out.println(r);

2

/* Indeterminate iteration */
 int k = start;
 while (condition) k++;

/* Determinate iteration */
 for (int k=start; k<=limit; k++) compute

W
h

ich
?

☞ Decide first whether an iteration is indeterminate (use while) or determinate
(use for).

☞ Beware of for-loop abuse; if in doubt, err in favor of while.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 System.out.println(r);

2

/* Indeterminate iteration */
 int k = start;
 while (condition) k++;

/* Determinate iteration */
 for (int k=start; k<=limit; k++) compute

W
h

ich
?

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 System.out.println(r);

2

/* Indeterminate iteration */
 int k = start;
 while (condition) k++;

/* Determinate iteration */
 for (int k=start; k<=limit; k++) compute

☞ Beware of for-loop abuse; if in doubt, err in favor of while.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while (condition) r++;
 System.out.println(r);

3

/* Indeterminate iteration */
 int k = start;
 while (condition) k++;

☞ Beware of for-loop abuse; if in doubt, err in favor of while.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while (condition) r++;
 System.out.println(r);

3

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while (condition) r++;
 System.out.println(r);

3

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while (condition) r++;
 System.out.println(r);

3

☞ There is no shame in reasoning with concrete examples.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while (condition) r++;
 System.out.println(r);

3

☞ Elaborate the expected input/output mapping explicitly.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while (condition) r++;
 System.out.println(r);

3

r r*r n

0 0 0

☞ Elaborate the expected input/output mapping explicitly.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while (condition) r++;
 System.out.println(r);

3

r r*r n

0 0 0

1 1 1, 2, 3

☞ Elaborate the expected input/output mapping explicitly.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while (condition) r++;
 System.out.println(r);

3

r r*r n

0 0 0

1 1 1, 2, 3

2 4 4, 5, 6, 7, 8

☞ Elaborate the expected input/output mapping explicitly.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while (condition) r++;
 System.out.println(r);

3

r r*r n

0 0 0

1 1 1, 2, 3

2 4 4, 5, 6, 7, 8

3 9 9, 10, 11, 12, 13, 14, 15

☞ Elaborate the expected input/output mapping explicitly.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while (condition) r++;
 System.out.println(r);

3

r r*r n

0 0 0

1 1 1, 2, 3

2 4 4, 5, 6, 7, 8

3 9 9, 10, 11, 12, 13, 14, 15

When r=2, for which n do we stop?
• 4, 5, 6, 7, or 8.

☞ Elaborate the expected input/output mapping explicitly.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while (condition) r++;
 System.out.println(r);

3

r r*r n

0 0 0

1 1 1, 2, 3

2 4 4, 5, 6, 7, 8

3 9 9, 10, 11, 12, 13, 14, 15

When r=2, for which n do we stop?
• 4, 5, 6, 7, or 8.

When r=2, for which n do we continue?
• 9, 10, 11, …

☞ Elaborate the expected input/output mapping explicitly.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while (condition) r++;
 System.out.println(r);

4

r r*r n

0 0 0

1 1 1, 2, 3

2 4 4, 5, 6, 7, 8

3 9 9, 10, 11, 12, 13, 14, 15

When r=2, for which n do we stop?
• 4, 5, 6, 7, or 8.

When r=2, for which n do we continue?
• 9, 10, 11, …

What is special about 9?
• It is the square of 3.

☞ Elaborate the expected input/output mapping explicitly.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while (condition) r++;
 System.out.println(r);

4

r r*r n

0 0 0

1 1 1, 2, 3

2 4 4, 5, 6, 7, 8

3 9 9, 10, 11, 12, 13, 14, 15

When r=2, for which n do we stop?
• 4, 5, 6, 7, or 8.

When r=2, for which n do we continue?
• 9, 10, 11, …

What is special about 9?
• It is the square of 3.

But what is special about 3?
• It is one more than 2, the value of r.

☞ Elaborate the expected input/output mapping explicitly.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while (condition) r++;
 System.out.println(r);

4

r r*r n

0 0 0

1 1 1, 2, 3

2 4 4, 5, 6, 7, 8

3 9 9, 10, 11, 12, 13, 14, 15

When r=2, for which n do we stop?
• 4, 5, 6, 7, or 8.

When r=2, for which n do we continue?
• 9, 10, 11, …

What is special about 9?
• It is the square of 3.

But what is special about 3?
• It is one more than 2, the value of r.

☞ Alternate between concrete reasoning and abstract reasoning.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while ((r+1)*(r+1) ____ n) r++;
 System.out.println(r);

4

r r*r n

0 0 0

1 1 1, 2, 3

2 4 4, 5, 6, 7, 8

3 9 9, 10, 11, 12, 13, 14, 15

When r=2, for which n do we stop?
• 4, 5, 6, 7, or 8.

When r=2, for which n do we continue?
• 9, 10, 11, …

What is special about 9?
• It is the square of 3.

But what is special about 3?
• It is one more than 2, the value of r.

☞ Alternate between concrete reasoning and abstract reasoning.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while ((r+1)*(r+1) ____ n) r++;
 System.out.println(r);

4

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while ((r+1)*(r+1) ____ n) r++;
 System.out.println(r);

4

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while ((r+1)*(r+1) ____ n) r++;
 System.out.println(r);

4

☞ Alternate between concrete reasoning and abstract reasoning.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while ((r+1)*(r+1) ____ n) r++;
 System.out.println(r);

4

Elaborate and eliminate choices

☞ Alternate between concrete reasoning and abstract reasoning.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while ((r+1)*(r+1) ____ n) r++;
 System.out.println(r);

4

Elaborate and eliminate choices for the relation
==, != No. Given r, must be true for many n, and false for many n.

☞ Alternate between concrete reasoning and abstract reasoning.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while ((r+1)*(r+1) ____ n) r++;
 System.out.println(r);

4

Elaborate and eliminate choices for the relation
==, != No. Given r, must be true for many n, and false for many n.
>, >= No. Must keep going for little r and big n.

☞ Alternate between concrete reasoning and abstract reasoning.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while ((r+1)*(r+1) ____ n) r++;
 System.out.println(r);

4

Elaborate and eliminate choices for the relation
==, != No. Given r, must be true for many n, and false for many n.
>, >= No. Must keep going for little r and big n.
< No. Must keep going for “equal n” case.

☞ Alternate between concrete reasoning and abstract reasoning.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while ((r+1)*(r+1) ____ n) r++;
 System.out.println(r);

4

Elaborate and eliminate choices for the relation
==, != No. Given r, must be true for many n, and false for many n.
>, >= No. Must keep going for little r and big n.
< No. Must keep going for “equal n” case.
<= Yes.

☞ Alternate between concrete reasoning and abstract reasoning.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while ((r+1)*(r+1) <= n) r++;
 System.out.println(r);

5

Elaborate and eliminate choices for the relation
==, != No. Given r, must be true for many n, and false for many n.
>, >= No. Must keep going for little r and big n.
< No. Must keep going for “equal n” case.
<= Yes.

☞ Alternate between concrete reasoning and abstract reasoning.

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while ((r+1)*(r+1) <= n) r++;
 System.out.println(r);

5

/* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while ((r+1)*(r+1) <= n) r++;
 System.out.println(r);

5

Pragmatics

We developed a code fragment in isolation, and ignored several practical questions:

A. Where will the integer n come from?
B. In what packaging will we run the code fragment?
C. What, if any, additional details must be addressed before the program can run?

We refer to these matters as “Pragmatics”.

/* Output the Integer Square Root of an integer input. */
 /* Obtain an integer n≥0 from the user. */
 /* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while ((r+1)*(r+1) <= n) r++;
 System.out.println(r);

6

Pragmatics

We developed a code fragment in isolation, and ignored several practical questions:

A. Where will the integer n come from?
Obtain the integer value of n interactively from the user.

/* Output the Integer Square Root of an integer input. */
 /* Obtain an integer n≥0 from the user. */
 int n = in.nextInt();
 /* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while ((r+1)*(r+1) <= n) r++;
 System.out.println(r);

6

Pragmatics

We developed a code fragment in isolation, and ignored several practical questions:

A. Where will the integer n come from?
Obtain the integer value of n interactively from the user.

import java.util.Scanner;
class boilerplate {
 static Scanner in = new Scanner(System.in);
 static void main() {
 /* Output the Integer Square Root of an integer input. */
 /* Obtain an integer n≥0 from the user. */
 int n = in.nextInt();
 /* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while ((r+1)*(r+1) <= n) r++;
 System.out.println(r);
 } /* main */
 } /* boilerplate */

7

Pragmatics

We developed a code fragment in isolation, and ignored several practical questions:

B. In what context will we run the finished code?
As the body of a method named main, which is inside a class called boilerplate.

import java.util.Scanner;
class boilerplate {
 static Scanner in = new Scanner(System.in);
 static void main() {
 /* Output the Integer Square Root of an integer input. */
 /* Obtain an integer n≥0 from the user. */
 int n = in.nextInt();
 /* Given n≥0, output the Integer Square Root of n. */
 /* Let r be the integer part of the square root of n≥0. */
 int r = 0;
 while ((r+1)*(r+1) <= n) r++;
 System.out.println(r);
 } /* main */
 } /* boilerplate */

8

Pragmatics

We developed a code fragment in isolation, and ignored several practical questions:

C. What, if any, additional details must be addressed before the program can run?
None. The program is ready to run.

R
eq

u
irem

e
n

ts

YOU Program

/
*

O
u
t
p
u
t

t
h
e

I
n
t
e
g
e
r

S
q
u
a
r
e

R
o
o
t

o
f

a
n

i
n
t
e
g
e
r

i
n
p
u
t
.

*
/

YOU Program

Precepts

/
*

O
u
t
p
u
t

t
h
e

I
n
t
e
g
e
r

S
q
u
a
r
e

R
o
o
t

o
f

a
n

i
n
t
e
g
e
r

i
n
p
u
t
.

*
/

Program

Precepts

/
*

O
u
t
p
u
t

t
h
e

I
n
t
e
g
e
r

S
q
u
a
r
e

R
o
o
t

o
f

a
n

i
n
t
e
g
e
r

i
n
p
u
t
.

*
/

In
p

u
t

Output

/
*

O
u
t
p
u
t

t
h
e

I
n
t
e
g
e
r

S
q
u
a
r
e

R
o
o
t

o
f

a
n

i
n
t
e
g
e
r

i
n
p
u
t
.

*
/

Precepts

7

Output

/
*

O
u
t
p
u
t

t
h
e

I
n
t
e
g
e
r

S
q
u
a
r
e

R
o
o
t

o
f

a
n

i
n
t
e
g
e
r

i
n
p
u
t
.

*
/

Precepts

7

2

/
*

O
u
t
p
u
t

t
h
e

I
n
t
e
g
e
r

S
q
u
a
r
e

R
o
o
t

o
f

a
n

i
n
t
e
g
e
r

i
n
p
u
t
.

*
/

Precepts

Code is typically edited and executed in an Integrated Development Environment (IDE), for example, BlueJ.

We can right-click in the Project Window to request program execution.

The Terminal Window then appears, requesting an input.

We enter “7”.

The program responds with “2”, and then completes its execution.

Goals

Elements of methodology

• Precepts, Patterns, Analysis, Process

Core programming-language constructs

• (almost all that we will need)

Illustrated the approach with a complete example

	Title
	Slide 1

	Introduction
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

	Motivation
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

	Precepts
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

	Patterns
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

	Analysis
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121

	Process
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134

	Example
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187

	Pragmatics
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204

	Summary
	Slide 205

