CS 671 Automated Reasoning

Dependent Types

The Curry-Howard Isomorphism, again

Proposition		\mathbf{Type}
$P \wedge Q$	=	$P{ imes}Q$
$P \lor Q$	=	$P{+}Q$
$P \Rightarrow Q$	=	$P{ ightarrow}Q$
$\neg P$	=	$P{ ightarrow}$ void
$\exists x\!:\!T.P[x]$	=	$x\!:\!T\! imes\!P[x]$
$orall x\!:\!T.P[x]$	=	$x\!:\!T{ ightarrow}P[x]$

Need dependent types to represent quantifiers

Why dependent types?

- Represent logical quantifiers as type constructs
- Type functions like λ x. if x=0 then λ x.x else λ x,y.x
- Express mathematical concepts such as finite automata
 - $-(Q,\Sigma,q_0\delta,F)$, where $q_0\in Q$, $\delta:Q\times\Sigma\to Q$, $F\subseteq Q$.
- Represent dependent structures in programming languages
 - Record types $[f_1:T_1; \ldots; f_n:T_n]$
 - Variant records

 type date = January of 1..31 | February of 1..28 | ...
- Nuprl had them from the beginning
 - Other systems have recently adopted them (PVS, SPECWARE, ...)

DEPENDENT PRODUCTS

Subsumes (independent) cartesian product

∃ generalizes ∧

Syntax:

Canonical: $x: S \times T$, $\langle e_1, e_2 \rangle$

Noncanonical: let $\langle x, y \rangle = e$ in u

Evaluation:

$$\frac{e \downarrow \langle e_1, e_2 \rangle \qquad u[e_1, e_2 / \ x, y] \downarrow val}{\text{let } \langle x, y \rangle = e \text{ in } u \downarrow val}$$

Semantics:

 $\cdot x: S \times T$ is a type if S is a type and T[e/x] is a type for all e in S

$$\cdot \langle e_1, e_2 \rangle = \langle e_1', e_2' \rangle$$
 in $x: S \times T$ if $x: S \times T$ type,
$$e_1 = e_1' \text{ in } S, \text{ and } e_2 = e_2' \text{ in } T[e_1/x]$$

DEPENDENT PRODUCTS: CHANGES IN INFERENCE RULES

$$\begin{array}{lll} \Gamma \vdash \langle s_1, t_1 \rangle = \langle s_2, t_2 \rangle \in x : S \times T & \text{ [ext Ax]} & \Gamma \vdash \langle s_1, t_1 \rangle = \langle s_2, t_2 \rangle \in S \times T & \text{ [ext Ax]} \\ \text{by pair-Eq} & \text{by pair-Eq} \\ \Gamma \vdash s_1 = s_2 \in S & \text{ [ext Ax]} & \Gamma \vdash s_1 = s_2 \in S & \text{ [ext Ax]} \\ \Gamma \vdash t_1 = t_2 \in T[s_1/x] & \text{ [ext Ax]} & \Gamma \vdash t_1 = t_2 \in T & \text{ [ext Ax]} \\ \Gamma, x' : S \vdash T[x'/x] & \text{ type} & \text{ [ext Ax]} & \Gamma \vdash t_1 = t_2 \in T & \text{ [ext Ax]} \\ \end{array}$$

$$\Gamma dash \langle s_1, t_1
angle = \langle s_2, t_2
angle \in S imes T$$
 ext Axy $egin{aligned} \mathbf{by} \ \mathsf{pair-Eq} \ \Gamma dash s_1 = s_2 \in S \ \Gamma dash t_1 = t_2 \in T \end{aligned}$ ext Axy $\Gamma dash t_1 = t_2 \in T$ ext Axy

Well-formedness

• Rules for dependent type require checking

$$x'$$
: $S \vdash T[x'/x]$ type

- $-\boldsymbol{T}$ is a function from \boldsymbol{S} to types
- -T could involve complex computations, e.g. $T[i] \equiv \text{if } M_i(i) \downarrow \text{ then } \mathbb{N} \text{ else Void}$
- ⇒ Well-formedness is undecidable in theories with dependent types
 - Programming languages must restrict dependencies
 - Only allow finite dependencies

→ decidable typechecking

- Typechecking in Nuprl cannot be fully automated
 - Typechecking becomes part of the proof process
 → heuristic typechecking

- Additional problem
 - What is the type of a function from \mathbb{N} to types?

→ Girard Paradox

Dependent Products: Further Inference Rules

$$\begin{array}{lll} \Gamma \vdash \mathrm{let} \ \langle x_1,y_1\rangle = e_1 \ \mathrm{in} \ t_1 = \mathrm{let} \ \langle x_2,y_2\rangle = e_2 \ \mathrm{in} \ t_2 \in C[e_1/z] & \mathrm{[ext Ax]} \\ \mathrm{by \ spreadEq} \ z \ C \ x:S \times T & \mathrm{[ext Ax]} \\ \Gamma \vdash e_1 = e_2 \in x:S \times T & \mathrm{[ext Ax]} \\ \Gamma, s:S, t:T[s/x], \ y:e_1 = \langle s,t\rangle \in x:S \times T \\ & \vdash t_1[s,t/x_1,y_1] = t_2[s,t/x_2,y_2] \in C[\langle s,t\rangle/z] & \mathrm{[ext Ax]} \\ \Gamma, z:x:S \times T, \ \Delta \vdash C & \mathrm{[ext let} \ \langle s,t\rangle = z \ \mathrm{in} \ u_{\mathrm{]}} \\ \mathrm{by \ productElim} \ i & \Gamma, z:x:S \times T, s:S, t:T[s/x] \ \Delta[\langle s,t\rangle/z] \\ & \vdash C[\langle s,t\rangle/z] & \mathrm{[ext } u_{\mathrm{]}} \\ \end{array}$$

$$\Gamma \vdash \mathrm{let} \ \langle x,y\rangle = \langle s,t\rangle \ \mathrm{in} \ u = t_2 \in T & \mathrm{[ext Ax]} \\ \mathrm{by \ compute} \\ \Gamma \vdash u[s,t/x,y] = t_2 \in T & \mathrm{[ext Ax]} \end{array}$$

DEPENDENT FUNCTIONS

Subsumes independent function type

 \forall generalizes \Rightarrow

Syntax:

Canonical: $x: S \rightarrow T$, $\lambda x.e$

Noncanonical: $e_1 e_2$

Evaluation:

$$\frac{f \downarrow \lambda x.e' \ e'[e/x] \downarrow val}{f \ e \downarrow \ val}$$

Semantics:

 $\cdot x: S \rightarrow T$ is a type if S is a type and T[e/x] is a type for all e in S

$$\cdot \lambda x_1 \cdot e_1 = \lambda x_2 \cdot e_2$$
 in $x: S \rightarrow T$ if $x: S \rightarrow T$ type and
$$e_1[s_1/x_1] = e_2[s_2/x_2]$$
 in $T[s_1/x]$ for all s_1, s_2 with $s_1 = s_2 \in S$

See Appendix A.3.1 for further details