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We study a novel genre of optimization problems, which we call segmentation problems, moti-

vated in part by certain aspects of clustering and data mining. For any classical optimization

problem, the corresponding segmentation problem seeks to partition a set of cost vectors into sev-

eral segments, so that the overall cost is optimized. We focus on two natural and interesting (but

MAXSNP-complete) problems in this class, the hypercube segmentation problem and the cat-

alog segmentation problem, and present approximation algorithms for them. We also present

a general greedy scheme, which can be specialized to approximate any segmentation problem.
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1. INTRODUCTION

The classical knapsack problem asks: given d items each having a weight and a value, and a bound on the
total allowable weight r, select a subset of the items of maximum value with total weight not exceeding r.
Here is an application of this problem: suppose that we have a set of items to offer for sale to n customers.
We are given, for each customer, the subset of items the customer is known to like. We wish to create a
catalog with r of the items to send to the customers; our objective is to maximize the sum, over these r
items, of the number of customers who like each item. This is a special case of the knapsack problem in
which each item has unit weight; the (rather trivial) solution is simply to select the r most popular items.

Now suppose, instead, that we are allowed to create two catalogs each with r items, sending one of the
two to each consumer; obviously, there are cases in which the value we obtain from a pair of catalogs can
greatly exceed the value obtainable from one.

Catalog Segmentation. Given a ground set U and n subsets S1, . . . , Sn of U , find two subsets X and Y
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2 · Jon Kleinberg et al.

of U , each of size r, so that
n
∑

i=1

max(|Si ∩ X |, |Si ∩ Y |)

is maximized.

This is only one in a novel and interesting class of combinatorial optimization problems, which we call
segmentation problems, introduced and studied in this paper. Like almost all such problems, it is NP-hard,
even in the unit-weight case formulated above. One can define a segmentation problem (and in fact one of
several variants) for every classical optimization problem. Segmentation problems are intended to capture
certain aspects of the economic basis for data mining [Kleinberg et al. 1998] and clustering; we explain this
connection next.

The Value of Data Mining

Data mining is the application of statistical and machine-learning techniques for extracting interesting pat-
terns from raw data. The problem of what “interesting” means in this context has been an important issue in
the data mining literature, but there has been very little work on formalizing the notion. (See, e.g., [Agrawal
et al. 1993; Masan and Piatetsky-Shapiro 1996; Piatetsky-Shapiro and Matheus 1994; Smyth and Goodman
1991; Silberschatz and Tuzhilin 1996] for various perspectives on the problem). Most research in data mining
deals with the efficient discovery of patterns for subsequent human evaluation of the degree to which they
are “interesting,” and not on techniques for automatically evaluating mined patterns, or for automatically
focusing on “interesting” patterns. We proposed in [Kleinberg et al. 1998] a rigorous and algorithmic frame-
work for such evaluation based on the pattern’s utility in decision-making. The framework formulated in
[Kleinberg et al. 1998] suggests a number of interesting computational issues, related to sensitivity analysis
and clustering; in the present work we study algorithms for one class of such optimization problems — the
segmentation problems.

Segmentation problems address the problem of the degree of aggregation in the data that an enterprise
uses for decision-making. Any enterprise faces an optimization problem

max
x∈D

f(x),

where D is the domain of feasible decisions (production plans, marketing strategies, etc.), and f(x) is the util-
ity of decision x ∈ D. The function f is generally, to a first approximation, a large superposition of functions
fi(x), i ∈ C, reflecting the enterprise’s interaction with a set C of agents (customers, suppliers, employees,
and other external factors affecting the utility of the enterprise; we will refer to them as “customers”).

As a concrete example: A company has information about a set C of customers, and a choice of various
marketing strategies x ∈ D. Any given marketing strategy will attract certain customers and fail to attract
(or even repel) others. Thus, for each customer i ∈ C, the utility of the marketing strategy x with respect to i
can be written as a quantity fi(x); then, the overall utility f(x) of marketing strategy x can be approximated
by the superposition

∑

i∈C fi(x).1

There is a spectrum of degrees of aggregation, between the following two extremes. At one extreme — no
aggregation — the enterprise could consider each of the functions fi separately, and implement |C| different
decisions x1, . . . , x|C|, targeting xi specifically at i ∈ C. This is clearly not practically feasible for a variety
of reasons. The computational effort required to determine this many separate strategies, and the cost to
implement them in this extremely targeted way, is prohibitive; moreover, one’s estimates of the individual

1This sum ignores inter-dependencies among the customers i ∈ C; but for now we will focus on this first approximation for

concreteness. The issue of non-linearities in the data, in a somewhat different context, is addressed in [Kleinberg et al. 1998].
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functions fi are not nearly accurate enough even to make this a meaningful activity. At the other extreme
— complete aggregation — the enterprise could compute a single decision x that maximizes

∑

i∈C fi(x). But
this will typically miss certain obvious — and profitable — segmentations of the underlying customer data.

For example, mail-order companies produce several hundred different catalogs each year, targeting one or
more at each of the customers on their mailing list. A telephone company may divide its customers into two
segments: residence and business customers; they offer different terms and prices to the two. How can such
segmentation decisions be arrived at in a principled and automatic manner? In each situation, what is the
optimal level of aggregation, and what is the corresponding optimum ensemble of decisions? Segmentation
problems, as defined and studied in this paper, are stylized computational problems whose intention is to
capture these important questions. (In Section 5 we formulate and solve the price segmentation problem
very much along the lines of the telephone company example.)

Segmentation problems also relate to clustering, an important, classical, and challenging algorithmic prob-
lem area [Jain and Dubes 1981], of interest in data mining —which it predates. Suppose that a large set of
points in a high-dimensional space must be partitioned into clusters. How is the quality of such a partition
to be judged? There are numerous general-purpose criteria (minimizing the sum of the radii of the clusters,
maximizing their distance, maximizing the weight of the edges cut, optimizing information-theoretic criteria,
among many more [Bern and Eppstein 1996; Coggins 1983; Feder and Greene 1988; Gonzalez 1985; Kearns
et al. 1997]) but very little problem-independent guidance on how to select the most appropriate one. But
suppose that we are told (to pick a toy example here) that the dimensions of the space correspond to the
edges of a fixed graph, and the points in the space represent the weights of the edges as perceived by different
people interested in minimum spanning trees of the graph. Given this additional information, the natural
approach to clustering the points would to solve the MST segmentation problem, and thereby partition
the points according to the spanning tree each group prefers. (See Theorem 5.1 in Section 5 for another
concrete example of this sort).

One of the main advantages of clustering has always been that it enables flexible decision-making at the
cluster level. Segmentation problems use explicitly the underlying decision-making problem as the clustering
criterion.

The General Segmentation Problem

We are given a domain D ⊆ R
d of possible decisions, and we are given a set of n customers, represented

by functions f1, . . . , fn with fi : D → R. In our formulations, these functions will have a very simple
form; typically, fi(x) = vi · x for a vector vi ∈ R

d. Now, if maxx∈D f(x) is any optimization problem, its
corresponding segmentation problem is the following:

segmentation problem for (D, f): Given n functions f1, . . . , fn and an integer k, find k solutions
x1, . . . , xk ∈ D such that the sum

∑n
i=1 max1≤j≤k fi(xj) is maximized.

A strictly analogous definition can be made for minimization problems. We thus have the MST segmen-
tation problem, the TSP segmentation problem, and so on. In this paper we focus on certain natural
segmentation problems that capture the marketing motivation. We can define another version:

segmentation problem for (D, f) (partition version): Given n functions f1, . . . , fn and an integer

k, find a partition of {1, . . . , n} into k sets S1, . . . , Sk such that the sum
∑k

j=1

[

maxx∈D
∑

i∈Sj
fi(x)

]

is

maximized.

It is easy to see that the two variants are equivalent, essentially because the two max operators commute.
The algorithmic significance of this equivalence is that the naive algorithm for solving segmentation problems
need not be of complexity |D|2nk (list all partitions), where |D| is the number of extreme points of D, but
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“only” |D|kn (list all k-tuples of solutions) — in other words, it is fixed-parameter tractable if we consider
D fixed and n as the truly unbounded parameter. However, the partition version is not totally devoid
of algorithmic advantages: Some of our approximation algorithms involve solving the problem with only
a logarithmic sample of customers; in this context, the exponential naive algorithm for the partitioning
problem becomes attractive.

There is another, equally natural, version, in which k is not fixed a priori, but there is a cost γ for each
additional segment.

segmentation problem for (D, f) (variable k version): Given n functions f1, . . . , fn and an integer
γ, find an integer k, and k solutions x1, . . . , xk ∈ D to maximize the sum

(

n
∑

i=1

max
1≤j≤k

fi(xj)

)

− γk.

Note the apparent similarity between segmentation problems and facility location problems, in which one
must “open” some number of facilities to serve customers: there is a cost for each facility opened, and a
penalty for each customer-facility distance. The issues in our algorithms here turn out to be technically quite
distinct from those in facility location problems. First, the problems we consider here center around maxi-
mization rather than minimization, and this changes the nature of the approximation questions completely.
Moreover, our space of possible decisions is typically exponential or infinite, and only implicitly represented.
In approximation algorithms for the discrete facility location problem and its variants, on the other hand (see
e.g. [Shmoys et al. 1997]), the facilities must typically be sited at demand locations, yielding, immediately,
a relatively small space of possible decisions.

Complexity

In [Kleinberg et al. 1998], we prove certain negative complexity results about segmentation problems. In
particular, we show that many natural versions are NP-complete, in several cases even when the un-segmented
version of the underlying optimization problem is trivially solvable.

Theorem 1.1. (See [Kleinberg et al. 1998].) The segmentation problems corresponding to the follow-
ing feasible sets D are MAXSNP-complete (with linear objective functions {fi} in each case): (1) The d-
dimensional unit ball, even with k = 2; (2) the d-dimensional unit L1 ball; (3) the d-dimensional hypercube,
even with k = 2; (4) the r-slice of the d-dimensional hypercube (the catalog segmentation problem),
even with k = 2; (5) the set of all spanning trees of a graph G, even with k = 2.

Theorem 1.2. (See [Kleinberg et al. 1998].) Segmentation problems (2–5) above can be solved in time
polynomial in n when the number of dimensions is fixed. Problem 1 (the unit ball) can be solved in time
O(n2k) in two dimensions, and is MAXSNP-complete in three dimensions.

Overview of the Results of this Paper

We focus on approximation algorithms for two concrete problems: the catalog segmentation problem
introduced at the outset, and the hypercube segmentation problem. In this latter problem, both
customers and policies are vertices of a d-cube, and the utility of implementing a given policy with respect
to a given customer is equal to their Hamming overlap — the number of bits on which they agree. A number
of the techniques we develop for these problems apply, in fact, in much greater generality.

In Section 2.1 we give a natural sampling-based approximation scheme for the catalog segmentation
problem. Somewhat surprisingly, the algorithm can only be shown to work under a fairly strong density
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assumption on instances (akin to the work of Arora, Karger and Karpinski [1995]). Even in this case the
analysis is non-trivial, and under slightly weaker assumptions on instances, the algorithm is known not to
work.

In Section 2.2, we analyze a natural greedy algorithm for the variable catalog segmentation prob-
lem, in which there is a fixed cost for each catalog produced. Our analysis is carried out at the more general
level of an arbitrary monotone submodular function minus a fixed-cost function; it thus forms a natural
parallel to results of Nemhauser, Wolsey, and Fisher [Cornuejols et al. 1977; Nemhauser et al. 1978] on
the maximization of monotone submodular functions, and addresses an open question raised by Berman,
Hodgson, and Krass [1995].

In Section 3 we consider the hypercube segmentation problem, defined above. We wish to approx-
imate the optimal segmentation into k sets. We give three approximation algorithms: (i) a deterministic
algorithm running in time O(knk+1), yielding a segmentation that is at least 0.82 times the optimal; (ii) a
randomized algorithm running in time nck, yielding an approxation ratio of .82 − ε, where ε > 0 is arbi-
trary and c depends on the value of ε; (iii) a randomized algorithm that uses ` segments, running in time
O(n`), achieving an approximation ratio that approaches 0.82 as ` becomes large; for ` = k it yields a
0.63-approximation.2

Finally, in Section 4, we present a general framework, based on a greedy algorithm, for approximating any
segmentation problem. The analysis is again motivated by connections to the maximization of monotone
submodular functions; however, the global objective functions arising from general segmentation problems
need not be either submodular or monotone. We therefore introduce the notion of a meta-submodular
function, which captures the key properties of the objective functions in segmentation problems; and we
analyze the greedy algorithm for such functions. We note that there are natural cases in which the greedy
algorithm may not be useful in developing efficient algorithms, for the implementation of a single step of the
greedy algorithm can sometimes be an NP-complete problem in its own right; see the discussion at the end
of Section 2.2.

2. THE CATALOG SEGMENTATION PROBLEM

2.1 Dense Instances

The idea of sampling a customer base is pervasive in marketing. We now describe a natural sampling-based
approximation scheme for the catalog problem. We give a guarantee on its performance provided there exists
an ε > 0 such that every customer likes at least a fraction ε of the items; under a slightly weaker assumption
(say, each customer likes Ω(d/ logΩ(1) d) of the d items) there are instances for which the algorithm does
arbitrarily badly. Thus, sampling will (on such “dense” instances) essentially capture the benefit of the
optimal segmentation.

Given an arbitrary parameter δ > 0, the algorithm runs in time O((n + d)O(k log k)/(δε)) and will, with
probability 1− o(1), produce a solution within 1− δ of the optimal; the failure probability becomes close to
1 as ε drops below a constant. Here we give the algorithm and analysis for k = 2.

Denote by Benefit(A, S) the value of a catalog A to customer set S, given by the sum over each item in
A of the number of customers of S who like this item. In other words, if we let L(x) denote the set of all
customers who like item x, then we have

Benefit(A, S) =
∑

x∈A

|S ∩ L(x)|.

2Following the preliminary conference version of this work, Alon and Sudakov [1999] developed algorithms improving some of

these bounds; we discuss this work in Section 5.
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Any two catalogs A1 and A2 induce a partition of all customers into two subsets: those who like more items
from A1 than from A2, and the rest.

Sample c log(n+d) customers at random; the constant c (and implicitly the base of the logarithm) depend
on the probability estimates below. Enumerate all partitions of the sample into 2 subsets. For each subset,
find the r items most popular among the customers in that subset. This yields a pair of catalogs for each of
the enumerated sample subset pairs. Take the best of these (n + d)c enumerations, yielding catalogs B1 and
B2.

By the density assumption, the value of the optimal segmentation is at least εrn. The optimal solution
induces a partition of the customers into two subsets S1 and S2, and corresponding catalogs A1 and A2. If
either Benefit(A1, S1) or Benefit(A2, S2) is less than δ/5 times the other, we ignore that Si and focus only on
the other subset of customers, whose cardinality (by a sequence of pigeonholing steps) is Ω(n). Otherwise,
both |S1| and |S2| are Ω(n), so each of S1 and S2 gets (with high probability) a constant fraction of the
samples. We will argue (from Lemma 2.1 below) that for i = 1, 2 Benefit(Bi, Si) ≥ (1 − δ)Benefit(Ai, Si)
with high probability. The catalogs Bi induce a partition whose value is Benefit(Bi, S

′
i), where S′

i are the
customer subsets induced by the Bi; the value of the approximation is thus

2
∑

i=1

Benefit(Bi, S
′
i) ≥

2
∑

i=1

Benefit(Bi, Si)

≥ (1 − δ)

2
∑

i=1

Benefit(Ai, Si).

It remains to establish the second of the inequalities above. Let R1 denote the samples in S1, and R2 the
samples in S2. When we enumerate all 2-way partitions of the random sample, we will in particular consider
the partition R1, R2 and solve the 1-catalog problems for R1 and R2. The crucial observation is that the
samples of Ri are uniformly distributed on Si, for i = 1, 2. Note that we do not make this argument for
arbitrary sets Si; only for S1 and S2 fixed in advance of the sampling.

The following lemma applies for i = 1, 2.

Lemma 2.1. Let a1, . . . , ar be the items in the optimal catalog Ai, listed in order of decreasing number
of customers of Si liking the item (henceforth “degree”). Let a1, . . . , ar′ be the items of Ai with degree
≥ (δ/5r)Benefit(Ai, Si) for r′ ≤ r. Let b1, . . . , br′ be the r′ most popular items in the sample Ri, listed again
in order of decreasing degree. With probability 1 − (n + d)−Ω(1), for all 1 ≤ j ≤ r′,

degree(bj) ≥ (1 − δ/2)degree(aj).

The proof of the lemma is based on showing that for any item x with degree less than (1− δ/2)degree(aj)
(1 ≤ j ≤ r′), the probability that x beats out aj in the sample (by being preferable to more customers
in the sample) is small. Further, the contribution of items ar+1, . . . , ar to Benefit(Ai, Si) is at most r ×
(δ/5r)Benefit(Ai, Si) ≤ (δ/5)Benefit(Ai, Si). Now, note that the lemma implies that with high probability,
∑2

i=1 Benefit(Bi, Si) ≥ (1 − δ/2− δ/5)
∑2

i=1 Benefit(Ai, Si).

Proof of Lemma 2.1: For any item x with degree less than (1 − δ/2)degree(aj), we will show that
the probability that it beats out aj in the net preference of the sample is small. The sample will prefer
x to aj only if it picks more customers who like x than who like aj . A sample customer can like only aj ,
only x, neither or both. Thus the number of samples preferring aj to x is binomially distributed with mean
≥ (c′ log(n+d))/(2−δ/2) for a constant c′. Since Ri is Ω(log n), and these samples are uniformly distributed
in Si, any single challenger x upsets aj with probability at most (n + d)−c′′ , where c′′ is proportional to c′.
Since there are at most d possible challengers x and r < n possible aj , the overall probability of failure is at
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most (n + d)−c′′+1, which can be made small by choosing a suitably large value of c (and thus c′ and c′′).

Theorem 2.2. On dense instances of the catalog segmentation problem the sampling algorithm will, with
probability 1 − o(1), yield k catalogs of total value at least (1 − δ) times the optimal, in time O((n +
d)O(k log k)/(εδ)).

2.2 Variable Segmentation

We now consider the catalog segmentation problem in the variable case, when the number of catalogs is not
set in advance, but there is a fixed cost for each catalog that is produced. For a set S of catalogs, let g(S)
denote the utility of producing precisely the set S of catalogs; we are thus seeking to maximize the function
g′(S) = g(S) − γ|S|, for a fixed cost γ.

The following interesting point arises immediately: When r = 1, so that each catalog can contain a
single item, g′(S) is simply the cardinality of a union of sets minus a fixed cost for each set. For larger
values of r, it is easy to show that g is monotone — g(S) ≤ g(T ) when S ⊆ T — and submodular —
g(S) + g(T ) ≥ g(S ∩ T ) + g(S ∪ T ).

Thus, we are seeking to maximize a monotone submodular function minus a fixed-cost function; we call
such a function a profit function. The maximization of a profit function is a basic NP-complete problem
whose approximability appears not to be understood at all; the performance of greedy algorithms for profit
functions was raised by Berman, Hodgson, and Krass as an open question [Berman et al. 1995].

In this section, we provide an analysis of the following greedy algorithm for profit functions arising from
arbitrary monotone submodular functions. We will assume without loss of generality that for every profit
function g that we deal with, we have g(φ) = 0.

Greedy algorithm for profit functions: At all times, maintain a candidate solution S. If there is
an element x 6∈ S for which the marginal gain g(S ∪ {x}) − g(S) is at least γ, then add x to S. Otherwise,
terminate and return S.

By re-scaling g, we can assume without loss of generality that γ = 1 henceforth.

We seek bounds r such that the profit obtained by the greedy algorithm is at least a factor of r times the
profit of an optimal solution; we refer to such an r as a performance guarantee for the greedy algorithm. As
we will see, there is no absolute constant c such that the greedy algorithm provides a c-approximation for
all profit functions. However, we show that a natural parametrization for analyzing the greedy algorithm is
the quantity µ, defined to be the profit-to-cost ratio of a minimum-size optimal solution T :

µ =
g′(T )

|T | .

It turns out that the greedy algorithm achieves a constant approximation ratio when µ is constant — i.e.,
when g is such that a fixed percentage of profit can be made.

First, we construct an example in which µ sets a natural limit on the performance of the greedy algorithm.

Theorem 2.3. The greedy algorithm does not achieve a performance guarantee better than µ/(1 + µ).

Proof. Let X be a finite set, and Yi, for i ∈ U , a collection of subsets of X . Fix a positive constant ε < 1
so that 1/ε is an integer, and set c = 1/ε2. We define

g(S) =
1

c

∣

∣

∣

∣

∣

⋃

i∈S

Yi

∣

∣

∣

∣

∣

.

Now, the sets in {Yi} are defined as follows. Y1, . . . , Yk are all disjoint and have cardinality (1+ε)c. Partition
∪k

i=1Yi into disjoint sets Z1, . . . , Zε−1(1+ε)k of size εc each. Now define Yk+j , for j = 1, . . . , ε−1(1 + ε)k to be
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a set of size (1 + ε)c containing Zj and otherwise disjoint from all other Yi. Then the greedy algorithm will
pick the sets Y1, . . . , Yk, for a profit of εk; but the (smallest) optimum solution is to pick all other sets, for a
profit of (1 + ε)k. In this instance, the profit-to-cost ratio is µ = ε, and the approximation ratio achieved by
the greedy algorithm is thus µ/(1 + µ).

However, when µ is a constant, the greedy algorithm achieves a constant performance guarantee. Specifi-
cally, we prove the following.

Theorem 2.4. The greedy algorithm achieves a performance guarantee of at least (
√

1+µ−1)2

1+µ .

Proof. Let S = {s1, . . . , sk} denote the set chosen by the greedy algorithm, and T = {t1, . . . , tm} an
optimal set of minimum size. Note that by the definition of µ, we have

g′(T ) =
µ

1 + µ
g(T ).

We write c = 1 + µ, y =
√

c − 1, z = 2
√

c − 1, x = y/z, and ε = µz/c. Within this notation, we are trying
to establish a performance guarantee of y2/c.

We consider two cases, depending on the relative sizes of S and T . First, suppose |S| ≤ ε|T |. Since g is a
monotone submodular function, we have

g(T ) ≤ g(S ∪ T ) ≤ g(S) +
∑

i

[g(S ∪ {ti}) − g(S)]. (1)

Now when the greedy algorithm stopped, no element had positive marginal gain with respect to g ′, and
hence g(S ∪ {ti})− g(S) ≤ 1 for each i = 1, . . . , m. Thus, by inequality (1), we have g(T ) ≤ g(S) + |T |, and
hence g′(T ) ≤ g(S). Thus

g′(S)

g′(T )
=

g(S) − |S|
µ|T |

≥ µ|T | − ε|T |
µ|T |

= 1 − ε

µ
=

y2

c
.

Otherwise, we have |S| > ε|T |. We write δi = g({s1, . . . , si}) − g({s1, . . . , si−1}), with δ1 = g({s1}).
Note that g(S) =

∑k
i=1 δi. The submodularity of g and the definition of the greedy algorithm implies that

δi ≥ δi+1 and δi ≥ 1 for all i. Also, for the remainder of the analysis, we may assume without loss of generality
that k ≤ m. Indeed, if k > m, then the analysis below can be applied instead to the set {s1, . . . , sm} ⊆ S,
showing that g′({s1, . . . , sm}) ≥ (y2/c)g′(T ); and by the definition of the greedy algorithm we also have
g′(S) ≥ g′({s1, . . . , sm}).

Let ` = dxke. If δ` ≥ 1 + y, then g′(S) ≥ yxk, and hence

g′(S)

g′(T )
≥ yxk

µm
≥ yxε

µ
=

y2

c
.

Otherwise, δ` < 1 + y. Now, if we write S ′ = {s1, . . . , s`−1}, then by analogy with inequality (1) we have

g(T ) ≤ g(S′ ∪ T ) ≤ g(S′) +
∑

i

[g(S′) ∪ {ti}) − g(S′)]. (2)

But since S is constructed by the greedy algorithm, we know by our assumption about δ` that g(S′)∪{q})−
Journal of the ACM, Vol. V, No. N, Month 20YY.
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g(S′) ≤ 1 + y for all elements q ∈ U . With inequality (2), this implies

g(T ) ≤
∑

i<`

δi + m(1 + y) ≤
∑

i<`

δi + m(1 + y)δj (3)

for every j ∈ {`, ` + 1, . . . , k}. Summing (3) over all such j, we obtain

(1 − x)kg(T ) ≤ (k − ` + 1)g(T )

≤ (1 − x)k
∑

i<`

δi + m(1 + y)
∑

i≥`

δi

≤ m(1 + y)
∑

i<`

δi + m(1 + y)
∑

i≥`

δi = m(1 + y)g(S),

where the final inequality follows since k ≤ m and hence (1 − x)k ≤ m(1 + y). Thus we have

g(S) ≥ 1 − x

1 + y
· k

m
· (1 + µ)m =

1 − x

1 + y
· ck,

whence

g′(S) ≥ k

[

1 − x

1 + y
· c − 1

]

and

g′(S)

g′(T )
≥ k

µm

[

1 − x

1 + y
· c − 1

]

≥ ε

µ

[

1 − x

1 + y
· c − 1

]

=
y2

c
.

As a direct corollary of Theorem 2.4, we obtain efficient approximation algorithms for the variable catalog
segmentation problem when r is fixed — each step of the greedy algorithm can be implemented by evaluating
the effect of producing each possible catalog. For unbounded r, it appears that the greedy algorithm cannot
be implemented efficiently. Specifically, given a set S of catalogs, and a cost γ, it is NP-complete to decide
whether there is a catalog x for which g(S ∪ {x}) − g(S) ≥ γ.

It is possible to extend the analysis in Theorem 2.4 to cover the case in which each step of the greedy
algorithm is only implemented in an approximate sense; we omit the details here. An interesting open
question is whether there is an efficient implementation of a suitably strong approximate step of the greedy
algorithm, in the case of catalog segmentation.

3. THE HYPERCUBE SEGMENTATION PROBLEM

In the hypercube segmentation problem we are given a set S of n customers, each a vertex of the
d-cube. We seek k segments S1, . . . , Sk and a policy Pi for each i so as to maximize

∑k
i=1

∑

c∈Si
Pi � c,

where Pi is a vertex of the d-cube and � is the Hamming “overlap” operator between two vertices of the
d-cube, defined to be the number of positions they have in common. Note that there is a trivial policy
P that, without segmentation, yields a benefit of at least 50% of the optimum: pick the majority bit in
each of the d coordinates. We give several algorithms that improve on this 50% figure. Recently, Alon and
Sudakov [1999] have obtained a polynomial-time approximation scheme for this problem. We nevertheless
give our algorithms, in part because two of them run in time linear in n.

The crux of our approach is to show that if we restrict ourselves to policies that are collocated with
customers, the loss is modest. Consider any set T of m vertices of the d-cube, v1, . . . , vm.
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Lemma 3.1. Let the hypercube vertex P denote the optimal policy for T . Then there exists a customer vi

such that
m
∑

j=1

vi � vj ≥ (2
√

2− 2)

m
∑

j=1

P � vj . (4)

The bound (2
√

2 − 2) ≈ .828 of Lemma 3.1 cannot be improved significantly; it is easy to construct an
example in which no customer gets better than 5/6 ≈ .833 of the benefit of the optimal policy. Consider
3 customers in the 3-dimensional cube, located at the vertices (100), (010) and (001). Clearly the optimal
policy (000) results in a benefit of 6, while each of the 3 customer policies yields benefit 5.

Proof of Lemma 3.1: The proof is a counting argument, and will in fact show that

m
∑

i=1

m
∑

j=1

vi � vj ≥ (2
√

2 − 2)m

m
∑

j=1

P � vj .

Consider an m × d matrix with vi’s as rows. For 1 ≤ r ≤ d, let pr denote the fraction of 1’s in the rth
column of this matrix. Assume, without loss of generality, that for all r we have pr ≥ 1/2; for otherwise, we
can exchange the roles of 0 and 1 as necessary. Consider the left-hand side of (4); the contribution of the
rth column is m2[p2

r + (1 − pr)
2]. On the other hand, the contribution of the rth column to the right-hand

side is no more than m2pr. Summing over r and noting that all pr ≥ 1/2, we can verify the inequlity (the
worst case is pr = 1/

√
2, for all r).

Thus Lemma 3.1 in fact shows that the expected value of a customer policy chosen uniformly at random
is at least 0.828 times the value of the optimal policy P .

Let T1, . . . , Tk denote the segments of the optimal segmentation; by Lemma 3.1, for each i there exists a
customer ti ∈ Ti such that using ti as the policy for Ti yields at least (2

√
2− 2) of the contribution of Ti to

the total benefit of the optimal segmentation. By enumerating all k-subsets of S, we can find the policies
t1, . . . , tk deterministically in time O(knk+1), for a (2

√
2 − 2)-approximation to the optimal segmentation

(note that the segmentation induced by t1, . . . , tk need not be T1, . . . , Tk).

The above is feasible for small k; for larger k, we provide two additional algorithms that run in time linear
in the number of customers n. For any set of t customers in d dimensions, the value of the optimal solution
is between td/2 and td. Let S1, . . . , Sk denote the partition of the customers by the optimal segmentation.
For any such set Si, we call it small of |Si| ≤ εn/(3k); else we call it big. The net contribution of all the small
sets to the objective function is at most εnd/3. Since the value of the optimal solution (which we denote by
V) is at least nd/2, the contribution of the big sets is at least (1 − 2ε/3) times V .

Our first algorithm picks a random set of k customers as policies, and determines (in time O(nk)) the value
of the best segmentation for the sample. The algorithm takes the best segmentation from M = (9/ε)k ln(1/ε)
such trials. Thus, the total running time is O(nk(9/ε)k ln(1/ε)) steps. We now show that the expected value
of this best segmentation is at least (0.828− ε)V .

Call a sample good if it picks at least one customer in every big set. A simple calculation shows that the
probability that a sample is good is at least (ε/3e)k. Thus the probability that every one of (9/ε)k ln(1/ε)

trials is not good is at most ε(9/2e)k

< ε/3 for sufficiently small ε and/or large k.

Conditioned on a sample being good, each big set gets at least one sample, and this sample is distributed
uniformly at random among the customers in that big set. Let the random variable X denote the value of a
solution, and Xi the contribution from the ith big set. Let Vi denote the contribution of the ith big set to
V . By Lemma 3.1, E[Xi|Si gets a sample] ≥ 0.828Vi. Clearly

E[X | the sample is good] = E[
∑

i

Xi| the sample is good] =
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∑

i

E[Xi|Si gets a sample] ≥ 0.828
∑

i

Vi = 0.828(1− 2ε/3)V .

Since M trials include at least one good sample with probability exceeding 1 − ε/3, the expected value of
the best segmentation from the M trials is at least (0.828− ε)V .

Our second algorithm is simpler in that it only takes a single sample of ` customers. We compare the
value of this segmentation to V , the best k-segmentation. As before, let T1, . . . , Tk denote the segments of
the optimal segmentation, and let Vi denote the value of the ith segment. Let bi denote Vi/V , the fractional
contribution to V from the ith segment. For any i ∈ [1, k], we have Vi = γi|Ti|d, where γi ∈ [1/2, 1]. It follows
that the probability that a randomly-sampled customer is from Ti is at least bi/2, so that the probability of
hitting Ti in ` samples is at least 1 − (1 − bi/2)` ≥ 1 − e−`bi/2. Conditioned on hitting a segment Ti, our
expected benefit from that segment is at least 0.828Vi. Thus the expected ratio of the value of our random
segmentation to V is

∑

i

0.828bi(1 − e−`bi/2).

This is minimized 3 when all the bi equal 1/k, leading to part (3) of the following theorem. We note, however,
that our analysis of such a sample is somewhat crude, in that we simply bound every γi from below by 1/2,
and thus get a weak bound of bi/2 on the probability of hitting the ith segment. Tightening this analysis
remains an interesting direction.

Theorem 3.2. The hypercube segmentation problem can be approximated as follows:

(1 ) Within .828 by an O(knk+1) deterministic algorithm.

(2 ) Within 0.828 − ε with probability 1 − o(1), by a randomized algorithm running in O(nk(6/ε)k ln(1/ε))
steps.

(3 ) Within .828− .328e−`/2k, with high probability, by an O(n`) randomized algorithm that will approximate
the optimum k-segmentation by ` policies. (This ratio is roughly 0.63 for ` = k, .7 when ` = 2k, and is
asymptotic to .828 as ` becomes large.)

4. META-SUBMODULAR FUNCTIONS

In this section, we consider a general framework for analyzing fixed segmentation problems. We will find
that the definition of a submodular function is too restrictive to cover the objective functions for general
segmentation problems; thus we introduce the notion of a meta-submodular function and analyze a natural
greedy algorithm in terms of such functions.

As before, let D be a set of possible decisions, and C a set of customers with associated functions fi. If
S ⊆ D is a finite set, we define σ(S) to be

∑n
i=1 maxx∈S fi(x). We call a function σ arising in this way a

segmentation function.

Now, the fixed segmentation problem for (D, f) can be phrased as follows: for the associated segmentation
function σ, find a set S of size k that (approximately) maximizes σ(S). This phrasing of the problem
resembles the maximization problem for monotone submodular functions, studied by Cornuejols, Fisher, and
Nemhauser [1977] and Nemhauser, Wolsey, and Fisher [1978]; we drew a different but related connection to
this work in Section 2.2.

3To see this, consider any other vector of values for the bi; there is at least one greater and one smaller than 1/k. Move these

two values simultaneously towards 1/k at the same rate until one of them reaches 1/k – as we do so, the ratio decreases. Repeat

this construction until all bi equal 1/k.
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However, it turns out that segmentation functions need not be submodular. As an example, let D be
the L2 unit ball, let v be a unit vector in R

d, and let C consist of two customers with f1(x) = v · x and
f2(x) = −v · x. Then

σ({v}) + σ({−v}) = 0 + 0 < σ(φ) + σ({v,−v}) = 0 + 2,

which violates the submodular property.

We show here that segmentation functions can be meaningfully studied in terms of a more general notion,
which we call the meta-submodular property. We say that a set function g is meta-submodular if g(S)+g(T ) ≥
g(S ∩ T ) + g(S ∪ T ) for all pairs of sets S, T that have non-empty intersection.

First, we cast this property in a form that is easier to work with.

Lemma 4.1. Let g be a set function. Then g is meta-submodular if and only if for non-empty sets S ⊆ T
and all elements x 6∈ T , we have

g(S ∪ {x}) − g(S) ≥ g(T ∪ {x}) − g(T ).

Proof. Meta-submodularity implies that g(S) + g(T ∪ {x}) ≤ g(S ∪ {x}) + g(T ), since S 6= φ. To
show the converse direction, suppose we are given S and T with S ∩ T 6= φ. Write S \ T = {x1, . . . , xk},
Yi = (S ∩T )∪{x1, . . . , xi}, and Zi = T ∪{x1, . . . , xi}, with Y0 = S ∩T and Z0 = T . Then g(Yi+1)− g(Yi) ≥
g(Zi+1) − g(Zi) by assumption, since each Yj ⊆ Zj and (crucially for the case i = 0) all Yi are non-empty.
Thus

g(S) − g(S ∩ T ) =
k−1
∑

i=0

g(Yi+1) − g(Yi) ≥
k−1
∑

i=0

g(Zi+1) − g(Zi) = g(S ∪ T )− g(T ),

and hence g is meta-submodular.

We now show

Lemma 4.2. Every segmentation function σ is meta-submodular.

Proof. We use Lemma 4.1. Let S and T be finite subsets of D, with S ⊆ T and S non-empty. Let
x ∈ D \ T . For two real numbers p and q, we write (p − q)+ = max((p − q), 0). For each i ∈ C, let
a∗

i = maxy∈S fi(y) and b∗i = maxz∈T fi(z). Clearly a∗
i ≤ b∗i since the expression for b∗i involves computing

the maximum over a superset of S. Thus

σ(S ∪ {x}) − σ(S) =
∑

i

(fi(x) − a∗)+

≥
∑

i

(fi(x) − b∗)+

= σ(T ∪ {x}) − σ(T ).

Another issue to deal with is that segmentation functions are not necessarily monotone — specifically, on
singleton sets. We thus say that a set function g is weakly monotone if (i) g(φ) = 0; (ii) g(S) ≤ g(T ) when
S ⊆ T and S is non-empty; and (iii) there exists a singleton set S = {x} for which g(S) ≥ 0.

Using these properties, we analyze the following basic greedy algorithm.

Greedy algorithm for segmentation functions: At all times, maintain a candidate solution S. While
|S| < k, add an element x 6∈ S which maximizes the marginal gain g(S ∪ {x}) − g(S).
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In fact, we will analyze the more general case in which each step of this greedy algorithm is implemented
only approximately: an element x 6∈ S is selected for which g(S ∪{x})− g(S) is within a factor of 1/c of the
maximum marginal gain, for some parameter c. We will refer to this as the c-approximate greedy algorithm.

Theorem 4.3. Let g be a set function which satisfies the meta-submodular and weak monotonicity con-
ditions. Then the c-approximate greedy algorithm achieves a performance guarantee of

1 −
(

1 − 1

ck

)k−1

,

which converges to 1 − e−1/c from below as k increases.

Proof. Let S = {s1, . . . , sk} denote the set found by the c-approximate greedy algorithm, and let T =
{t1, . . . , tk} denote the size-k set of maximum value. Let Si = {s1, . . . , si}, S0 = φ, δi = g(Si)− g(Si−1) (for
i ∈ {1, 2, . . . , k}), and Wi = Si ∪ T . Now, since g(φ) = 0, we have

g(Si) =

i
∑

j=1

δj ,

and by the weak monotonicity of f we have

g(T ) ≤ g(Wi).

By the meta-submodularity of f and the definition of the c-approximate greedy algorithm, we have

g(Wi) ≤ g(Si) + (ck)δi+1 =

i
∑

j=1

δi + (ck)δi+1

for i ∈ {1, 2, . . . , k − 1} Thus we obtain the following k − 1 inequalities:

g(T ) ≤ δ1 + (ck)δ2

g(T ) ≤ δ1 + δ2 + (ck)δ3

· · · ≤ · · ·
g(T ) ≤ δ1 + δ2 + · · · + δk−1 + (ck)δk

Suppose we multiply both sides of the ith inequality by
(

1 − 1

ck

)k−1−i

,

and add them all up. Note that the sum of the left-hand-sides is
(

k−2
∑

i=0

(

1 − 1

ck

)i
)

g(T )

while the sum of the right-hand sides is
(

k−2
∑

i=0

(

1 − 1

ck

)i
)

δ1 + (ck)

k
∑

i=2

δi.

Since g(φ) = 0, and δ1 ≥ 0 by weak monotonicity, we have

(ck)g(S) = (ck)
k
∑

i=1

δi
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≥
(

k−2
∑

i=0

(

1 − 1

ck

)i
)

δ1 + (ck)

k
∑

i=2

δi

≥
(

k−2
∑

i=0

(

1 − 1

ck

)i
)

g(T )

= (ck)

[

1 −
(

1 − 1

ck

)k−1
]

g(T ),

and hence

g(S)

g(T )
≥ 1 −

(

1 − 1

ck

)k−1

.

As noted above, this converges to 1 − e−1/c from below as k increases.

Theorem 4.3 thus applies to all weakly monotone segmentation functions. But we observed in Section 2.2
that the implementation of a single step of the greedy algorithm can sometimes be an NP-complete problem
in its own right. Thus, this theorem does not directly yield an efficient approximation algorithm. A natural
approach would be to look for efficient implementations of the c-approximate greedy algorithm for some
c > 1; we leave this as an open question.

However, Theorem 4.3 does provide an efficient approximation algorithm for segmentation problems arising
from optimization over polyhedra that contain the origin and have a polynomial-size set of vertices that can
be enumerated in polynomial time. In such a case, the greedy algorithm need only examine vertex solutions,
and thus can run in polynomial time; one can also verify that weak monotonicity holds here. A basic
example captured by this setting is an arbitrary segmentation problem on the L1 unit ball, which generalizes
the hitting set problem.

Theorem 4.4. There is an efficient [1 − (1 − 1/k)k−1]-approximation algorithm for a k-segmentation
problem in which the underlying objective function is a linear program over a polyhedron that contains the
origin and has a polynomial-size set of vertices that can be enumerated in polynomial time.

5. DISCUSSION AND OPEN PROBLEMS

The class of segmentation problems arises from the aspects of data mining that can be viewed as “clustering
with an economic objective function.” Our hope in introducing this model is to offer a particular algorithmic
perspective on the value of “mined data,” in terms of this underlying objective function, and to indicate the
surprisingly wide range of concrete optimization problems that arise from this point of view.

Let us present here a final and simple (and, we believe, very compelling) illustration of the relationship
between our ideas and the area of clustering. Suppose that a monopoly has n customers, and for each
customer i it knows precisely the price elasticity curve of the customer: A linear equation

q(p) = ai − bi · p
giving the quantity q of the commodity customer i would buy if the price were p; ai and bi are known
constants. The enterprise wants to cluster the customers into k groups, and offer different prices per group
so as to maximize revenue. The customers are thus points (ai, bi) on the plane, and we are asked to cluster
them optimally into k clusters S1, . . . , Sk, and to choose for each cluster Sj a price pj (it is easy to see that
this price is just

pj =
(
∑

i∈Sj
ai)

2

∑

i∈Sj
ai

)
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so that the total revenue
∑k

j=1

∑

i∈Sj
aipj − bip

2
j is as large as possible. We can call this the price seg-

mentation problem.

Which of the many standard clustering criteria should be adopted for this problem, and which of the many
heuristics known for each criterion should we use in order to determine the k segments? As it turns out, in
this case the solution is simple and can be found efficiently (we omit the straightforward proof):

Theorem 5.1. The optimum clusters in the price segmentation problem are always separated by lines
through the origin in the ai − bi plane. Thus, the optimum segmentation can be found in O(kn2) time by
dynamic programming (in O(n3) for variable segmentation.

Let us emphasize: What is good about this clustering result is not that the clusters are so regular, or that
the algorithm is polynomial, or that it gives the precise answer. What is auspicious is that the right objective
is optimized.

There are many open questions arising from this work, and we suggest some that seem to be among the
most interesting. First, obtaining good approximation algorithms for the general catalog segmentation
problem appears to quite difficult; for example, in the general case, we do not know how to improve on the
trivial 1/2-approximation when k = 2. Given that we are able to analyze the greedy algorithm at the level of
general segmentation problems, it is unfortunate that its implementation can sometimes be an NP-complete
problem; we are interested in determining the range of settings in which an approximate greedy algorithm
can be usefully applied.

Following the preliminary conference version of this work, Alon and Sudakov [1999] obtained several further
results on segmentation problems. In particular, they provided a polynomial-time algorithm that, for a fixed
number of segments k and a fixed ε > 0, produces a solution to the hypercube segmentation problem
that is within a 1 − ε factor of optimal. They also demonstrate some very strong inapproximability results
for segmentated versions of a number of basic problems arising in combinatorial optimization.

One can also formulate versions of the basic segmentation problem different from the two (fixed and
variable) that were studied here. For example, suppose each customer has a function fi and a threshold si;
the customer is satisfied by a policy x if fi(x) ≥ si. We may then be required to implement k policies so as
to satisfy as many customers as possible.

Our formulation of the underlying optimization problem faced by an enterprise interested in data mining
did not make explicit reference to the notion of competitive environments. However, it is possible to formulate
a notion of segmented matrix games [Kleinberg et al. 1998], in which each customer has an associated payoff
matrix. This leads to a range of further open problems.
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Shmoys, D. B., Tardos, É., and Aardal, K. 1997. Approximation algorithms for facility location problems (extended

abstract). In ACM Symposium on Theory of Computing. 265–274.

Silberschatz, A. and Tuzhilin, A. 1996. What makes patterns interesting in knowledge discovery systems. Ieee Trans. On

Knowledge And Data Engineering 8, 970–974.

Smyth, P. and Goodman, R. M. 1991. Rule induction using information theory. In Proceedings of the International Conference

on Knowledge Discovery and Data Mining.

Received November 1999, revised August 2003, accepted August 2003.

Journal of the ACM, Vol. V, No. N, Month 20YY.


