CS 671 Automated Reasoning

Dependent Types

THE CURRY-HOWARD ISOMORPHISM, AGAIN I

Proposition Type
PAQ = PXQ
PvQ@Q = P+Q
P=Q = P—Q

- P = P —void
Je:T.Plx] = x:TXP|x]
Ve:T.Plx] = x:T—P[x]

Need dependent types to represent quantifiers

CS 671 AUTOMATED REASONING 1 DEPENDENT TYPESL

WHY DEPENDENT TYPES 7 I

e Represent logical quantifiers as type constructs
e T'ype functions like Ax.if x=0 then Ax.x else Ax,y.x

e Express mathematical concepts such as finite automata
— (Q,2,q,0,F), where q,€Q, 6:QxX—Q, F<Q.

e Represent dependent structures in programming languages
— Record types [f1:17; ... fo:1,]
— Variant records
type date = January of 1..31 | February of 1..28 |

e Nuprl had them from the beginning
— Other systems have recently adopted them (PVS, SPECWARE, ...)

CS 671 AUTOMATED REASONING 2 DEPENDENT TYPESL

DEPENDENT PRODUCTS I

Subsumes (independent) cartesian product
d generalizes A

Syntax:

Canonical: r:SXT, (e,e)

Noncanonical: let (x,y)=e in u

Evaluation:
el e,e) ule, e,/ x,y| | val
let (x,y)=ein u | val

Semantics:
cx: SXT is a type if S is a type and T'le/z| is a type for all e in S

-le,e) =) ey inx: SXT if x:5%T type,

e=e/ in S, and e=e,) in T'e;/x]

CS 671 AUTOMATED REASONING 3 DEPENDENT TYPESL

DEPENDENT PRODUCTS: CHANGES IN INFERENCE RULES I

I' = x:5XT type
by X-R
I' =S type |ext Ax
' .S+ T[x'/x] type

ext A)ﬂ

ext A>§|

' 2:SXT
by pair-formation s
I'Fs eS
I'=T[s/x] extti
'S+ T[x'/x] type

ext (s, t>J
ext AXJ

ext A)ﬂ

I' = (s,,t) = (8,,t) € T SXT
by pair-Eq
I'Es,=s,€8 |extAx
't =t, e T[s1/x]
' xS+ T[x'/x] type

ext A)ﬂ

ext A>§|
ext A)ﬂ

CS 671 AUTOMATED REASONING

I' = SXT type
by X-R
I' = S type
I' =T type

ext A)ﬂ

ext AXJ
ext A>§|

I' = SXT
by pair-formation
=S
r=rT

ext (s, t>J

ext 5
ext ¢

I' = (s,,t) = (5,,t) € SXT
by pair-Eq
I'-s,=s,¢€ 8
't =t,eT

ext A)ﬂ

ext AXJ
ext A>§|

4 DEPENDENT TYPESL

WELL-FORMEDNESS I

® Rules for dependent type require checking
x':S + T[x'/xz] type
— T is a function from S to types

— T could involve complex computations,
eg T[t] = if M(i)| then N else Void

= Well-formedness is undecidable

in theories with dependent types

e Programming languages must restrict dependencies

— Only allow finite dependencies ~» decidable typechecking

e T'ypechecking in NUPRL cannot be fully automated

— Typechecking becomes part of the proof process ~~ heuristic typechecking

e Additional problem
— What is the type of a function from N to types? ~» Girard Paradox

CS 671 AUTOMATED REASONING 5 DEPENDENT TYPESL

DEPENDENT PRODUCTS: FURTHER INFERENCE RULES I

['let @,y)y=e,in t,=let @, yy)=e,in t, e Cle;/z] pext Ax
by spreadEq z C x:5XT
I'Fe =e,cx:SXT pextAx
I s:S tT[s/x], ye=s,t)ex:SXT
= ti[s,t/x1,y1] = ta[s, t/x2,y2] € Clis, /2] |ext Ax

I' zzx:SXT, A C ext let (s,t) =2z in Uy
by productElim 2
[z.x:SXT, s:S, tT[s/x] Al(s,t)/z]
FCls,t/z] pxtuy

I'klet @,y)y=(s,tinu=t,cT ext A>§|
by compute
F'Euls,t/x,yl=t, e T pxt Ax

CS 671 AUTOMATED REASONING 6 DEPENDENT TYPESL

DEPENDENT FUNCTIONS I

Subsumes independent function type
V generalizes =

Syntax:

Canonical: x:S5—=T, Ax.e

Noncanonical: e, e,

Evaluation:
f 1l Axe €le/z] | val

f e | wval

Semantics:

cx:S—T is a type if S is a type and T'|e/x] is a type for all e in S
-Axe,= Avye,inx: S=T if xv:5—T type and

e|s1/x1]=e/ss/xs] in T'|s1 /x| for all s1, sy with s1=s9€.5

See Appendix A.3.1 for further details

CS 671 AUTOMATED REASONING 7 DEPENDENT TYPESL

