
Optimizing Web Traffic via the Media Scheduling Problem

Lars Backstrom∗

Dept. of Computer Science
Cornell University
Ithaca, NY 14853.

lars@cs.cornell.edu

Jon Kleinberg†

Dept. of Computer Science
Cornell University
Ithaca, NY 14853.

kleinber@cs.cornell.edu

Ravi Kumar
Yahoo! Research

701 First Ave.
Sunnyvale, CA 94089.

ravikumar@yahoo-inc.com

ABSTRACT
Website traffic varies through time in consistent and predictable
ways, with highest traffic in the middle of the day. When providing
media content to visitors, it is important to present repeat visitors
with new content so that they keep coming back. In this paper we
present an algorithm to balance the need to keep a website fresh
with new content with the desire to present the best content to the
most visitors at times of peak traffic. We formulate this as theme-
dia scheduling problem, where we attempt to maximize total clicks,
given the overall traffic pattern and the time varying click-through
rates of available media content. We present an efficient algorithm
to perform this scheduling under certain conditions and apply this
algorithm to real data obtained from server logs, showing evidence
of significant improvements in traffic from our algorithmic sched-
ules. Finally, we analyze the click data, presenting models for why
and how the click-through rate for new content declines as it ages.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous

Keywords
User interaction, Media scheduling, Human response

1. INTRODUCTION
Many websites have featured items placed prominently on their

web pages. News sites have featured news stories, content sharing
sites (like Flickr and YouTube) have featured media, and on-line
stores have featured products. The exact business goals of these
sites vary, but in general these items are placed in featured loca-
tions with the expectation that a large fraction of visitors will ex-
amine them. For a news site, the featured article is typically a story
that many people will be interested in, and one metric of success
∗Part of the work done while the author was visiting Yahoo! Re-
search.
†Supported in part by NSF grants CCF-0325453, CNS-0403340,
BCS-0537606, and IIS-0705774, and by funding from Google, Ya-
hoo!, and the John D. and Catherine T. MacArthur Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

that can be used by a news site when evaluating its selection of fea-
tured articles is the total number of clicks. A news site that does a
good job of delivering the news that is interesting to most people
will have a large number of overall clicks. Similarly, a content-
sharing site would like to present high-quality content in featured
spots. An on-line store might have slightly different goals in select-
ing featured products: they might select high-margin rather than
popular items, for instance.

In all of these cases, the website operator sees some value in
having the featured items appear prominently and receiving user
attention. Some utility is gained for each impression of the featured
item. The visitor may think more highly of the website the featured
item is placed on, or be inspired to follow a link to another page, or
even buy a product. In this work, we will consider the value of an
impression to be represented by the probability of a user clicking on
that featured item, but other tasks, such as maximizing total sales
or total profit can be considered within our framework as well.

The media scheduling problem. There is thus an underlying con-
tent scheduling problem that is central to the choice of featured
items on all such sites. However, this scheduling problem has re-
mained essentially implicit and unexamined in the literature, de-
spite its role in determining the clickthrough rates for content that
is in some cases viewed by hundreds of millions of individuals. In
this paper we provide a formulation of this problem in terms of
a few underlying parameters that can be reliably inferred from a
site’s log data; and by formulating the problem precisely, we are
able to develop algorithms that improve significantly on current
practice. While the problem in its most general form is intractable,
we provide efficient algorithms for a special case that closely ap-
proximates data from real user traffic. We then evaluate our algo-
rithm on trace data from the front page of Yahoo! (the most vis-
ited Web site in the world), showing how to improve the estimated
clickthrough rate on featured articles by over 25% relative to the
human-intensive strategies that are currently employed.

We now give an overview of the problem, before formally spec-
ifying it in the next section. The operator of a website has a pool
of potentialitemsthat can be featured on the front page over the
course of a day. We assume this pool is known at the start of the
day: this is appropriate for most applications, including advertis-
ing, general-interest news features as on the Yahoo! front page,
highlighted videos and photos as on the YouTube and Flickr front
pages, and a number of other typical settings.1

User interest in a single featured itemdecaysover time as it re-

1The main setting in which it is less appropriate is in the han-
dling of breaking news, which can come unexpectedly and is time-
critical. In the final section we discuss some interesting directions
for future research based on adapting our model to this setting.

mains on a site; this is largely due to the fact that the user popula-
tion viewing it will increasingly consist of repeat visitors who have
seen it linked from the front page already. Thus, as we show in Sec-
tion 3, user interest in a featured item can be characterized by two
parameters: apeak interest level, which is the probability of a user
clicking on the item when it is first presented; and adecay function,
which is the item-specific rate over time at which this click proba-
bility decreases while the item is being featured. Moreover, these
parameters can be quickly estimated using bucket tests on a small
subset of the full user population. In Section 3 we show that the
website operator can also reliably estimate a final important para-
meter in the formulation of the problem: the user traffic per minute
over the course of a day.

We thus have the followingmedia scheduling problem, which
will be the focus of the paper: given the estimated time series of
user traffic for the day, and a pool of potential items to be featured
— each with its own peak interest level and decay function — de-
termine an order in which to feature items, and a length of time that
each should be featured. This formulation of the problem captures
some of the fundamental trade-offs at work in scheduling items for
high-volume sites. In particular if we always present the best item,
repeat visitors will have no opportunity to see other items, and the
value per impression will decrease as more and more of the impres-
sions are from repeat visitors. If we change the items too often, we
will not extract maximum value from the best items, as low quality
items will often fill the featured spot.

Our results for media scheduling. Since the general version of
the problem is NP-hard, we seek tractable cases that approximate
real traffic data. This is challenging, since not only does user traffic
vary considerably over a day and peak interest vary considerably
from one item to another — even the decay functions of different
items can have quite different shapes. Using full traffic data from
the Yahoo! front page, however, we are able to identify a crucial
phenomenon in the data that leads to a tractable formulation: the
decay functions for different items can all be approximately fit to
(different) segments of a single “universal” curve. We then show
that for any instance of the media scheduling in which decay func-
tions all form segments of a single curve, and in which traffic over
the course of a day is unimodal (or bimodal), the media schedul-
ing problem can be solved efficiently. When these properties hold
to within some approximation bound — as they do in our case,
with small error — our algorithm provides the same approxima-
tion guarantee to the optimum schedule. We evaluate the algorithm
in comparison both to simpler baselines and to the way content is
actually scheduled on the Yahoo! home page, showing significant
gains in total clicks. Thus, this is a case where the analysis of a
large volume of data, and the identification of regular structure in
it, feeds directly into algorithm design (and corresponding perfor-
mance improvements) for a large-scale application.

The problem formulation, as argued above, is general enough
to apply to a wide range of high-traffic sites. We believe that our
observations about the data will be useful in the context of many
other sites as well, since they are aggregates of hundreds of millions
of visitors and do not appear to depend on any idiosyncrasies of
Yahoo!’s content presentation. With this in mind, we explore the
structure of the traffic data in detail, identifying principles about
clickthroughs and decay rates, as well as a simple generative model
that explains some of the fundamental patterns that we see.

Organization. The remainder of the paper is organized as follows.
In Section 2 we will formally define the media scheduling problem.
In Section 3 we will examine some data fromyahoo.com , which

gives us insights into the details of daily traffic, declining click-
through rates, and variable article quality. Section 4 will present an
exponential algorithm which is optimal under all conditions, and a
polynomial algorithm which gives optimal results under the condi-
tions discussed above, which are approximately met by our data. In
Section 5 we will look at the performance of these algorithms and
compare them to the performance of the manual scheduling that
actually occurred. Finally, in Section 6, we will look in more depth
at the user behavior which gives rise to the phenomena we observe,
with particular focus on why the clickthrough rate declines in the
way it does.

2. SCHEDULING PROBLEM
We now formalize the media scheduling problem. We haveN

items that we could potentially place in the featured location. Each
item has an associated value functionfi(t), which specifies the util-
ity of a visiting user seeing itemi after it has been on the front page
for t minutes. In our applications, we will think offi(t) as giving
the probability each user clicks on the item, when visiting the page
t minutes after the item’s first appearance. However, in general,
fi(t) can be any measure of utility per visitor and the formulation
remains the same. Based on traffic patterns from previous days, we
also know with high accuracy how many people will show up to the
front page each minute of the day:aτ at minuteτ . Our goal is to
determine which subset of the items to use, when to place them, and
for how long, in order to maximize the total value over the course
of the day.

Thus, the problem is to assign non-overlapping intervals[Si, Ti)
to each itemi, where the expected number of clicks on itemi at
time τ ∈ [Si, Ti) is aτfi(τ − Si). (This choice includes selecting
a subset of the items to show, since we can choose not to use an
item by settingSi = Ti.)

Recall that we are considering applications in which each piece
of content can be shown at any point during the day. Also, the fact
that each item has a functionfi(t) indicates that the valueper visi-
tor is assumed to be independent of the time of day.2 Additionally,
we are constrained to put each item up for at most one contiguous
interval: once it is replaced, it cannot return. This is consistent
with practice on most of the websites we consider, where human
editors tend not to bring back a featured item later, since it cre-
ates for the user population an unwanted impression of non-fresh,
recycled content on the site.

3. DATA AND TEMPORAL PATTERNS
To optimize the media scheduling problem effectively, we need

to be able to predict the overall traffic (aτ) and item clickthrough
rates (fi(t)) ahead of time. To illustrate the feasibility of estimating
such data effectively, we examine the server logs for the front page
of Yahoo!

Figure 1 gives an example showing the typical placement and po-
sitioning of the featured articles which we examine on the Yahoo!
front page. (“Best and worst French fries” was the article being
featured at the time this image was captured.) Over the course of
three weeks (starting May 1, 2008), we recorded the number of
front page views and the number of article clicks at a 1-minute res-
olution. Using this data, we are able to ascertain the clickthrough
2An interesting extension is to explicitly consider the fact that some
content may be more appealing to typical visitors at, say 6 AM,
than at 6 PM. We do not have indications that this is a strong ef-
fect for the kinds of applications (i.e. general-interest Yahoo! news
items) where we have data for analysis; but there are certainly set-
tings where this can be an effect. We indicate it as a direction for
future work.

Figure 1: A screenshot of the Yahoo! front page showing
the placement of the featured article: “Best and worst French
fries.”

Figure 2: The number of page views of yahoo.com over the
course of three consecutive weeks in Nov/Dec 2008. Note, that
with the exception of a small glitch (likely cause by a logging
error or server failure) the traffic is very consistent over the
three weeks.

rate for an article after it has been featured on the website for some
number of minutes. In this study we will only consider articles that
were featured for at least 20 minutes between the hours of 3AM
and 8PM Pacific time. This gave us a total of 337 featured articles,
for an average of about 16 per day. While our algorithm could have
used all articles (not just those shown for at least 20 minutes) and
could have scheduled the full 24-hour day, the optimal algorithm to
which we compare starts to become prohibitively slow as the num-
ber of articles exceeds 20. Hence we imposed these restrictions,
both for our algorithm and competing approaches, to allow com-
parison to the optimum without removing very many high-quality
articles, or high traffic times of day.

Figure 2 shows the total number of views ofyahoo.com as a
function of time for three weeks. Over these three weeks, the view
curves are almost identical — e.g., 4:53 on one Wednesday has
about the same number of views as 4:53 on another Wednesday.
This illustrates the predictability of traffic on most days: during
regular weeks, the traffic pattern is almost identical from one week
to the next. We note that on some days, particularly holidays, the
traffic does not conform to the typical pattern.3

3To predict the traffic on holidays, we would have to use a slightly
more sophisticated model, perhaps looking back a year to that day
last year, or perhaps estimating from similar holidays.

Figure 3: An alignment of all clickthrough rate curves to a sin-
gle universal curve. The red region of the plot shows that al-
most all of the data fits to within a 10% window around a single
curve.

Predicting the time-varying clickthrough rates of media content
is a harder task. However, we can use bucket testing to get a good
approximation of this. By presenting a small fraction of the vis-
itors to our site with a particular piece of content, we can get a
good approximation of how popular that piece of content will be
when presented to the entire population. Once we have learned
the initial popularity of an article, the future popularity will fol-
low a predictable decay. (See [1] for more sophisticated statistical
models for predicting clickthrough rates in the context of content
recommendation.)

Crucially for our analysis, we find that these articles not only
follow predictable decay curves, but they can all be approximately
realized as different segments of a singleuniversal curve, as illus-
trated in Figure 3. That is, there is a single curveg(t), so that
each item’s clickthrough functionfi(t) can be written asfi(t) =
g(t + σi) for an item-specific offsetσi. Thus, when learning the
parameters for an articlei, we need only use bucket testing to learn
the appropriate starting pointσi along this single curve. If, for in-
stance, we find that the initial clickthrough rate (when the article is
first featured) is 5%, we can find the point along this single curve
corresponding to a clickthrough rate of 5%. We find that this corre-
sponds to somex = T on the plot in Figure 3. Once we know this
offset, we can compute that the clickthrough rate after the article
has been up for 20 minutes will correspond toT + 20 in Figure 3.
Thus with only the initial rate, we can accurately predict the click-
through rates we will achieve when placing this article in a featured
position for any length of time. In our data, we observe that all ar-
ticles can be aligned to a single monotonically decreasing function
such that the average relative error is only 3.2%.

A natural worry is that with only a few hundred articles in our
dataset, we are overfitting the data and cannot, in reality, predict
fi(t) for all t from the first few minutes of data and a small sam-
ple population. To show that this is not the case, we also fit the
data to a simple exponential decay curve. While each article has
its own starting point, there is only one universal parameter to
this function: the decay parameterλ. We find that the best fit is
whenλ = −0.0044, indicating that the clickthrough rate typically
declines by 0.44% per minute in our data. While this fit is not as
good as the previous one (it can’t be since only the constraint on
the previous curve was that it be decreasing) it still gives an aver-
age relative error of only 4.6%.

Figure 4 shows the fit of this exponential decay for the single
article which appears for the longest interval in our data. While it

 0 50 100 150 200 250

C
lic

k-
T

hr
ou

gh
 R

at
e

Minutes

Fits of a single article

Actual Data
Best fit power lay decay

Best fit linear decay
Best fit exponential decay

Figure 4: A fit of three functions to the single longest running
article in our dataset. The exponential decay curve is clearly
the best, and while the linear curve isn’t too far off, it will
certainly continue to deviate more and more from reality as it
eventually becomes negative.

does not fit quite as well as one might hope, it is a good approxi-
mation, and is significantly better than another simple alternative:
a power law decay. For comparison, the average relative error of
the exponential fit is 4.1%, while the power-law and linear fits have
mean relative error 13.1% and 8.2%, and the best constant func-
tion with fixedy-value would have average relative error of 30.3%.
In other words, these clickthrough rates change significantly over
time, and while an exponential decay is not perfect, it gives a close
approximation, better than other comparably simple functions.

In Section 6 we will investigate the declining clickthrough rate
in greater detail and offer an explanation for this phenomenon. For
now, however, it suffices to observe that the functionsfi(t) are rea-
sonably predictable, and can all be approximately aligned to seg-
ments of one common curve.

4. ALGORITHMS
In this section, we describe the development of our algorithms.

As a preliminary step, we show that the general problem is NP-
hard, but that even in general, there is an exponential algorithm that
improves significantly over brute-force search (making it possible
to find optimal solutions forN around20-30 rather than10). As
our main focus, we then show how to solve the problem in polyno-
mial time when the functionsfi(t) can all be aligned to segments
of a single universal curve — as we observed for our data in the
previous section — and when the user traffic is unimodal (orK-
modal for any fixedK) over the course of the day. When these
conditions are approximately met, our algorithm here produces a
corresponding approximation guarantee to the optimum.

4.1 Preliminaries

NP-Hardness

THEOREM 1. The general media scheduling problem is NP-
hard.

PROOFSKETCH. A reduction from bin-packing gives K dis-
joint intervals where traffic is 1 and the interval lengths are equal
to the bin size. These intervals with traffic 1 are separated by in-
tervals of the same size with zero traffic. We reduce the items in
the bin-packing problem to items whose clickthrough rates are 1 up
to time equal to the length of the corresponding bin-packing item,

and 0 thereafter, optimal clicks can be achieved if and only if the
original bin-packing problem is solvable.

Optimal Algorithm . A naive algorithm would have to consider
N ! different permutations of the items, and even then it would still
have to determine the interval lengths for each one. This would
make it infeasible to solve instances even of size15. Using a more
sophisticated algorithm considerably improves the exponential be-
havior of the search for the optimum.

THEOREM 2. The optimal solution for any traffic patterna and
any functionsfi can be found in timeO(T 2N2N) whereT is the
total time, andN is the number of media items in the set of all
available items.

PROOF. An algorithm using dynamic programming can achieve
this bound. For eacht ≤ T and each subsetS of items, the algo-
rithm computes the optimal scheduling for the firstt minutes of the
day, using only the items inS. To do this, we note that the optimal
scheduling for some choice oft and some subsetS places a partic-
ular item last for some time interval fromt− u to t. Call this item
i. Then, the value of the optimal scheduling for this choice ofi and
S is opt(t − u, S \ {i}) + value(t − u, t, i), where value(a, b, i)
is the value of placing itemi in the interval[a, b) and can easily
be precomputed. Of course, we do not know whichu andi to use
ahead of time, but by searching over all choices ofu andi, we can
find opt(t, S). There areO(T2N) choices fort andS, and com-
puting each one requires searching overO(TN) choices foru and
i. Multiplying these together gives us the runtime stated.

4.2 Our Algorithm
As we observed in Section 3, the clickthrough rates for all the

items can, to a close approximation, be aligned to a single curve.
Formally, if the clickthrough rate for itemi aftert minutes is given
by fi(t), we can say that there is some universal, monotonically
decreasing functiong(t) such thatfi(t) = g(t + σi) for someσi.

Furthermore, as shown in Figure 2, the traffic rate over the course
of a single day is approximately unimodal: it increases in the morn-
ings, peaks, and then decreases in the afternoons. (It is even closer
to being bimodal, with a dip at midday, and we can handle this as
well.) The crucial building block in handling unimodal traffic (or
K-modal traffic for fixedK) is to understand the problem when
traffic is monotonically increasing or decreasing. We do this first,
via the following two lemmas.

LEMMA 3. If the traffic is monotonically increasing, then an
optimal ordering of items is given by decreasingσi, i.e., putting
worse items earlier.

PROOF. Suppose there were an optimal ordering where itemi
comes immediately before itemj in the optimal ordering, butσi <
σj , in contrast to the statement of our lemma. We will show how
this leads to a contradiction. Without loss of generality, we will
assume thatσi = 0. This optimal solution presents itemi for
σj + δ minutes, followed by itemj for γ minutes. An optimal
solution must haveδ ≥ 0, since if δ < 0, thenfi(σj + δ) <
fi(σj) = g(σj) = fj(0). In other words, ifδ < 0, thenfi at the
end of itemi’s interval would be greater thanfj at the beginning
of itemj’s interval, and we could do better by extending itemi and
starting itemj a little bit later.

We now consider what would happen if we swapped the order of
the two items, presenting itemj first for timeδ and itemi for time
σj + γ. This is illustrated in Figure 5.

These two items span a total time ofδ + σj + γ. When itemi
came first, the total clicks were

Figure 5: Illustration of the proof of Lemma 3. If we have
a situation where the ‘better’ (blue) item is placed earlier, we
can swap the two items as illustrated here. After this swap,
the clickthrough rate remains unchanged in the lastγ, while it
drops in the lower traffic region from 0 to δ, and rises in the
higher traffic region from δ to δ + σj .

Z σj+δ

0

axfi(x) dx +

Z σj+δ+γ

σj+δ

axfj(x− σj − δ) dx.

When we perform the swap suggested above, the total clicks be-
come

Z δ

0

axfj(x) dx +

Z σj+δ+γ

δ

axfi(x− δ) dx.

For time greater thanσj + δ, the total click contribution is un-
changed. In this interval, the optimal ordering had a clickthrough
rate offj(x − σj − δ) = g(x − δ), while our swap gives a click-
through rate offi(x−δ) = g(x−δ) — the same. We now consider
two cases:

Case 1:σj < δ.
Loss Because of the swap we make from the optimal solution,

the clickthrough rate decreases in the interval from 0 toδ asfj(x) =
g(x + σj) < g(x) = fi(x). The decrease in this region can be
written asZ δ

0

ax(fi(x)− fj(x)) dx =

Z δ

0

ax(g(x)− g(x + σj)) dx.

Becausea is monotonically increasing andg is monotonically de-
creasing we can bound this loss in clicks byaδ

R δ

0
g(x) − g(x +

σj) dx. Becauseσj < δ this telescopes and can be rewritten as
aδ

R σj

0
g(x)− g(x + δ).

Gain. On the other hand, in the interval fromδ to σj +δ, the click-
through rate increases, asfi(x − δ) > fi(x). Here, the total gain
we get is

R σj+δ

δ
ax(fi(x − δ) − fi(x)) dx. Sincea is increasing,

this is at least

aδ

Z σj+δ

δ

(fi(x−δ)−fi(x)) dx = aδ

Z σj

0

(g(x)−g(x+δ)) dx.

Thus, the loss in clicks in the interval from0 to δ is at least
offset by the gain we achieve in the interval fromδ to σj + δ when
we make the swap from the optimal ordering, and we do no worse
(strictly better if the monotone functions are strict) from reordering
itemsi andj.

Case 2:σj ≥ δ.

The analysis here is similar except we collect terms byg instead
of a. The loss for clickthrough rates betweeng(σj) andg(σj + δ)
can be written asZ σj+δ

σj

g(x)(ax − ax−σj) dx ≤ g(σj)

Z σj

0

(ax+δ − ax) dx.

The gain for clickthrough rates betweeng(0) and g(σj), on the
other hand, isZ σj

0

g(x)(ax+δ − ax) dx > g(σj)

Z σj

0

(ax+δ − ax) dx.

As before, the gain from the swap is at least as large as the loss.

LEMMA 4. If the traffic is monotonically decreasing, then an
optimal ordering of items is given by increasingσi, i.e., putting
better items earlier.

PROOF. While this seems similar to the case in Lemma 3, we
note that it is more than just a case of changing the signs and per-
forming the same analysis. In the previous case, the traffic was
increasing through time, while the clickthrough rate was decreas-
ing. In this case, however, the traffic is decreasing as well as the
clickthrough rate. Thus, while similar, the analysis ends up being
a bit different, and hence this lemma needs an argument separate
from Lemma 3.

Consider an optimal ordering where this is not the case: item
j proceeds itemi, but σj > σi. As in the proof of the previous
lemma, we will show how this leads to a contradiction. Without
loss of generality we will assume thatσi = 0. We will denote the
length of the interval for itemi asσj + δ and the length of the
interval for itemj asγ. If we find thatδ < 0 here, we decreaseσj

to the point whereδ = 0. This would only increase the quality of
the optimal scheduling. However, in the rearrangement below, we
will show that we can get no worse performance by presenting item
j for time δ. Thus, an optimal ordering would never haveδ < 0
and we will henceforth assumeδ ≥ 0.

We consider swapping the ordering ofi andj, presentingi first
for σj + γ and then presentingj for δ. The clickthrough rate is
unchanged beyondσj + γ, so we need only worry about the region
before that. The optimal ordering achieved

Z γ

0

axg(x + σj) +

Z γ+σj

γ

axg(x− γ) dx.

When we perform the change mentioned above, the value in this
region becomes Z γ+σj

0

axg(x) dx.

The value we lose in the region fromγ toγ+σj is
R γ+σj

γ
ax(g(x−

γ)−g(x)) dx. However, this is offset by the gain in the region from
0 toγ of

R γ

0
ax(g(x)−g(x+σj) dx. Again, the proof breaks down

into two cases.
Case 1:σj < γ.
Here the loss can be rewritten asZ σj

0

ax(g(x− γ)− g(x)) dx ≤ aγ

Z σj

0

(g(x)− g(x + γ)) dx.

The gain can be rewritten asZ γ

0

ax(g(x)− g(x + σj) dx ≥

aγ

Z γ

0

(g(x)− g(x + σj) dx = aγ

Z σj

0

(g(x)− g(x + γ) dx.

Thus, the gain always exceeds the loss.
Case 2:σj ≥ γ.
Here the loss can be rewritten asZ σj

0

ax(g(x− γ)− g(x)) dx ≤

aγ

Z σj

0

(g(x)− g(x + γ)) dx = aγ

Z γ

0

(g(x)− g(x + σj)) dx.

The gain can be rewritten asZ γ

0

ax(g(x)− g(x + σj) dx ≥ aγ

Z γ

0

(g(x)− g(x + σj) dx.

Again, the gain always exceeds the loss.

Thus, in the case where the functiong exists and traffic is monotone,
we can easily determine the ordering. Once the ordering is fixed
(and using discrete time intervals) we can use dynamic program-
ming to solve the scheduling problem. If the total time isT and
there areN items to schedule, we find the optimal scheduling for
the firstt ≤ T time and the firstn ≤ N items, when they are or-
dered as in Lemma 3 and Lemma 4. If this optimal schedule has
value opt(t, n) we find it by findingt′ such that opt(t′, n − 1) +
value(t′, t, n) is maximized.

It is important to note that we do not need to actually know the
values ofg(·) andσ for the algorithm to work. As long as they do
exist and we can order the items according toσ, the actual values
are unimportant to the running of the algorithm.

In the unimodal case, things are a bit more complicated. If we
knew how to straddle the peak, and which side of the peak to put
the items on, we could then schedule the increasing and decreas-
ing parts independently. Of course there are exponentially many
ways to divide the items into two groups, so a naive approach won’t
work. However, with a more careful approach, we show

THEOREM 5. When traffic is unimodal, we can find the optimal
scheduling in polynomial time.

PROOF. First note that Lemma 3 and Lemma 4 tell us nothing
about the item that straddles the peak, but they show that the items
on either side are ordered byσ with smaller values closer to the
peak. Thus, the item with largestσ, which we will denote itemn, is
either the first item in the entire sequence, or the last. This suggests
a dynamic programming recurrence for computing the optimal or-
dering. We will denote the optimal value for the interval[a, b) using
the firstn items by opt(a, b, n). There are two cases now. If item
n comes last, then opt(a, b, n) = opt(a, t, n− 1) + value(t, b, n),
for somea ≤ t ≤ b, while if item n come first opt(a, b, n) =
opt(t, b, n− 1) + value(a, t, n), for somea ≤ t ≤ b.

This recurrence omits the base case where an item straddles the
peak. However, we can run the algorithmN times, trying each item
for each straddling interval as the base case, and removing that item
from the set to be scheduled to the sides. Each of theN times this
takes timeO(NT 3), so trying allN takesO(N2T 3).

Extending the algorithm to bimodal and K-modal cases. This
algorithm can be generalized to the case where we have two peaks
instead of one. In this case, we must first start be picking the items
that straddle the two maxima and the minima between them. Once
this is done we can compute the optimal in a similar manner. We
find that opt(t1, t2, t3, t4, n) is the optimal value when the first
n items (where three have already been removed for minima and
maxima) have been assigned and the intervals[t1, t2) and[t3, t4)

are covered. Using a recurrence analogous to that for the unimodal
piece, we try all four possible locations for then-th item: to the
left of the first peak, to the right of the first peak, to the left of the
second peak, to the right of the second peak. Finally, we search
over all opt(0, t2, t3, T, N − 3) and for each one we fill in the in-
terval[t2, t3) with the item we held out for the minima, picking the
schedule with the highest value.

There areO(N3) ways to pick the items for the minima and
maxima, and once we have picked them, we have to find the value
of opt(·) for O(NT 4) configurations, which takes timeO(NT 5).
Putting this together, we getO(N4T 5).

We can further extend this algorithm to the multimodal case, first
fixing the items that straddle the peaks and valleys, and then run-
ning a dynamic programming algorithm analogous to that for two
peaks. If there areK peaks, there are2K − 1 peaks and valleys,
and so we need to select out items to straddle these. Once those are
selected, we must compute the optimal schedule for each set of in-
tervals[a1, b1), [a2, b2), . . . , [aK , bK), where the intervals do not
overlap and[ai, bi) straddles peaki. In the worst case, this gives
us a runtime ofO(T 2K+1N2KK−2K).

4.3 Performance when conditions not met
Even when the exact conditions of unimodality andfi(x) =

g(x + σi) are not precisely met, the dynamic programming algo-
rithm still gives a valid solution to the scheduling problem. In fact,
if we find an ordering based on an approximation ofσ and that
ordering is close enough that it matches the optimal ordering, the
dynamic programming algorithm will still choose the correct inter-
val lengths. But, in the case where the ordering is wrong, we can
still bound the error in our result by the degree to which the actual
data deviates from our assumptions.

Given the actual data, we can find a unimodal traffic function
such that the actual traffic is higher than the unimodal function, but
exceeds it by at most a factor ofα. Similarly, we can find a function
g and values ofσi such thatg(x + σi) ≤ fi(x) ≤ βg(x + σi).
Any scheduling for the original problem gives no more clicks than
a factor ofαβ times the version meeting our conditions. Since we
solve that version optimally, our algorithm gives a schedule that is
within a factor ofαβ optimal.

Figure 2 shows that the unimodality constraint is roughly met in
our data, while Section 3 showed that all clickthrough rate func-
tions could be aligned fairly well. In the next section we will see
how close our algorithm comes to the optimal ordering on this real
data.

5. EXPERIMENTS
We start with the raw clickthrough rates for each of the arti-

cles in our dataset. For each article, we approximate the click-
through rate function after presenting the article fort minutes as
fi(t) = e−λ(t+σi), whereλ is a global decay parameter common
to all articles andσi measures each article’s inherent popularity as it
is offset in time. To estimateλ, we picked the value that minimized
the overall squared error (summed over all articles). In our dataset,
we find λ = 0.0044, indicating that on average the clickthrough
rate of an article declines by about 0.44% each minute.

To simulate our scheduling algorithm for a given day, we start by
extracting the clickthrough rate data for each article actually used
by Yahoo! that day. From this, we fitfi(t) by finding the bestσi.
We cannot simply use the true clickthrough rates because we only
have that data for the time before the article was replaced on the
site — using the fitted version allows us to simulate placing the ar-
ticles for arbitrary amounts of time. In addition to the clickthrough
rates, we extract data about the number of front-page views at each

 0 100 200 300 400 500 600 700 800 900

V
ie

w
s

C
lic

k-
T

hr
ou

gh
 R

at
e

Minutes

Views
Our Algorithm

Optimal Scheduling

Figure 6: This figure shows our scheduling and the optimal
scheduling for one particular day. Because the page views are
not quite unimodal, our ordering is not quite optimal. It is close
enough that the fraction lost is only 3.3E-5 though. For compar-
ison, our baseline method does 2.2% worse, and we estimate a
26% improvement over the ordering that was actually used.

Percent Improvement
Day Over Actual Over Baseline
1 26.0 2.2
2 12.1 3.1
3 66.9 13.5
4 28.2 5.1
5 18.5 6.2
6 21.4 4.4
7 36.3 2.9
8 28.9 8.2
9 20.4 7.9
10 34.6 13.7
11 27.1 6.2
12 18.0 3.4
13 22.2 2.5
14 34.3 9.0
15 18.2 2.7
16 23.6 8.8
17 18.9 4.3
18 25.0 7.6
19 18.7 6.9
20 20.1 7.1
21 23.5 9.4
Avg 25.9 6.4

Table 1: The percent improvment of our algorithm over the
actual data, and over the simpler baseline algorithm. On all
days, our algorithm is within 0.1% of optimal.

 1 10 100 1000

Lo
g(

C
ou

nt
)

Visits

Distribution of Number of Home Page Visits

Rate Distribution
Power Law with Exponent -1.5

Figure 7: The distribution of visit rates to yahoo.com. The plot
is shown on log-log axes.

minute of the day. As our analysis in Section 3 shows, while an
application would not have these exact numbers, they can be esti-
mated very reliably from traffic in other weeks.

We know from Section 4 that our scheduling algorithm is optimal
for this type of function, provided that the traffic is unimodal. The
true traffic is close to unimodal, but this condition is not strictly
met. Thus, in evaluating our algorithm on this real data, we will
consider three questions. First, how close is our algorithm to opti-
mal, given that the optimality conditions are not strictly met? Sec-
ond, how much better do we expect to do compared to the schedul-
ing that was used? Third, how much better is our algorithm than a
simple baseline? The baseline algorithm we compare to sets all the
article lengths so that their final clickthrough rates (before being re-
placed) are about the same (as close as possible given the 1-minute
resolution). It then orders them by placing the best article in the
middle, straddling the peak, the next best to the right, the next to
the left, and so on, alternating sides of the peak.

This problem is difficult enough that manual scheduling has fallen
well short of optimality. First, our algorithm achieves 99.99% of
the optimal algorithm, and is a 6.4% improvement over the simple
baseline algorithm (with a daily maximum of a 13.7% improvement
over the baseline). While this may seem modest, we should note
that the number of daily visitors to the Yahoo! front page makes
6.5% a significant number. Finally, our algorithm gives a 25.9%
improvement over the manual scheduling used at the time, a huge
improvement.

One possible concern when examining these results is that some
of the articles may not have been available to the human editors at
Yahoo! until roughly when they were first scheduled. (Though, as
discussed in Section 1, these articles come from a class of applica-
tions where the content is not time-critical, so this is not necessarily
a significant issue in reality.) To make sure that the improvements
are not arising purely from the ability to shift content early, we run
the optimal algorithm with one additional constraint: our algorithm
may not schedule anything earlier than the first time it appeared on
the Yahoo site. Even with this constraint, we still do 17.6% better,
indicating that our improvement is not coming simply because we
have the ability to shift articles earlier in the day.

6. GENERATIVE MODELS
Now that we have seen how the traffic data can be used to in-

form the design of our algorithms, it is interesting to ask whether
we can explain the structure of this traffic data — particularly, the
functional shape of the declining clickthrough rates — from more

 1 10 100

C
ou

nt

Minutes

Distribution of Interarrival Times for Front Page Visitors

Power-Law with Exponential Cutoff (x-0.512 e-0.049 x)

Figure 8: The distribution of interarrival gaps on log-log axes.

 1 10

Lo
g(

A
ve

ra
ge

 C
T

R
)

Number of Views with Current Article Featured

Click-Through Rate after K Views

Average CTR
Power-Law Fit ~x^-0.75

Figure 9: The clickthrough rate declines as visitors repeatedly
see the same featured item on log-log axes.

basic assumptions. In particular, the declining clickthrough rates
are clearly arising from the aggregate behavior of the user popula-
tion, who differ in their rates of activity on the Yahoo! front page
and their response to the content that is presented there. A natural
question is whether the clickthrough functions over time can be ap-
proximately derived from a few simple parameters quantifying the
variation within this user population. We show that this is indeed
possible, suggesting some of the fundamental underlying mechan-
sisms for the dependence of clickthrough rate on time.

The first step towards understanding this data is to look at how
often users return to the front page and how likely they are to view
a story once they get there. Each individual user has his or her own
visit rate for the Yahoo! home page. Naturally, some users visit
much more frequently than others and this plays an important role
in scheduling because we want to serve fresh content to the frequent
visitors. (This is one of the inherent trade-offs in the scheduling
problem, as discussed earlier: we need to keep frequent visitors
interested, but we have to avoid delivering low-quality content in
the interest of freshness.) By examining server logs, we can easily
determining the distribution of return rates.

Figure 7 shows the distribution of rates for all visitors to the Ya-
hoo! home page over the course of one month. For the bulk of the
distribution, we see that there is a good fit to a power law distribu-
tion with exponent−1.5.

A user whose overall rate isλ will be expected to view the home
page a number of times proportional toλ over the course of a fixed

 0 10 20 30 40 50 60 70

C
lic

k-
T

hr
ou

gh
 R

at
e

Minutes Since First Display

Declining Click-Through Rate for a Typical Article and Simulated CTR

Click-Through Rate
Simulation Results

Figure 10: Here we put together the visit rate distribution, in-
terarrival gap distribution, and probability of clicking an arti-
cle as a function of times seen on home page. The figure above
shows the actual clickthrough rates along with simulated click-
through rates for one article and a corresponding set of model
parameters.

time interval. However, the distribution of these views is another
factor we must consider when modeling users. While it would
be simplest to posit an exponential distribution for the interarrival
times between home page views, the data shows that this is not
accurate. Instead, Figure 8 shows that the time between views to
the home page while a single article is featured is distributed as a
power law with exponent roughly0.5 and an exponential cutoff. If
we condition on a user’s rate, the graph changes for different values
of λ, but fitted exponential-cutoff power laws have similar powers,
and mostly vary in the exponential cutoff term, which is highly cor-
related toλ. Thus, we model a user with rateλ as someone who re-
turns repeatedly by sampling interarrival times from a distribution
proportional tox−0.5 exp(−xλ) (which has mean close to1/λ).

The final step towards modeling users is to examine how the
probability of a user clicking on an article depends on the num-
ber of times they have been exposed to it. A user is most likely to
click on an article the first time they are given the opportunity. Each
time a user returns to the home page, the probability decreases as
the user becomes attenuated to the article. Again, we go to the data
to see how this attenuation works. Figure 9 shows the decreasing
click through rate for one article as a visitor sees it over and over
again: a power law with exponentγ = −0.75. We note that only a
user’s first click on a featured article is considered when computing
the clickthrough rate. Subsequent clicks are disregarded.

We now propose a model to combine the observed distributions.
First, a user samples his or her overall rateλ from the power law
rate distribution. Once this rate is sampled, the user starts gener-
ating arrival gaps, starting at timet0 = 0. To sample an arrival
gapδi, a user samplesδi from a power law distribution with expo-
nential cutoff, where the cutoff parameter corresponds to the rate,
settingti = ti−1+δi. For some interval[S, T], a featured article is
presented on the home page. For eachS ≤ ti ≤ T a user considers
clicking on the article according to the attenuation function and the
article’s inherent interest. Thus, if an article has inherent interest
K, andti is thej-th time the user has been to the home page in the
interval [S, T], the probability that the user will click isKjγ . The
final caveat is that a user who has clicked on an article will never
click a second time.

Figure 10 shows the result of simulating this model for the para-
meters we see in the data. For comparison, the actual clickthrough

rate for a specific article is also shown. While the curves differ
somewhat, we see that the overall effect is quite similar. The fact
that the simulated curve is produced purely from a very small num-
ber of aggregate parameters about the user population suggests that
the functional shape of the declining clickthrough rates is largely
rooted in simple collective properties of the set of users.

7. RELATED WORK
The related work falls into mainly three categories, namely, opti-

mization and recommendation in online content-delivery systems,
scheduling problems in the context of online user activities, and the
dynamics of human response.

Das et al. [4] considered the problem of real-time recommenda-
tion of news articles to users. Their focus was on the recommenda-
tion and personalization aspects to maximize readership. Agarwal
et al. [1] studied the problem of selecting and serving articles to
users in an online portal to maximize the clickthrough rate. They
develop a general framework to incorporate aspects such as learn-
ing, explore-exploit strategies, and individual user characteristics.
While closest to theirs in end goal, our approach differs in being
combinatorial while theirs is statistical. There is rich literature on
improving website organization to optimize user experience; see,
for instance, [11].

Szabo and Huberman [12] investigate methods for predicting the
popularity of online content from user access patterns; they show
long term popularity can be measured by the popularity at an early
time. Using this, Wu and Huberman [16] study the role of popu-
larity and novelty of an article and its position on a webpage in de-
termining the growth of collective attention to the article; see also
[15]. They formulate a model based on novelty and popularity and
use it to find an optimal ordering of news stories to be displayed
on a web page so as to maximize the number of clicks in a finite
horizon. Their concern is more about the spatial display of news ar-
ticles (modeling factors such as novelty) whereas we are interested
in a temporal ordering of items.

Dasgupta et al. [5] considered a job scheduling problem that
is motivated by web advertising. In this setting items (stories) ar-
rive online, each with a length and per-unit value, and the goal is to
pre-emptively schedule them to maximize the total time-discounted
value. Their work differs from ours in a number of ways. First, it
is online, while ours is offline: our goal is to construct an offline
schedule of items whereas their goal is to obtain an online schedule
that is competitive against an offline optimum. Second, their model
treats each user independently, tracking users’ paths through the
website. For a detailed description of many job scheduling algo-
rithms, we refer to [3, 9].

Barabasi [2] argued that the bursty nature of human behavior is
caused by a decision-based queuing process, where tasks execu-
tions are priority-driven, with the timing of execution heavy-tailed;
for further work, see [13, 14]. Johansen and Sornette [8] and sub-
sequently Johansen [6] studied the response of online users to a
“point-like” perturbation (e.g., publication of an online article) and
showed that the download rate of the article is inverse polynomial.
A similar observation was made between an email message and its
reply [7]. Oliveira and Barabasi [10] show that the correspondence
patterns of Darwin and Einstein is similar to today’s electronic cor-
respondences. Our analysis of user return times and interest levels
provides a further perspective on how response times vary across a
very large population in different applications, in our case for the
purpose of informing an underlying scheduling algorithm.

8. CONCLUSIONS AND FUTURE WORK

We have formulated a general media scheduling problem, and
shown how the types of data available at high-traffic websites makes
it possible to develop algorithms that improve significantly on cur-
rent practice in scheduling featured content. This problem is gen-
eral enough that it can be applied to a wide variety of web sites.
We have shown that real data is structured in a way that allows an
efficient algorithm to schedule these items optimally.

There are a number of directions for further work. One interest-
ing issue, noted earlier, is that while we have focused on applica-
tions where the pool of available content is known at the start of the
scheduling period (e.g. at the start of the day), there are other appli-
cations — such as presenting breaking news — that are inherently
on-line, with limited or zero advance information about content un-
til it is ready to be scheduled. Related to this is content that may
be available somewhat in advance, but whose utility functionfi(t)
depends on when it is shown. We believe that the ideas developed
in this paper provide a useful starting point for thinking about these
further variations on the problem, and this is an interesting direc-
tion for future work.

9. REFERENCES
[1] D. Agarwal, B. Chen, P. Elango, N. Motgi, S.-T. Park,

R. Ramakrishnan, S. Roy, and J. Zachariah. Online models
for content optimization. InProc. 21st NIPS, 2009.

[2] A.-L. Barabasi. The origin of bursts and heavy tails in human
dynamics.Nature, 435:207–211, 2005.

[3] P. Brucker.Scheduling Algorithms. Springer, 2007.
[4] A. Das, M. Datar, A. Garg, and S. Rajaram. Google news

personalization: Scalable online collaborative filtering. In
Proc. 16th WWW, pages 271–280, 2007.

[5] A. Dasgupta, A. Ghosh, H. Nazerzadeh, and P. Raghavan.
Online story scheduling in web advertising. InProc. 20th
SODA, pages 1275–1284, 2009.

[6] A. Johansen. Response time of internauts.Physica A,
296(3-4):539–546, 2000.

[7] A. Johansen. Probing human response times.Physica A,
338(1-2):286–291, 2004.

[8] A. Johansen and D. Sornette. Download relaxation dynamics
in the WWW following newspaper publication of URL.
Physica A, 276(1-2):338–345, 2000.

[9] J. Y.-T. Leung, editor.Handbook of Scheduling: Algorithms,
Models, and Peformance Analysis. Chapman & Hall, CRC,
2004.

[10] J. G. Oliveira and A.-L. Barabasi. Human dynamics: Darwin
and Einstein correspondence patterns.Nature, 437:1251,
2005.

[11] R. Srikant and Y. Yang. Mining web logs to improve website
organization. InProc. 10th WWW, pages 430–437, 2001.

[12] G. Szabó and B. A. Huberman. Predicting the popularity of
online content. Technical Report abs/0811.0405, CoRR,
2008.

[13] A. Vázquez. Exact results for the barabasic model of human
dynamics.Phy. Rev. Let., 95:248701, 2005.

[14] A. Vázquez, J. G. Oliveira, Z. Dezsö, K.-I. Goh, I. Kondor,
and A.-L. Barabási. Modeling bursts and heavy tails in
human dynamics.Phy. Rev. E, 73(6), 2006.

[15] F. Wu and B. A. Huberman. Novelty and collective attention.
PNAS, 104(45):17599–17601, 2007.

[16] F. Wu and B. A. Huberman. Popularity, novelty, and
attention. InProc. 9th EC, pages 240–245, 2008.

