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Abstract. How can we generate realistic graphs? In addition, how can
we do so with a mathematically tractable model that makes it feasible
to analyze their properties rigorously? Real graphs obey a long list of
surprising properties: Heavy tails for the in- and out-degree distribution;
heavy tails for the eigenvalues and eigenvectors; small diameters; and
the recently discovered “Densification Power Law” (DPL). All published
graph generators either fail to match several of the above properties, are
very complicated to analyze mathematically, or both. Here we propose
a graph generator that is mathematically tractable and matches this
collection of properties. The main idea is to use a non-standard matrix
operation, the Kronecker product, to generate graphs that we refer to as
“Kronecker graphs”.
We show that Kronecker graphs naturally obey all the above properties;
in fact, we can rigorously prove that they do so. We also provide empirical
evidence showing that they can mimic very well several real graphs.

1 Introduction

What do real graphs look like? How do they evolve over time? How can we
generate synthetic, but realistic, time-evolving graphs? Graph mining has been
attracting much interest recently, with an emphasis on finding patterns and
abnormalities in social networks, computer networks, e-mail interactions, gene
regulatory networks, and many more. Most of the work focuses on static snap-
shots of graphs, where fascinating “laws” have been discovered, including small
diameters and heavy-tailed degree distributions.
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A realistic graph generator is important for at least two reasons. The first is
that it can generate graphs for extrapolations, “what-if” scenarios, and simula-
tions, when real graphs are difficult or impossible to collect. For example, how
well will a given protocol run on the Internet five years from now? Accurate
graph generators can produce more realistic models for the future Internet, on
which simulations can be run. The second reason is more subtle: it forces us to
think about the patterns that a graph generator should obey, to be realistic.

The main contributions of this paper are the following:
• We provide a generator which obeys all the main static patterns that have

appeared in the literature.
• Generator also obeys the recently discovered temporal evolution patterns.
• Contrary to other generators that match this combination of properties,

our generator leads to tractable analysis and rigorous proofs.
Our generator is based on a non-standard matrix operation, the Kronecker

product. There are several theorems on Kronecker products, which actually cor-
respond exactly to a significant portion of what we want to prove: heavy-tailed
distributions for in-degree, out-degree, eigenvalues, and eigenvectors. We also
demonstrate how a Kronecker Graph can match the behavior of several real
graphs (patent citations, paper citations, and others). While Kronecker prod-
ucts have been studied by the algebraic combinatorics community (see e.g. [10]),
the present work is the first to employ this operation in the design of network
models to match real datasets.

The rest of the paper is organized as follows: Section 2 surveys the related
literature. Section 3 gives the proposed method. We present the experimental
results in Section 4, and we close with some discussion and conclusions.

2 Related Work

First, we will discuss the commonly found (static) patterns in graphs, then some
recent patterns on temporal evolution, and finally, the state of the art in graph
generation methods.

Static Graph Patterns: While many patterns have been discovered, two of
the principal ones are heavy-tailed degree distributions and small diameters.

Degree distribution: The degree-distribution of a graph is a power law if the
number of nodes ck with degree k is given by ck ∝ k−γ (γ > 0) where γ is
called the power-law exponent. Power laws have been found in the Internet [13],
the Web [15, 7], citation graphs [24], online social networks [9] and many others.
Deviations from the power-law pattern have been noticed [23], which can be
explained by the “DGX” distribution [5]. DGX is closely related to a truncated
lognormal distribution.

Small diameter: Most real-world graphs exhibit relatively small diameter (the
“small- world” phenomenon): A graph has diameter d if every pair of nodes can
be connected by a path of length at most d. The diameter d is susceptible to
outliers. Thus, a more robust measure of the pairwise distances between nodes
of a graph is the effective diameter [26]. This is defined as the minimum number



of hops in which some fraction (or quantile q, say q = 90%) of all connected
pairs of nodes can reach each other. The effective diameter has been found to be
small for large real-world graphs, like Internet, Web, and social networks [2, 21].

Scree plot: This is a plot of the eigenvalues (or singular values) of the ad-
jacency matrix of the graph, versus their rank, using a log-log scale. The scree
plot is also often found to approximately obey a power law. The distribution of
eigenvector components (indicators of “network value”) has also been found to
be skewed [9].

Apart from these, several other patterns have been found, including the
“stress” [14, 9], “resilience” [2, 22], “clustering coefficient” and many more.

Temporal evolution Laws: Densification and shrinking diameter: Two
very recent discoveries, both regarding time-evolving graphs, are worth mention-
ing [18]: (a) the “effective diameter” of graphs tends to shrink or stabilize as the
graph grows with time, and (b) the number of edges E(t) and nodes N(t) seems
to obey the densification power law (DPL), which states that

E(t) ∝ N(t)a (1)

The densification exponent a is typically greater than 1, implying that the aver-
age degree of a node in the graph is increasing over time. This means that real
graphs tend to sprout many more edges than nodes, and thus are densifying as
they grow.

Graph Generators: The earliest probabilistic generative model for graphs was
a random graph model, where each pair of nodes has an identical, independent
probability of being joined by an edge [11]. The study of this model has led to
a rich mathematical theory; however, this generator produces graphs that fail
to match real-world networks in a number of respects (for example, it does not
produce heavy-tailed degree distributions).

The vast majority of recent models involve some form of preferential attach-
ment [1, 2, 28, 15, 16]: new nodes join the graph at each time step, and prefer-
entially connect to existing nodes with high degree (the “rich get richer”). This
simple behavior leads to power-law tails and to low diameters. The diameter
in this model grows slowly with the number of nodes N , which violates the
“shrinking diameter” property mentioned above.

Another family of graph-generation methods strives for small diameter, like
the small-world generator [27] and the Waxman generator [6]. A third family of
methods show that heavy tails emerge if nodes try to optimize their connectivity
under resource constraints [8, 12].

Summary: Most current generators focus on only one (static) pattern, and
neglect the others. In addition, it is usually hard to prove properties of them.
The generator we describe in the next section addresses these issues.

3 Proposed Method

The method we propose is based on a recursive construction. Defining the recur-
sion properly is somewhat subtle, as a number of standard, related graph con-



struction methods fail to produce graphs that densify according to the patterns
observed in practice, and they also produce graphs whose diameters increase.
To produce densifying graphs with constant diameter, and thereby match the
qualitative behavior of real network datasets, we develop a procedure that is
best described in terms of the Kronecker product of matrices. To help in the
description of the method, the accompanying table provides a list of symbols
and their definitions.

Symbol Definition
G1 the initiator of a Kronecker Graph
N1 number of nodes in initiator
E1 number of edges in initiator
G

[k]
1 = Gk the kth Kronecker power of G1

a densification exponent
d diameter of a graph
P1 probability matrix

3.1 Main idea

The main idea is to create self-similar graphs, recursively. We begin with an
initiator graph G1, with N1 nodes and E1 edges, and by recursion we produce
successively larger graphs G2 . . . Gn such that the kth graph Gk is on Nk = Nk

1

nodes. If we want these graphs to exhibit a version of the Densification Power
Law, then Gk should have Ek = Ek

1 edges. This is a property that requires some
care in order to get right, as standard recursive constructions (for example, the
traditional Cartesian product or the construction of [4]) do not satisfy it.

It turns out that the Kronecker product of two matrices is the perfect tool
for this goal. The Kronecker product is defined as follows:

Definition 1 (Kronecker product of matrices). Given two matrices A = [ai,j ]
and B of sizes n× m and n′ × m′ respectively, the Kronecker product matrix C
of dimensions (n ∗ n′) × (m ∗ m′) is given by

C = A ⊗ B .=

⎛
⎜⎜⎜⎝

a1,1B a1,2B . . . a1,mB
a2,1B a2,2B . . . a2,mB

...
...

. . .
...

an,1B an,2B . . . an,mB

⎞
⎟⎟⎟⎠ (2)

We define the Kronecker product of two graphs as the Kronecker product of
their adjacency matrices.

Observation 1 (Edges in Kronecker-multiplied graphs)

Edge (Xij , Xkl) ∈ G ⊗ H iff (Xi, Xk) ∈ G and (Xj , Xl) ∈ H

where Xij and Xkl are nodes in G ⊗ H, and Xi, Xj, Xk and Xl are the corre-
sponding nodes in G and H, as in Figure 1.
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(a) Graph G1 (b) Intermediate stage (c) Graph G2 = G1 ⊗ G1

1   1   0
1   1   1
0   1   1

G1 G1
G1 G1

G1G1

G1

0

0

(d) Adjacency matrix (e) Adjacency matrix (f) Plot of G4

of G1 of G2 = G1 ⊗ G1

Fig. 1. Example of Kronecker multiplication: Top: a “3-chain” and its Kronecker prod-
uct with itself; each of the Xi nodes gets expanded into 3 nodes, which are then linked
using Observation 1. Bottom row: the corresponding adjacency matrices, along with
matrix for the fourth Kronecker power G4.

The last observation is subtle, but crucial, and deserves elaboration: Fig-
ure 1(a–c) shows the recursive construction of G ⊗ H , when G = H is a 3-node
path. Consider node X1,2 in Figure 1(c): It belongs to the H graph that replaced
node X1 (see Figure 1(b)), and in fact is the X2 node (i.e., the center) within
this small H-graph.

We propose to produce a growing sequence of graphs by iterating the Kro-
necker product:

Definition 2 (Kronecker power). The kth power of G1 is defined as the ma-
trix G

[k]
1 (abbreviated to Gk), such that:

G
[k]
1 = Gk = G1 ⊗ G1 ⊗ . . . G1︸ ︷︷ ︸

k times

= Gk−1 ⊗ G1

The self-similar nature of the Kronecker graph product is clear: To produce
Gk from Gk−1, we “expand” (replace) each node of Gk−1 by converting it into
a copy of G, and we join these copies together according to the adjacencies in
Gk−1 (see Figure 1). This process is very natural: one can imagine it as positing
that communities with the graph grow recursively, with nodes in the community
recursively getting expanded into miniature copies of the community. Nodes in
the subcommunity then link among themselves and also to nodes from different
communities.



3.2 Theorems and Proofs

We shall now discuss the properties of Kronecker graphs, specifically, their de-
gree distributions, diameters, eigenvalues, eigenvectors, and time-evolution. Our
ability to prove analytical results about all of these properties is a major advan-
tage of Kronecker graphs over other generators. The next few theorems prove
that several distributions of interest are multinomial for our Kronecker graph
model. This is important, because a careful choice of the initial graph G1 can
make the resulting multinomial distribution to behave like a power-law or DGX
distribution.

Theorem 1 (Multinomial degree distribution). Kronecker graphs have multi-
nomial degree distributions, for both in- and out-degrees.

Proof. Let the initiator G1 have the degree sequence d1, d2, . . . , dN1 . Kronecker
multiplication of a node with degree d expands it into N1 nodes, with the cor-
responding degrees being d× d1, d× d2, . . . , d× dN1 . After Kronecker powering,
the degree of each node in graph Gk is of the form di1 × di2 × . . . dik

, with
i1, i2, . . . ik ∈ (1 . . .N1), and there is one node for each ordered combination.
This gives us the multinomial distribution on the degrees of Gk. Note also that
the degrees of nodes in Gk can be expressed as the kth Kronecker power of the
vector (d1, d2, . . . , dN1). QED

Theorem 2 (Multinomial eigenvalue distribution). The Kronecker graph
Gk has a multinomial distribution for its eigenvalues.

Proof. Let G1 have the eigenvalues λ1, λ2, . . . , λN1 . By properties of the Kro-
necker multiplication [19, 17], the eigenvalues of Gk are kth Kronecker power of
the vector (λ1, λ2, . . . , λN1). As in Theorem 1, the eigenvalue distribution is a
multinomial. QED

A similar argument using properties of Kronecker matrix multiplication shows
the following.

Theorem 3 (Multinomial eigenvector distribution). The components of
each eigenvector of the Kronecker graph Gk follow a multinomial distribution.

We have just covered several of the static graph patterns. Notice that the
proofs were direct consequences of the Kronecker multiplication properties.

Next we continue with the temporal patterns: the densification power law,
and shrinking/stabilizing diameter.

Theorem 4 (DPL). Kronecker graphs follow the Densification Power Law (DPL)
with densification exponent a = log(E1)/ log(N1).

Proof. Since the kth Kronecker power Gk has Nk = Nk
1 nodes and Ek = Ek

1

edges, it satisfies Ek = Na
k , where a = log(E1)/ log(N1). The crucial point is

that this exponent a is independent of k, and hence the sequence of Kronecker
powers follows an exact version of the Densification Power Law. QED



We now show how the Kronecker product also preserves the property of
constant diameter, a crucial ingredient for matching the diameter properties of
many real-world network datasets. In order to establish this, we will assume that
the initiator graph G1 has a self-loop on every node; otherwise, its Kronecker
powers may in fact be disconnected.

Lemma 1. If G and H each have diameter at most d, and each has a self-loop
on every node, then the Kronecker product G⊗H also has diameter at most d.

Proof. Each node in G ⊗ H can be represented as an ordered pair (v, w), with
v a node of G and w a node of H , and with an edge joining (v, w) and (x, y)
precisely when (v, x) is an edge of G and (w, y) is an edge of H . Now, for an
arbitrary pair of nodes (v, w) and (v′, w′), we must show that there is a path
of length at most d connecting them. Since G has diameter at most d, there
is a path v = v1, v2, . . . , vr = v′, where r ≤ d. If r < d, we can convert this
into a path v = v1, v2, . . . , vd = v′ of length exactly d, by simply repeating v′

at the end for d − r times By an analogous argument, we have a path w =
w1, w2, . . . , wd = w′. Now by the definition of the Kronecker product, there is
an edge joining (vi, wi) and (vi+1, wi+1) for all 1 ≤ i ≤ d − 1, and so (v, w) =
(v1, w1), (v2, w2), . . . , (vd, wd) = (v′, w′) is a path of length d connecting (v, w)
to (v′, w′), as required. QED

Theorem 5. If G1 has diameter d and a self-loop on every node, then for every
k, the graph Gk also has diameter d.

Proof. This follows directly from the previous lemma, combined with induction
on k. QED

We also consider the effective diameter de; we define the q-effective diameter
as the minimum de such that, for at least a q fraction of the reachable node
pairs, the path length is at most de. The q-effective diameter is a more robust
quantity than the diameter, the latter being prone to the effects of degenerate
structures in the graph (e.g. very long chains); however, the q-effective diameter
and diameter tend to exhibit qualitatively similar behavior. For reporting results
in subsequent sections, we will generally consider the q-effective diameter with
q = .9, and refer to this simply as the effective diameter.

Theorem 6 (Effective Diameter). If G1 has diameter d and a self-loop on
every node, then for every q, the q-effective diameter of Gk converges to d (from
below) as k increases.

Proof. To prove this, it is sufficient to show that for two randomly selected nodes
of Gk, the probability that their distance is d converges to 1 as k goes to infinity.

We establish this as follows. Each node in Gk can be represented as an ordered
sequence of k nodes from G1, and we can view the random selection of a node
in Gk as a sequence of k independent random node selections from G1. Suppose
that v = (v1, . . . , vk) and w = (w1, . . . , wk) are two such randomly selected nodes
from Gk. Now, if x and y are two nodes in G1 at distance d (such a pair (x, y)



exists since G1 has diameter d), then with probability 1 − (1 − 2/N1)k, there
is some index j for which {vj, wj} = {x, y}. If there is such an index, then the
distance between v and w is d. As the expression 1− (1− 2/N1)k converges to 1
as k increases, it follows that the q-effective diameter is converging to d. QED

3.3 Stochastic Kronecker Graphs

While the Kronecker power construction discussed thus far yields graphs with
a range of desired properties, its discrete nature produces “staircase effects” in
the degrees and spectral quantities, simply because individual values have large
multiplicities. Here we propose a stochastic version of Kronecker graphs that
eliminates this effect. counterparts.

We start with an N1 × N1 probability matrix P1: the value pij denotes the
probability that edge (i, j) is present. We compute its kth Kronecker power
P [k]

1 = Pk; and then for each entry puv of Pk, we include an edge between nodes
u and v with probability pu,v. The resulting binary random matrix R = R(Pk)
will be called the instance matrix (or realization matrix).

In principle one could try choosing each of the N2
1 parameters for the matrix

P1 separately. However, we reduce the number of parameters to just two: α
and β. Let G1 be the initiator matrix (binary, deterministic); we create the
corresponding probability matrix P1 by replacing each “1” and “0” of G1 with α
and β respectively (β ≤ α). The resulting probability matrices maintain — with
some random noise — the self-similar structure of the Kronecker graphs in the
previous subsection (which, for clarity, we call deterministic Kronecker graphs).

We find empirically that the random graphs produced by this model continue
to exhibit the desired properties of real datasets, and without the staircase effect
of the deterministic version. The task of setting α and β to match observed data
is a very promising research direction, outside the scope of this paper. In our
experiments in the upcoming sections, we use heuristics which we describe there.

4 Experiments

Now, we demonstrate the ability of Kronecker graphs to match the patterns of
real-world graphs. The datasets we use are:

• arXiv: This is a citation graph for high-energy physics research papers,
with a total of N = 29, 555 papers and E = 352, 807 citations. We follow its
evolution from January 1993 to April 2003, with one data-point per month.

• Patents: This is a U.S. patent citation dataset that spans 37 years from
January 1963 to December 1999. The graph contains a total of N = 3, 942, 825
patents and E = 16, 518, 948 citations. Citation graphs are normally considered
as directed graphs. For the purpose of this work we think of them as undirected.

• Autonomous systems: We also analyze a static dataset consisting of a sin-
gle snapshot of connectivity among Internet autonomous systems from January
2000, with N = 6, 474 and E = 26, 467.



We observe two kinds of graph patterns — “static” and “temporal.” As
mentioned earlier, common static patterns include the degree distribution, the
scree plot (eigenvalues of graph adjacency matrix vs. rank), principal eigenvector
of adjacency matrix and the distribution of connected components. Temporal
patterns include the diameter over time, the size of the giant component over
time, and the densification power law. For the diameter computation, we use
a smoothed version of the effective diameter that is qualitatively similar to the
standard effective diameter, but uses linear interpolation so as to take on non-
integer values; see [18] for further details on this calculation.

Results are shown in Figures 2 and 3 for the graphs which evolve over time
(arXiv and Patents). For brevity, we show the plots for only two static and
two temporal patterns. We see that the deterministic Kronecker model already
captures the qualitative structure of the degree and eigenvalue distributions, as
well as the temporal patterns represented by the Densification Power Law and
the stabilizing diameter. However, the deterministic nature of this model results
in “staircase” behavior, as shown in scree plot for the deterministic Kronecker
graph of Figure 2 (second row, second column). We see that the Stochastic Kro-
necker Graphs smooth out these distributions, further matching the qualitative
structure of the real data; they also match the shrinking-before-stabilization
trend of the diameters of real graphs.

For the Stochastic Kronecker Graphs we need to estimate the parameters α
and β defined in the previous section. This leads to interesting questions whose
full resolution lies beyond the scope of the present paper; currently, we searched
by brute force over (the relatively small number of) possible initiator graphs of
up to five nodes, and we then chose α and β so as to match well the edge density,
the maximum degree, the spectral properties, and the DPL exponent.

Finally, Figure 4 shows plots for the static patterns in the Autonomous sys-
tems graph. Recall that we analyze a single, static snapshot in this case. In
addition to the degree distribution and scree plot, we also show two typical
plots [9]: the distribution of network values (principal eigenvector components,
sorted, versus rank) and the hop-plot (the number of reachable pairs P (h) within
h hops or less, as a function of the number of hops h).

5 Observations and Conclusions

Here we list several of the desirable properties of the proposed Kronecker Graphs
and Stochastic Kronecker Graphs.

Generality: Stochastic Kronecker Graphs include several other generators, as
special cases: For α=β, we obtain an Erdős-Rényi random graph; for α=1 and
β=0, we obtain a deterministic Kronecker graph; setting the G1 matrix to a 2x2
matrix, we obtain the RMAT generator [9]. In contrast to Kronecker graphs, the
RMAT cannot extrapolate into the future, since it needs to know the number of
edges to insert. Thus, it is incapable of obeying the “densification law”.

Phase transition phenomena: The Erdős-Rényi graphs exhibit phase tran-
sitions [11]. Several researchers argue that real systems are “at the edge of
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(a) Degree (b) Scree plot (c) Diameter (d) DPL
distribution over time

Fig. 2. arXiv dataset: Patterns from the real graph (top row), the deterministic Kro-
necker graph with G1 being a star graph with 3 satellites (middle row), and the Stochas-
tic Kronecker graph (α = 0.41, β = 0.11 – bottom row). Static patterns: (a) is the PDF
of degrees in the graph (log-log scale), and (b) the distribution of eigenvalues (log–log
scale). Temporal patterns: (c) gives the effective diameter over time (linear-linear scale),
and (d) is the number of edges versus number of nodes over time (log-log scale). Notice
that the Stochastic Kronecker Graph qualitatively matches all the patterns very well.

chaos” [3, 25]. It turns out that Stochastic Kronecker Graphs also exhibit phase
transitions. For small values of α and β, Stochastic Kronecker Graphs have many
small disconnected components; for large values they have a giant component
with small diameter. In between, they exhibit behavior suggestive of a phase
transition: For a carefully chosen set of (α, β), the diameter is large, and a giant
component just starts emerging. We omit the details, for lack of space.

Theory of random graphs: All our theorems are for the deterministic Kro-
necker Graphs. However, there is a lot of work on the properties of random
matrices (see e.g. [20]), which one could potentially apply in order to prove
properties of the Stochastic Kronecker Graphs.

In conclusion, the main contribution of this work is a family of graph gen-
erators, using a non-traditional matrix operation, the Kronecker product. The
resulting graphs (a) have all the static properties (heavy-tailed degree distribu-
tion, small diameter), (b) all the temporal properties (densification, shrinking
diameter), and in addition, (c) we can formally prove all of these properties.

Several of the proofs are extremely simple, thanks to the rich theory of Kro-
necker multiplication. We also provide proofs about the diameter and “effective
diameter”, and we show that Stochastic Kronecker Graphs can be tuned to
mimic real graphs well.
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Fig. 3. Patents: Again, Kronecker graphs match all of these patterns. We show only
the Stochastic Kronecker graph for brevity.
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