
CS 671 Automated Reasoning

Dependent Types

CS 671 Automated Reasoning 1 Dependent Typesl

The Curry-Howard Isomorphism, again

Proposition Type

P ∧ Q ≡ P×Q

P ∨ Q ≡ P+Q

P ⇒ Q ≡ P→Q

¬P ≡ P→void

∃x:T .P [x] ≡ x:T×P [x]

∀x:T .P [x] ≡ x:T→P [x]

Need dependent types to represent quantifiers

CS 671 Automated Reasoning 2 Dependent Typesl

Why dependent types ?

• Represent logical quantifiers as type constructs

• Type functions like λx. if x=0 then λx.x else λx,y.x

• Express mathematical concepts such as finite automata

– (Q,Σ,q
0
,δ,F), where q

0
∈Q, δ:Q×Σ→Q, F⊆Q.

• Represent dependent structures in programming languages

– Record types [f1:T1; ...; fn:Tn]

– Variant records

type date = January of 1..31 | February of 1..28 | ...

• Nuprl had them from the beginning

– Other systems have recently adopted them (PVS, SPECWARE, ...)

CS 671 Automated Reasoning 3 Dependent Typesl

Dependent Products

Subsumes (independent) cartesian product
∃ generalizes ∧

Syntax:
Canonical: x:S×T , 〈e

1
,e

2
〉

Noncanonical: let 〈x,y〉 = e in u

Evaluation:
e ↓ 〈e

1
,e

2
〉 u[e

1
, e

2
/ x, y] ↓ val

let 〈x,y〉 = e in u ↓ val

Semantics:

· x:S×T is a type if S is a type and T [e/x] is a type for all e in S

· 〈e
1
,e

2
〉 = 〈e

1
’,e

2
’〉 in x:S×T if x:S×T type,

e
1
=e

1
’ in S, and e

2
=e

2
’ in T [e1/x]

CS 671 Automated Reasoning 4 Dependent Typesl

Dependent Products: Changes in inference rules

Γ ` x:S×T
1
type bext Axc

by ×-R

Γ ` S type bext Axc

Γ, x′:S ` T [x′/x] type bext Axc

Γ ` S×T
1
type bext Axc

by ×-R

Γ ` S type bext Axc

Γ ` T type bext Axc

Γ ` x:S×T bext 〈s,t〉c
by pair-formation s

Γ ` s ∈ S bext Axc

Γ ` T [s/x] bext tc
Γ, x′:S ` T [x′/x] type bext Axc

Γ ` S×T bext 〈s,t〉c
by pair-formation

Γ ` S bext sc
Γ ` T bext tc

Γ ` 〈s
1
,t

1
〉 = 〈s

2
,t

2
〉 ∈ x:S×T bext Axc

by pair-Eq

Γ ` s
1
= s

2
∈ S bext Axc

Γ ` t
1
= t

2
∈ T [s1/x] bext Axc

Γ, x′:S ` T [x′/x] type bext Axc

Γ ` 〈s
1
,t

1
〉 = 〈s

2
,t

2
〉 ∈ S×T bext Axc

by pair-Eq

Γ ` s
1
= s

2
∈ S bext Axc

Γ ` t
1
= t

2
∈ T bext Axc

CS 671 Automated Reasoning 5 Dependent Typesl

Well-formedness

• Rules for dependent type require checking

x′:S ` T [x′/x] type

– T is a function from S to types

– T could involve complex computations,

e.g. T [i] ≡ if M
i
(i)↓ then N else Void

⇒ Well-formedness is undecidable

in theories with dependent types

• Programming languages must restrict dependencies

– Only allow finite dependencies ; decidable typechecking

• Typechecking in Nuprl cannot be fully automated

– Typechecking becomes part of the proof process ; heuristic typechecking

• Additional problem

– What is the type of a function from N to types? ; Girard Paradox

CS 671 Automated Reasoning 6 Dependent Typesl

Dependent Products: Further Inference rules

Γ ` let 〈x
1
,y

1
〉 = e

1
in t

1
= let 〈x

2
,y

2
〉 = e

2
in t

2
∈ C[e1/z] bext Axc

by spreadEq z C x:S×T

Γ ` e
1
= e

2
∈ x:S×T bext Axc

Γ, s:S, t:T [s/x], y:e
1
=〈s,t〉 ∈x:S×T

` t1[s, t/x1, y1] = t2[s, t/x2, y2] ∈ C[〈s,t〉/z] bext Axc

Γ, z:x:S×T , ∆ ` C bext let 〈s,t〉 = z in uc

by productElim i

Γ, z:x:S×T , s:S, t:T [s/x] ∆[〈s,t〉/z]

` C[〈s,t〉/z] bext uc

Γ ` let 〈x,y〉 = 〈s,t〉 in u = t
2

∈ T bext Axc

by compute

Γ ` u[s, t/x, y] = t
2

∈ T bext Axc

CS 671 Automated Reasoning 7 Dependent Typesl

Dependent Functions

Subsumes independent function type
∀ generalizes ⇒

Syntax:
Canonical: x:S→T , λx.e

Noncanonical: e
1
e

2

Evaluation:
f ↓ λx.e′ e′[e/x] ↓ val

f e ↓ val

Semantics:

· x:S→T is a type if S is a type and T [e/x] is a type for all e in S

· λx
1
.e

1
= λx

2
.e

2
in x:S→T if x:S→T type and

e
1
[s1/x1]=e

2
[s2/x2] in T [s1/x] for all s1, s2 with s1=s2 ∈S

See Appendix A.3.1 for further details

