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ABSTRACT

Website traffic varies through time in consistent and predictable
ways, with highest traffic in the middle of the day. When providing

media content to visitors, it is important to present repeat visitors
with new content so that they keep coming back. In this paper we

present an algorithm to balance the need to keep a website frest®
with new content with the desire to present the best content to the

most visitors at times of peak traffic. We formulate this asrttee

dia scheduling problenwhere we attempt to maximize total clicks,
given the overall traffic pattern and the time varying click-through
rates of available media content. We present an efficient algorithm
to perform this scheduling under certain conditions and apply this
algorithm to real data obtained from server logs, showing evidence
of significant improvements in traffic from our algorithmic sched-
ules. Finally, we analyze the click data, presenting models for why
and how the click-through rate for new content declines as it ages.
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1. INTRODUCTION

Many websites have featured items placed prominently on their
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that can be used by a news site when evaluating its selection of fea-
tured articles is the total number of clicks. A news site that does a
good job of delivering the news that is interesting to most people

will have a large number of overall clicks. Similarly, a content-

sharing site would like to present high-quality content in featured
pots. An on-line store might have slightly different goals in select-
ing featured products: they might select high-margin rather than
popular items, for instance.

In all of these cases, the website operator sees some value in
having the featured items appear prominently and receiving user
attention. Some utility is gained for each impression of the featured
item. The visitor may think more highly of the website the featured
item is placed on, or be inspired to follow a link to another page, or
even buy a product. In this work, we will consider the value of an
impression to be represented by the probability of a user clicking on
that featured item, but other tasks, such as maximizing total sales
or total profit can be considered within our framework as well.

The media scheduling problem There is thus an underlying con-
tent scheduling problem that is central to the choice of featured
items on all such sites. However, this scheduling problem has re-
mained essentially implicit and unexamined in the literature, de-
spite its role in determining the clickthrough rates for content that
is in some cases viewed by hundreds of millions of individuals. In
this paper we provide a formulation of this problem in terms of
a few underlying parameters that can be reliably inferred from a
site’s log data; and by formulating the problem precisely, we are

web pages. News sites have featured news stories, content sharingble to develop algorithms that improve significantly on current
sites (like Flickr and YouTube) have featured media, and on-line practice. While the problem in its most general form is intractable,
stores have featured products. The exact business goals of thesee provide efficient algorithms for a special case that closely ap-
sites vary, but in general these items are placed in featured loca-proximates data from real user traffic. We then evaluate our algo-
tions with the expectation that a large fraction of visitors will ex- rithm on trace data from the front page of Yahoo! (the most vis-
amine them. For a news site, the featured article is typically a story ited Web site in the world), showing how to improve the estimated
that many people will be interested in, and one metric of success clickthrough rate on featured articles by over 25% relative to the
human-intensive strategies that are currently employed.

We now give an overview of the problem, before formally spec-
ifying it in the next section. The operator of a website has a pool
of potentialitemsthat can be featured on the front page over the
course of a day. We assume this pool is known at the start of the
day: this is appropriate for most applications, including advertis-
ing, general-interest news features as on the Yahoo! front page,
highlighted videos and photos as on the YouTube and Flickr front
pages, and a number of other typical settihgs.

User interest in a single featured itetacaysover time as it re-
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mains on a site; this is largely due to the fact that the user popula- gives us insights into the details of daily traffic, declining click-
tion viewing it will increasingly consist of repeat visitors who have through rates, and variable article quality. Section 4 will present an
seen it linked from the front page already. Thus, as we show in Sec- exponential algorithm which is optimal under all conditions, and a
tion 3, user interest in a featured item can be characterized by two polynomial algorithm which gives optimal results under the condi-
parameters: peak interest levelwhich is the probability of a user  tions discussed above, which are approximately met by our data. In
clicking on the item when it is first presented; andezay function Section 5 we will look at the performance of these algorithms and
which is the item-specific rate over time at which this click proba- compare them to the performance of the manual scheduling that
bility decreases while the item is being featured. Moreover, these actually occurred. Finally, in Section 6, we will look in more depth
parameters can be quickly estimated using bucket tests on a smalkt the user behavior which gives rise to the phenomena we observe,
subset of the full user population. In Section 3 we show that the with particular focus on why the clickthrough rate declines in the
website operator can also reliably estimate a final important para- way it does.

meter in the formulation of the problem: the user traffic per minute

over the course of aday. _ _ _ 2. SCHEDULING PROBLEM
We thus have the followingnedia scheduling problenwhich We now formalize the media scheduling problem. We have

will bte tfr;g ];OCL:; O(fj the pz(ijper: gllvefn thte eft'ln.‘tated ttlmbe sferltes O(; items that we could potentially place in the featured location. Each
user traffic for the day, and a pool of potentiat tems to be 1eatured i, pa5 an associated value functj(¢), which specifies the util-

t_ Ii]"f‘cg ;N'tg 'C;‘Z 9‘2’“ Eiar\]ktln;:r(testeleéerilang ddec?g/ fu{;fg?pﬂ; t?gt ity of a visiting user seeing iterafter it has been on the front page
ermine an order in which fo feature items, and a feng : for ¢ minutes. In our applications, we will think ¢f (¢) as giving

each si}cmldfbe(;eaturetdl. tTh('js fo;fmultatlonkqf thehpré)til_em_::aptufres the probability each user clicks on the item, when visiting the page
f\pmhe OI me u'rt1 an?r?n art'raler'(; sa Ivvor in rsc entlil‘llngbl ertnts :]r t minutes after the item’s first appearance. However, in general,
Igh-volume Sites. In particular It we always prese € best ilem, fi(t) can be any measure of utility per visitor and the formulation

repeat vis‘itors Wi”. havg no opporiunity to see other items, apd the remains the same. Based on traffic patterns from previous days, we
vglue perimpression W'.“ _decrease as more and more ofthe IMPreS-21s0 know with high accuracy how many people will show up to the
sions are from repeat visitors. If we change the items too often, we front page each minute of the day; at minuter. Our goal is to
‘.N'” not extract maximum value from the best items, as low quality determine which subset of the items to use, when to place them, and
items will often fill the featured spot. for how long, in order to maximize the total value over the course

. . . . of the day.
Our results for media scheduling Since the general version of Thus, the problem is to assign non-overlapping interi@JsT;)
the problem is NP-hard, we seek tractable cases that approximatgq each items, where the expected number of clicks on itérat

real traffic data. This is challenging, since not only does user traffic jme+ ¢ (S, T}) is ar fi(r — Si). (This choice includes selecting
vary considerably over a day and peak interest vary considerably 5 g bset of the items to show, since we can choose not to use an
from one item to another — even the decay functions of different ;o by settingS; = 75.)

items can have quite different shapes. Using full traffic data from  Reca| that we are considering applications in which each piece
the Yahoo! front page, however, we are able to identify a crucial of content can be shown at any point during the day. Also, the fact
phenomenon in the data that leads to a tractable formulation: theinat each item has a functigh(t) indicates that the valuger visi-
de_cay functions for differer_lt items can all be approximately fit to 15 is assumed to be independent of the time of dagditionally,
(different) segments of a single “universal” curve. We then show e are constrained to put each item up for at most one contiguous
that for any instance of the media scheduling in which decay func- jyterval: once it is replaced, it cannot return. This is consistent
tions all form segments of a single curve, and in which traffic over yith practice on most of the websites we consider, where human
the course of a day is unimodal (or bimodal), the media schedul- gitors tend not to bring back a featured item later, since it cre-

ing problem can be solved efficiently. When these properties hold gies for the user population an unwanted impression of non-fresh,
to within some approximation bound — as they do in our case, recycled content on the site.

with small error — our algorithm provides the same approxima-

.t|0n guara_ntee to the 0pF|mUm SCheder. We evaluate the algorlth_m3. DATA AND TEM PO RAL PATTERNS

in comparison both to simpler baselines and to the way content is o ) ) )

actually scheduled on the Yahoo! home page, showing significant 10 optimize the media scheduling problem effectively, we need
gains in total clicks. Thus, this is a case where the analysis of a t0 be able to predict the overall traffia.{) and item clickthrough
large volume of data, and the identification of regular structure in rates ((i(¢)) ahead of time. To illustrate the feasibility of estimating
it, feeds directly into algorithm design (and corresponding perfor- Such data effectively, we examine the server logs for the front page
mance improvements) for a large-scale application. of Yahoo! _ _

The problem formulation, as argued above, is general enough _Figure 1 gives an example showing the typical placement and po-
to apply to a wide range of high-traffic sites. We believe that our Sitioning of the featured articles which we examine on the Yahpo!
observations about the data will be useful in the context of many front page. (“Best and worst French fries” was the article being
other sites as well, since they are aggregates of hundreds of millionsféatured at the time this image was captured.) Over the course of
of visitors and do not appear to depend on any idiosyncrasies of three weeks (starting May 1, 2008), we recorded the number of
Yahoo!'s content presentation. With this in mind, we explore the frontpage views and the number of article clicks at a 1-minute res-
structure of the traffic data in detail, identifying principles about ©lution. Using this data, we are able to ascertain the clickthrough
clickthroughs and decay rates, as well as a simple generative modeRAn interesting extension is to explicitly consider the fact that some
that explains some of the fundamental patterns that we see. content may be more appealing to typical visitors at, say 6 AM,

than at 6 PM. We do not have indications that this is a strong ef-

it ; ; ; fect for the kinds of applications (i.e. general-interest Yahoo! news
Organization. The remainder of the paper is organized as follows. items) where we have data for analysis; but there are certainly set-

In Section 2 we will formally define the media scheduling problem. tings where this can be an effect. We indicate it as a direction for
In Section 3 we will examine some data frgqmhoo.com |, which future work.
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Figure 1: A screenshot of the Yahoo! front page showing
the placement of the featured article: “Best and worst French
fries.”
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Figure 2: The number of page views of yahoo.com over the
course of three consecutive weeks in Nov/Dec 2008. Note, that
with the exception of a small glitch (likely cause by a logging
error or server failure) the traffic is very consistent over the
three weeks.

rate for an article after it has been featured on the website for some
number of minutes. In this study we will only consider articles that
were featured for at least 20 minutes between the hours of 3AM
and 8PM Pacific time. This gave us a total of 337 featured articles,
for an average of about 16 per day. While our algorithm could have
used all articles (not just those shown for at least 20 minutes) and
could have scheduled the full 24-hour day, the optimal algorithm to
which we compare starts to become prohibitively slow as the num-
ber of articles exceeds 20. Hence we imposed these restrictions
both for our algorithm and competing approaches, to allow com-
parison to the optimum without removing very many high-quality
articles, or high traffic times of day.

Figure 2 shows the total number of viewsyahoo.com as a
function of time for three weeks. Over these three weeks, the view

curves are almost identical — e.g., 4:53 on one Wednesday has
about the same number of views as 4:53 on another Wednesday

This illustrates the predictability of traffic on most days: during
regular weeks, the traffic pattern is almost identical from one week
to the next. We note that on some days, particularly holidays, the
traffic does not conform to the typical pattern.

3To predict the traffic on holidays, we would have to use a slightly

Alignment of all click through rates to one function

Click-Through Rate

100 200 300 400 500 600 700

Figure 3: An alignment of all clickthrough rate curves to a sin-
gle universal curve. The red region of the plot shows that al-
most all of the data fits to within a 10% window around a single
curve.

Predicting the time-varying clickthrough rates of media content
is a harder task. However, we can use bucket testing to get a good
approximation of this. By presenting a small fraction of the vis-
itors to our site with a particular piece of content, we can get a
good approximation of how popular that piece of content will be
when presented to the entire population. Once we have learned
the initial popularity of an article, the future popularity will fol-
low a predictable decay. (See [1] for more sophisticated statistical
models for predicting clickthrough rates in the context of content
recommendation.)

Crucially for our analysis, we find that these articles not only
follow predictable decay curves, but they can all be approximately
realized as different segments of a singfeéversal curveas illus-
trated in Figure 3. That is, there is a single cupe), so that
each item’s clickthrough functioffi; (¢) can be written ag;(¢t)
g(t + o;) for an item-specific offset;. Thus, when learning the
parameters for an articke we need only use bucket testing to learn
the appropriate starting poiat along this single curve. If, for in-
stance, we find that the initial clickthrough rate (when the article is
first featured) is 5%, we can find the point along this single curve
corresponding to a clickthrough rate of 5%. We find that this corre-
sponds to some = T on the plot in Figure 3. Once we know this
offset, we can compute that the clickthrough rate after the article
has been up for 20 minutes will correspondItet+ 20 in Figure 3.
Thus with only the initial rate, we can accurately predict the click-
through rates we will achieve when placing this article in a featured
position for any length of time. In our data, we observe that all ar-
ticles can be aligned to a single monotonically decreasing function
'such that the average relative error is only 3.2%.

A natural worry is that with only a few hundred articles in our
dataset, we are overfitting the data and cannot, in reality, predict
fi(t) for all ¢ from the first few minutes of data and a small sam-
ple population. To show that this is not the case, we also fit the
data to a simple exponential decay curve. While each article has
its own starting point, there is only one universal parameter to
this function: the decay parameter We find that the best fit is
when\ = —0.0044, indicating that the clickthrough rate typically
declines by 0.44% per minute in our data. While this fit is not as
good as the previous one (it can’t be since only the constraint on
the previous curve was that it be decreasing) it still gives an aver-
age relative error of only 4.6%.

more sophisticated model, perhaps looking back a year to that day Figure 4 shows the fit of this exponential decay for the single

last year, or perhaps estimating from similar holidays.

article which appears for the longest interval in our data. While it



Fitsof a single article and 0 thereafter, optimal clicks can be achieved if and only if the
" Acualoaa original bin-packing problem is solvable []

Best fit power lay decay
| Best fit linear decay
r Best fit exponential decay

H : Optimal Algorithm . A naive algorithm would have to consider
N! different permutations of the items, and even then it would still
have to determine the interval lengths for each one. This would
1 make it infeasible to solve instances even of dizeUsing a more
sophisticated algorithm considerably improves the exponential be-
havior of the search for the optimum.

Click-Through Rate

ST THEOREM 2. The optimal solution for any traffic patternand
‘ any functionsf; can be found in tim& (72 N2") whereT is the

‘ * S e = total time, andN is the number of media items in the set of all
available items.
Figure 4: A fit of three functions to the single longest running PROOF. An algorithm using dynamic programming can achieve
article in our dataset. The exponential decay curve is clearly  this bound. For each < T" and each subsét of items, the algo-
the best, and while the linear curve isn't too far off, it will rithm computes the optimal scheduling for the firgtinutes of the
certainly continue to deviate more and more from reality as it day, using only the items if. To do this, we note that the optimal
eventually becomes negative. scheduling for some choice o6find some subsét places a partic-

ular item last for some time interval from— « to ¢. Call this item
1. Then, the value of the optimal scheduling for this choiceanfd
does not fit quite as well as one might hope, it is a good approxi- S is opt(t — u, S \ {i}) + valugt — u, t, i), where valuéa, b, )
mation, and is significantly better than another simple alternative: is the value of placing iten in the interval[a, b) and can easily
a power law decay. For comparison, the average relative error of be precomputed. Of course, we do not know whicand: to use
the exponential fit is 4.1%, while the power-law and linear fits have ahead of time, but by searching over all choices aihdi, we can
mean relative error 13.1% and 8.2%, and the best constant func-find opt(t, S). There areD(72") choices fort and S, and com-
tion with fixedy-value would have average relative error of 30.3%. puting each one requires searching o@&f" V') choices foru and
In other words, these clickthrough rates change significantly over ;. Multiplying these together gives us the runtime stated]
time, and while an exponential decay is not perfect, it gives a close .
approximation, better than other comparably simple functions. 4.2 Our Algorlthm
In Section 6 we will investigate the declining clickthrough rate  As we observed in Section 3, the clickthrough rates for all the
in greater detail and offer an explanation for this phenomenon. For items can, to a close approximation, be aligned to a single curve.

now, however, it suffices to observe that the functigr{¢) are rea- Formally, if the clickthrough rate for itemaftert minutes is given
sonably predictable, and can all be approximately aligned to seg-by fi(t), we can say that there is some universal, monotonically
ments of one common curve. decreasing functiop(t) such thatf;(¢t) = g(¢t + o) for someo;.
Furthermore, as shown in Figure 2, the traffic rate over the course
4. ALGORITHMS of a single day is approximately unimodal: it increases in the morn-

ings, peaks, and then decreases in the afternoons. (It is even closer
to being bimodal, with a dip at midday, and we can handle this as
well.) The crucial building block in handling unimodal traffic (or
K-modal traffic for fixedK) is to understand the problem when
traffic is monotonically increasing or decreasing. We do this first,
via the following two lemmas.

In this section, we describe the development of our algorithms.
As a preliminary step, we show that the general problem is NP-
hard, but that even in general, there is an exponential algorithm that
improves significantly over brute-force search (making it possible
to find optimal solutions foV around20-30 rather thanl0). As
our main focus, we then show how to solve the problem in polyno-

mial time when the functiong;(¢) can all be aligned to segments LeEmMA 3. If the traffic is monotonically increasing, then an
of a single universal curve — as we observed for our data in the optimal ordering of items is given by decreasing i.e., putting
previous section — and when the user traffic is unimodalKer worse items earlier.

modal for any fixedK) over the course of the day. When these
conditions are approximately met, our algorithm here produces a
corresponding approximation guarantee to the optimum.

PROOF Suppose there were an optimal ordering where item
comes immediately before itejrin the optimal ordering, but; <
o, in contrast to the statement of our lemma. We will show how
4.1 Preliminaries this leads to a contradiction. Without loss of generality, we will
assume that; = 0. This optimal solution presents iteinfor
o; + 6 minutes, followed by itemy for v minutes. An optimal
NP-Hardness solution must havé > 0, since if§ < 0, then fi(o; + 8) <
fi(o;) = g(oj) = £;(0). In other words, if§ < 0, thenf; at the
end of itemi’s interval would be greater thafy at the beginning
of item j’s interval, and we could do better by extending iteemd
PROOFSKETCH. A reduction from bin-packing gives K dis-  starting itemyj a little bit later.
joint intervals where traffic is 1 and the interval lengths are equal  We now consider what would happen if we swapped the order of
to the bin size. These intervals with traffic 1 are separated by in- the two items, presenting iteynfirst for time§ and itenv for time
tervals of the same size with zero traffic. We reduce the items in o; + ~. This is illustrated in Figure 5.
the bin-packing problem to items whose clickthrough ratesare 1up  These two items span a total time ®f o; + v. When itemi
to time equal to the length of the corresponding bin-packing item, came first, the total clicks were

THEOREM 1. The general media scheduling problem is NP-
hard.
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Figure 5: lllustration of the proof of Lemma 3. If we have
a situation where the ‘better’ (blue) item is placed earlier, we
can swap the two items as illustrated here. After this swap,
the clickthrough rate remains unchanged in the lasty, while it
drops in the lower traffic region from 0 to §, and rises in the
higher traffic region from 6 to ¢ + o;.

oj+é oj+6+y
/ az fi(z)dx + / azfj(x —o; — 0) dx.
0 o

it+é

When we perform the swap suggested above, the total clicks be-

come

3 oj+o+y
/ az fi(x) da:—i—/ az fi(x — 9) dx.
0 5

For time greater thanm; + 4, the total click contribution is un-

changed. In this interval, the optimal ordering had a clickthrough

rate of f;(z — o; — &) = g(x — §), while our swap gives a click-

through rate off; (x — ) = g(x—9) — the same. We now consider

two cases:
Case lio; < 4.

Loss Because of the swap we make from the optimal solution

the clickthrough rate decreases in the interval from®def; (z) =

g(x + 05) < g(z) = fi(z). The decrease in this region can be

written as

) )
/0 aa(fi() — f;(2)) do = / a2(9(z) — glz + o)) dz.

Because: is monotonically increasing anglis monotonically de-
creasing we can bound this loss in clicks (i)gyfo‘S g(z) — g(z +

oj)dz. Becauser; < ¢ this telescopes and can be rewritten as

as [§7 g(x) — g(z +9).

Gain. On the other hand, in the interval frodrio o; + 6, the click-
through rate increases, #igz — 0) > fi(z). Here, the total gain

we get isf(;’j” az(fi(z — 8) — fi(x)) dz. Sincea is increasing,
this is at least

oj 5 o
os [ " (fa—8)— fi(a)) de = a5 [ a1 -gte+5)a

Thus, the loss in clicks in the interval frotmto § is at least
offset by the gain we achieve in the interval fréno o; + § when

we make the swap from the optimal ordering, and we do no worse

The analysis here is similar except we collect termg lnystead
of a. The loss for clickthrough rates betwegfr;) andg(o; + 6)
can be written as

o;+d oj
[ s@)an —ara)do < (o) [ @rss - an)do.
oj 0
The gain for clickthrough rates betweeii0) and g(c;), on the
other hand, is

/0 " (@) (@rs — a2)dz > g(0) /

As before, the gain from the swap is at least as large as the 103s.

;

(agts — az) dz.

LEMMA 4. If the traffic is monotonically decreasing, then an
optimal ordering of items is given by increasiag, i.e., putting
better items earlier.

PROOF While this seems similar to the case in Lemma 3, we
note that it is more than just a case of changing the signs and per-
forming the same analysis. In the previous case, the traffic was
increasing through time, while the clickthrough rate was decreas-
ing. In this case, however, the traffic is decreasing as well as the
clickthrough rate. Thus, while similar, the analysis ends up being
a bit different, and hence this lemma needs an argument separate
from Lemma 3.

Consider an optimal ordering where this is not the case: item
Jj proceeds item, buto; > ;. As in the proof of the previous
lemma, we will show how this leads to a contradiction. Without
loss of generality we will assume that = 0. We will denote the
length of the interval for item aso; + ¢ and the length of the
interval for itemj as~. If we find thatd < 0 here, we decreasg
to the point wheré = 0. This would only increase the quality of
the optimal scheduling. However, in the rearrangement below, we
will show that we can get no worse performance by presenting item
j for time é. Thus, an optimal ordering would never have< 0
and we will henceforth assunme> 0.

We consider swapping the orderingicdndj, presenting first
for o; + ~ and then presenting for 6. The clickthrough rate is
unchanged beyond; + v, so we need only worry about the region
' before that. The optimal ordering achieved

i Y+o;
/ azg(x + oj) +/ azg(x — ) dzx.
0 ¥

When we perform the change mentioned above, the value in this

region becomes
Y+oj
/ azg(z) dz.
0

The value we lose in the region frofito v+ is f]“j az(g(z—
~v)—g(z)) dz. However, this is offset by the gain in the region from
0toyof [ az(g(x)—g(x+0;) dz. Again, the proof breaks down
into two cases.

Case 105 < 7.

Here the loss can be rewritten as

| astata =) gt dz <o, [

The gain can be rewritten as

/OW ax(9(x) — gl + 05 dx >

i

(9(z) — g(z + 7)) d=.

(strictly better if the monotone functions are strict) from reordering

items: andj.
Case 2:0; > 4.

4 / "(9(@) - gla + 05) dx = a / " (9(x) — glz + ) de.



Thus, the gain always exceeds the loss.
Case 2:0; > ~.
Here the loss can be rewritten as

/0 7 ang(a — ) — g(x)) dx <

Oy /Ocj (9(z) —g(z + 7)) dz = ay /Ov(g(w) —9(x +05)) dz.
The gain can be rewritten as

[ antote) ~ gt + 031 do 2 0, [0 - o+ ) e
Again, the gain always exceeds the los&l

Thus, in the case where the functigexists and traffic is monotone,

are covered. Using a recurrence analogous to that for the unimodal
piece, we try all four possible locations for theth item: to the

left of the first peak, to the right of the first peak, to the left of the
second peak, to the right of the second peak. Finally, we search
over all opt0, t2,t3,7, N — 3) and for each one we fill in the in-
terval[tz, t3) with the item we held out for the minima, picking the
schedule with the highest value.

There areO(N?) ways to pick the items for the minima and
maxima, and once we have picked them, we have to find the value
of opt(-) for O(NT*) configurations, which takes tim@(NT").
Putting this together, we g&(N*T%).

We can further extend this algorithm to the multimodal case, first
fixing the items that straddle the peaks and valleys, and then run-
ning a dynamic programming algorithm analogous to that for two
peaks. If there aré peaks, there areK — 1 peaks and valleys,
and so we need to select out items to straddle these. Once those are

we can easily determine the ordering. Once the ordering is fixed selected, we must compute the optimal schedule for each set of in-

(and using discrete time intervals) we can use dynamic program-

ming to solve the scheduling problem. If the total timelisand
there areN items to schedule, we find the optimal scheduling for
the firstt < T time and the firsk < N items, when they are or-

dered as in Lemma 3 and Lemma 4. If this optimal schedule has

value opft,n) we find it by finding#’ such that ogtt’,n — 1) +
valugt’, t, n) is maximized.

It is important to note that we do not need to actually know the
values ofg(-) ando for the algorithm to work. As long as they do
exist and we can order the items accordingrfdhe actual values
are unimportant to the running of the algorithm.

In the unimodal case, things are a bit more complicated. If we

tervalsfai,b1), [az,b2), ..., [ak, bk ), where the intervals do not
overlap anda;, b;) straddles peak In the worst case, this gives
us a runtime oD (7251 V2K =25,

4.3 Performance when conditions not met

Even when the exact conditions of unimodality afidx)
g(z + o;) are not precisely met, the dynamic programming algo-
rithm still gives a valid solution to the scheduling problem. In fact,
if we find an ordering based on an approximationsofnd that
ordering is close enough that it matches the optimal ordering, the
dynamic programming algorithm will still choose the correct inter-
val lengths. But, in the case where the ordering is wrong, we can

knew how to straddle the peak, and which side of the peak to put still bound the error in our result by the degree to which the actual
the items on, we could then schedule the increasing and decreasdata deviates from our assumptions.

ing parts independently. Of course there are exponentially many Given the actual data, we can find a unimodal traffic function
ways to divide the items into two groups, so a naive approach won't such that the actual traffic is higher than the unimodal function, but

work. However, with a more careful approach, we show

THEOREM 5. When traffic is unimodal, we can find the optimal
scheduling in polynomial time.

PROOF First note that Lemma 3 and Lemma 4 tell us nothing
about the item that straddles the peak, but they show that the item
on either side are ordered laywith smaller values closer to the
peak. Thus, the item with largest which we will denote iterm, is

either the first item in the entire sequence, or the last. This suggestst

a dynamic programming recurrence for computing the optimal or-
dering. We will denote the optimal value for the interialb) using

the firstn items by opta, b, n). There are two cases now. If item
n comes last, then ofit, b, n) = opt(a,t,n — 1) + valugt, b, n),

for somea < t < b, while if item n come first opfa,b,n) =
opt(t,b,n — 1) + valuga, t,n), for somea < t < b.

exceeds it by at most a factor @f Similarly, we can find a function

g and values ob; such thaty(z + 0;) < fi(z) < Bg(z + 04).

Any scheduling for the original problem gives no more clicks than
a factor ofa g times the version meeting our conditions. Since we
solve that version optimally, our algorithm gives a schedule that is
SWithin a factor ofa8 optimal.

Figure 2 shows that the unimodality constraint is roughly met in

our data, while Section 3 showed that all clickthrough rate func-
ions could be aligned fairly well. In the next section we will see
how close our algorithm comes to the optimal ordering on this real
data.

5. EXPERIMENTS

We start with the raw clickthrough rates for each of the arti-
cles in our dataset. For each article, we approximate the click-

This recurrence omits the base case where an item straddles thehrough rate function after presenting the article faninutes as

peak. However, we can run the algorittivitimes, trying each item

fi(t) = e~ *(t+9) where\ is a global decay parameter common

for each straddling interval as the base case, and removing that itemto all articles and-; measures each article’s inherent popularity as it

from the set to be scheduled to the sides. Each of\thames this
takes timeO(NT?), so trying allN takesO(N?T?). [

Extending the algorithm to bimodal and K-modal cases This

is offset in time. To estimatg, we picked the value that minimized
the overall squared error (summed over all articles). In our dataset,
we find A\ = 0.0044, indicating that on average the clickthrough
rate of an article declines by about 0.44% each minute.

To simulate our scheduling algorithm for a given day, we start by

algorithm can be generalized to the case where we have two peak®xtracting the clickthrough rate data for each article actually used
instead of one. In this case, we must first start be picking the items by Yahoo! that day. From this, we fft (¢) by finding the best;.
that straddle the two maxima and the minima between them. OnceWe cannot simply use the true clickthrough rates because we only

this is done we can compute the optimal in a similar manner. We
find that optt1, t2,ts,ts,n) is the optimal value when the first

have that data for the time before the article was replaced on the
site — using the fitted version allows us to simulate placing the ar-

n items (where three have already been removed for minima andticles for arbitrary amounts of time. In addition to the clickthrough

maxima) have been assigned and the interftalg2) and[ts, t4)

rates, we extract data about the number of front-page views at each
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26% improvement over the ordering that was actually used.

Percent Improvement

Day | Over Actual | Over Baseline
1 26.0 2.2
2 12.1 3.1
3 66.9 13.5
4 28.2 5.1
5 18.5 6.2
6 214 4.4
7 36.3 2.9
8 28.9 8.2
9 20.4 7.9
10 34.6 13.7
11 27.1 6.2
12 18.0 3.4
13 22.2 25
14 34.3 9.0
15 18.2 2.7
16 23.6 8.8
17 18.9 4.3
18 25.0 7.6
19 18.7 6.9
20 20.1 7.1
21 235 9.4
Avg 25.9 6.4

Table 1: The percent improvment of our algorithm over the
actual data, and over the simpler baseline algorithm. On all

days, our algorithm is within 0.1% of optimal.
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Figure 7: The distribution of visit rates to yahoo.com. The plot
is shown on log-log axes.

minute of the day. As our analysis in Section 3 shows, while an
application would not have these exact numbers, they can be esti-
mated very reliably from traffic in other weeks.

We know from Section 4 that our scheduling algorithm is optimal
for this type of function, provided that the traffic is unimodal. The
true traffic is close to unimodal, but this condition is not strictly
met. Thus, in evaluating our algorithm on this real data, we will
consider three questions. First, how close is our algorithm to opti-
mal, given that the optimality conditions are not strictly met? Sec-
ond, how much better do we expect to do compared to the schedul-
ing that was used? Third, how much better is our algorithm than a
simple baseline? The baseline algorithm we compare to sets all the
article lengths so that their final clickthrough rates (before being re-
placed) are about the same (as close as possible given the 1-minute
resolution). It then orders them by placing the best article in the
middle, straddling the peak, the next best to the right, the next to
the left, and so on, alternating sides of the peak.

This problem is difficult enough that manual scheduling has fallen
well short of optimality. First, our algorithm achieves 99.99% of
the optimal algorithm, and is a 6.4% improvement over the simple
baseline algorithm (with a daily maximum of a 13.7% improvement
over the baseline). While this may seem modest, we should note
that the number of daily visitors to the Yahoo! front page makes
6.5% a significant number. Finally, our algorithm gives a 25.9%
improvement over the manual scheduling used at the time, a huge
improvement.

One possible concern when examining these results is that some
of the articles may not have been available to the human editors at
Yahoo! until roughly when they were first scheduled. (Though, as
discussed in Section 1, these articles come from a class of applica-
tions where the content is not time-critical, so this is not necessarily
a significant issue in reality.) To make sure that the improvements
are not arising purely from the ability to shift content early, we run
the optimal algorithm with one additional constraint: our algorithm
may not schedule anything earlier than the first time it appeared on
the Yahoo site. Even with this constraint, we still do 17.6% better,
indicating that our improvement is not coming simply because we
have the ability to shift articles earlier in the day.

6. GENERATIVE MODELS

Now that we have seen how the traffic data can be used to in-
form the design of our algorithms, it is interesting to ask whether
we can explain the structure of this traffic data — particularly, the
functional shape of the declining clickthrough rates — from more
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\«\ time interval. However, the distribution of these views is another
S factor we must consider when modeling users. While it would
KX be simplest to posit an exponential distribution for the interarrival
times between home page views, the data shows that this is not
accurate. Instead, Figure 8 shows that the time between views to

ﬁ the home page while a single article is featured is distributed as a
Mm power law with exponent roughly.5 and an exponential cutoff. If
h m Al we condition on a user’s rate, the graph changes for different values
Number of Views with Current Aricle Featured of )\, but fitted exponential-cutoff power laws have similar powers,
and mostly vary in the exponential cutoff term, which is highly cor-

Figure 9: The clickthrough rate declines as visitors repeatedly ~ related to\. Thus, we model a user with rateas someone who re-
see the same featured item on log-log axes. turns repeatedly by sampling interarrival times from a distribution

proportional tax =% exp(—x\) (Which has mean close g/ )\).

The final step towards modeling users is to examine how the
basic assumptions. In particular, the declining clickthrough rates probability of a user clicking on an article depends on the num-
are clearly arising from the aggregate behavior of the user popula- ber of times they have been exposed to it. A user is most likely to
tion, who differ in their rates of activity on the Yahoo! front page click on an article the first time they are given the opportunity. Each
and their response to the content that is presented there. A naturatime a user returns to the home page, the probability decreases as
question is whether the clickthrough functions over time can be ap- the user becomes attenuated to the article. Again, we go to the data
proximately derived from a few simple parameters quantifying the to see how this attenuation works. Figure 9 shows the decreasing
variation within this user population. We show that this is indeed click through rate for one article as a visitor sees it over and over
possible, suggesting some of the fundamental underlying mechan-again: a power law with exponefit= —0.75. We note that only a
sisms for the dependence of clickthrough rate on time. user’s first click on a featured article is considered when computing

The first step towards understanding this data is to look at how the clickthrough rate. Subsequent clicks are disregarded.

often users return to the front page and how likely they are to view  We now propose a model to combine the observed distributions.
a story once they get there. Each individual user has his or her ownFirst, a user samples his or her overall ratbom the power law
visit rate for the Yahoo! home page. Naturally, some users visit rate distribution. Once this rate is sampled, the user starts gener-
much more frequently than others and this plays an important role ating arrival gaps, starting at timg = 0. To sample an arrival
in scheduling because we want to serve fresh content to the frequentgapd;, a user sampleg from a power law distribution with expo-
visitors. (This is one of the inherent trade-offs in the scheduling nential cutoff, where the cutoff parameter corresponds to the rate,
problem, as discussed earlier: we need to keep frequent visitorssettingt; = ¢;—1 + ;. For some intervdlS, T'], a featured article is
interested, but we have to avoid delivering low-quality content in presented on the home page. For efich ¢; < T a user considers
the interest of freshness.) By examining server logs, we can easilyclicking on the article according to the attenuation function and the
determining the distribution of return rates. article’s inherent interest. Thus, if an article has inherent interest

Figure 7 shows the distribution of rates for all visitors to the Ya- K, andt; is thej-th time the user has been to the home page in the
hoo! home page over the course of one month. For the bulk of the interval .S, T, the probability that the user will click i& ;7. The
distribution, we see that there is a good fit to a power law distribu- final caveat is that a user who has clicked on an article will never
tion with exponent-1.5. click a second time.

A user whose overall rate Jswill be expected to view the home Figure 10 shows the result of simulating this model for the para-
page a number of times proportionalX@ver the course of afixed = meters we see in the data. For comparison, the actual clickthrough
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rate for a specific article is also shown. While the curves differ ~ We have formulated a general media scheduling problem, and
somewhat, we see that the overall effect is quite similar. The fact shown how the types of data available at high-traffic websites makes
that the simulated curve is produced purely from a very small num- it possible to develop algorithms that improve significantly on cur-
ber of aggregate parameters about the user population suggests thaient practice in scheduling featured content. This problem is gen-
the functional shape of the declining clickthrough rates is largely eral enough that it can be applied to a wide variety of web sites.

rooted in simple collective properties of the set of users. We have shown that real data is structured in a way that allows an
efficient algorithm to schedule these items optimally.
7. RELATED WORK There are a number of directions for further work. One interest-

] ) ) _ing issue, noted earlier, is that while we have focused on applica-
The related work falls into mainly three categories, namely, opti- tjons where the pool of available content is known at the start of the
mization and recommendation in online content-delivery systems, scheduling period (e.g. at the start of the day), there are other appli-
schedu_ling problems in the context of online user activities, and the ¢ations — such as presenting breaking news — that are inherently
dynamics of human response. _ on-line, with limited or zero advance information about content un-
Das et al. [4] considered the problem of real-time recommenda- ;j it is ready to be scheduled. Related to this is content that may
tion of news articles to users. Their focus was on the recommenda-pe gyailable somewhat in advance, but whose utility funcfign)
tion and personalization aspects to maximize readership. Agarwal gepends on when it is shown. We believe that the ideas developed
etal. [1] studied the problem of selecting and serving articles to i, this paper provide a useful starting point for thinking about these

users in an online portal to maximize the clickthrough rate. They fyrther variations on the problem, and this is an interesting direc-
develop a general framework to incorporate aspects such as learnyjon for future work.

ing, explore-exploit strategies, and individual user characteristics.
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