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ABSTRACT
A collaborative filtering system analyzes data on the past
behavior of its users so as to make recommendations — a
canonical example is the recommending of books based on
prior purchases. The full potential of collaborative filtering
implicitly rests on the premise that, as an increasing amount
of data is collected, it should be possible to make increas-
ingly high-quality recommendations. Despite the prevalence
of this notion at an informal level, the theoretical study of
such convergent algorithms has been quite limited.

To investigate such algorithms, we generalize a model of
collaborative filtering proposed by Kumar et al., in which
the recommendations made by an algorithm are compared
to those of an omniscient algorithm that knows the hid-
den preferences of users. Within our generalized model, we
develop a recommendation algorithm with a strong conver-
gence property — as the amount of data increases, the qual-
ity of its recommendations approach those of the optimal
omniscient algorithm. We also consider a further general-
ization, a mixture model proposed by Hofmann and Puzicha.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Cluster-
ing, Information Filtering; H.1.2 [Information Systems]:
Models and Principles—User/Machine systems

General Terms
Algorithms, theory
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1. INTRODUCTION

Collaborative Filtering and Convergence Properties.
As individuals engage in on-line activities, they generate a
large amount of usage data that — implicitly or explicitly —
reflects their decisions and preferences. While the growth of
this kind of data clearly raises a number of serious privacy
concerns (see e.g. [8, 21]), a separate but related thread of
research has argued that usage data, properly handled, can
benefit individuals by allowing them to leverage the collec-
tive decisions of a large user community. A simple example,
familiar to many, is the mechanism by which on-line book-
sellers such as Amazon.com draw on accumulated user his-
tories to recommend related books in response to customer
selections [1]. Projects such as GroupLens and EachMovie
[7, 11, 17], among many others, have included a more direct
approach: beyond simply observing user activities, they ask
users to explicitly register their likes and dislikes, and then
use the accumulation of these responses to make recommen-
dations. The study of automated systems that draw on us-
age data to make targeted recommendations has grown into
the field of collaborative filtering. (See [5, 10, 12, 17, 18, 19,
20] for early references and general surveys.)

The appealing premise underlying collaborative filtering is
that, with a large enough user population, it should be pos-
sible to make high-quality recommendations in essentially a
domain-independent fashion. Rather than building in spe-
cific knowledge about books, for example, a recommendation
system can incorporate a notion of similarity among user
preferences, and rely on the assumption that one should
recommend to a user the things that are liked by similar
users. In short, the full potential of collaborative filtering
implicitly rests on a “meta-theorem” that asserts something
like the following: In the limit of infinite data, it should be
possible to make arbitrarily good recommendations.

To be able to make such a notion precise, one needs a
rigorous formulation of the problem that collaborative fil-
tering is trying to solve. Kumar et al. [14] developed a
theoretical framework for studying collaborative filtering al-
gorithms from this perspective, and they proved a number
of fundamental results about the ability of such algorithms
to make high-quality recommendations. Shortly afterward,
Hofmann and Puzicha [13] independently formulated a much
more general model, and developed a set of statistically-
based algorithms within this model, without proving quan-
titative performance guarantees for these algorithms rela-
tive to an optimum. (For work related to Hofmann and



Puzicha’s model, see also [9, 16].) Both of these frameworks
are based on probabilistic generative models, in which hid-
den parameters of the users and the items being selected
give rise to the observed data through a randomized pro-
cess, and an algorithm must make recommendations know-
ing only the observed data, not the hidden parameters. And
both frameworks consider the same figure of merit in evalu-
ating an algorithm — essentially, the probability that a user
likes the item that is recommended to her, compared to the
probability the user would like an item recommended by an
omniscient algorithm that knows the hidden parameters of
the system.

However, there is much we still do not understand about
the following basic question. As we make the models more
general, we are imposing weaker assumptions on how users
behave, and so it becomes correspondingly harder to design
algorithms with good performance. Thus we ask — in how
general a model can one establish a precise version of the
“meta-theorem” suggested above? In other words, in how
general a model can we obtain a convergent algorithm, one
whose performance converges to that of an omniscient algo-
rithm as the amount of data increases?

This issue motivates our work here. We first propose a
generalization of the model of Kumar et al., and provide
a convergent algorithm for this model; the precise perfor-
mance guarantee of the algorithm is described in detail be-
low. We then explore some more general models and ob-
serve certain natural impossibility results; in particular, for
the model of Hofmann and Puzicha, we show that no rec-
ommendation algorithm can achieve the type of convergent
behavior we consider here.

The Basic Models. As above, we imagine a setting in
which users select items — say, books — from a universe of
possibilities, with each user following intrinsic preferences
for certain kinds of books over others. To capture this, we
define a model that consists of the following components.

Items, weights, clusters and users. There is a set I of
items, and each item i belongs to one of k disjoint clus-
ters c1, c2, . . . , ck (e.g. representing one of k possible
genres of book). There is also a set U of users, and
each user u has a preference p(c|u) ≥ 0 for each cluster
c; these are normalized so that

∑

c
p(c|u) = 1. These

preferences represent the extent to which a user u likes
the items from a particular cluster (genre).

For an item i, let c(i) denote the cluster containing
i. Each item i has a weight wi ≥ 0, intuitively reflect-
ing its level of “appeal” to a user whose preferences
are concentrated on the cluster c(i). The weights are
normalized so that

∑

i∈c
wi = 1.

User histories. Histories of prior selections are con-
structed by the following generative model. Each user
u selects cluster c with probability p(c|u), and then se-
lects item i from cluster c with probability wi. This is
repeated s times for each user, for a parameter s.1

Recommendations. A recommendation algorithm is
given the samples of size s selected by each user, but not
any of the parameters of the system. It must then rec-
ommend one item iu to each user u, and these recom-
mendations yield a net utility of

∑

u∈U
wiu

p(c(iu)|u);

1For now, it is not crucial whether the selection is made
with or without repetition; we will return to this issue later.

in other words, on each user u we get a utility equal
to the probability that u chooses the item iu. This is
compared to the maximum possible utility one could
accrue if knew all the parameters of the system, opt =
∑

u∈U
maxc wcp(c|u), where wc = maxi∈c wi.

We call this model the Weighted Model. It generalizes the
Uniform Model of Kumar et al. [14], which is based on the
same partition of items into disjoint clusters, but assumes
that all items in a given cluster are equally desirable. Thus,
in the terminology above, the Uniform Model assigns the
same weight wi to all the items in a given cluster, so that
users select uniformly from a cluster. This special case with
uniform weights introduces certain simplifying features into
the recommendation problem; in particular, if we collect
data from many users, and let #(i) denote the number of
times that item i is selected in this dataset, then the ratio
#(i)/#(j) for items i and j in the same cluster will converge
to 1 as the number of users increases. In other words, as the
amount of user data increases, the hidden clusters will tend
to “emerge” simply because all the items in a single cluster
have the same mean.2 But this observation appears mainly
to arise from an artifact of the Uniform Model; in reality, one
would not be able to identify a genre like “science fiction”
from the fact that all science fiction books have an essentially
identical number of sales.

Thus, if our goal is to consider algorithms that operate
with a large amount of user data, it is good to have a model
that can express certain additional sources of complexity
that arise in collaborative filtering applications. In particu-
lar, if a science fiction book i is selected by many users, it
may be because our user population contains many fans of
science fiction; but it also may be because i is a very popular
book in this genre, and so is reasonably likely to be selected
even by users who read very little science fiction. The diffi-
culty in resolving these two possibilities leads to much of the
difficulty in estimating a user’s preferences, and our gener-
alization from the Uniform to the Weighted Model seeks to
capture this issue explicitly.

Our Results. How much user data can we reasonably ex-
pect a recommendation algorithm to have access to? In
formulating our results, we consider the number N of items
to be fixed as the number M of users grows; this accords
with the picture of a system that tries to improve its rec-
ommendations on a possibly large but given set of books,
as more and more users participate. However, it is not rea-
sonable to ask for good performance only after each user
has selected a sizable fraction of all possible items; thus,
while we allow the number s of selections per user to grow
large relative to the number k of clusters, it should remain
bounded independently of M and N .

Due to some lower bounds that we develop below, our re-
sults must depend on one further parameter. Recall that
wc = maxi∈c wi; we define w+ = maxc wc and w− =
minc wc. We then define W to be the ratio w+/w−. One
can show that to obtain performance close to optimal, the
number of samples per user must also depend on this quan-
tity W. We believe that assuming W to be relatively small
is fairly reasonable: it simply corresponds to the assumption

2Note that it is possible for the items in two different clusters
to all have the same mean, rendering the picture somewhat
more complicated.



that each cluster contains an item of comparably high appeal
to users whose preferences are concentrated on that cluster
(i.e., that there is no genre consisting entirely of books that
are obscure even to their fans). In this way it is much milder
than assuming, for example, that each cluster contains an
item whose actual weight wi is large; and in any case, our
results below show that we cannot do without W.

We now state the main algorithmic result for the Weighted
Model.

Theorem 1.1. There are polynomial functions p and q,
and an algorithm A, such that the following holds in the
Weighted Model. If the number of users is at least M ≥
p(N, γ−1) and the number of selections per user is at least
s ≥ q(k,W, γ−1), then with high probability the net utility
of the recommendations made by A is at least (1 − γ) times
opt.

The algorithm is built from a number of intuitively natural
heuristic ideas. We develop a “correlation test” that looks
at the frequency with which pairs of items are selected by
a common user; using this, we build a graph G by joining
pairs of items that are deemed to be correlated under our
definition. We show that the connected components of G
correspond approximately to unions of clusters c: each com-
ponent agrees with a union of clusters up to a set of items
that have been selected very few times, and the clusters mak-
ing up a component are “nearly indistinguishable” using the
number of users and samples we have. Finally, by estimat-
ing aggregate item weights over these components, we show
that the resulting recommendations are close to optimal;
the crux of the analysis here is to argue that merging nearly
indistinguishable clusters into a single “meta-cluster” does
not greatly affect the quality of the recommendations. It is
important to note that in the presentation here, we do not
optimize the dependence of our bounds on the underlying
parameters; this is in the interest of presenting a polynomial
bound as cleanly as possible.

Although our algorithm is guaranteed to converge to near-
optimal recommendations with high probability, it is not
guaranteed to completely isolate all the underlying clusters
c, even when given an arbitrarily large amount of data. This
is a natural and inevitable consequence of the model. In-
deed, consider an extreme instance in which each user u
has a preference p(c|u) = 1/k for each cluster c. Then the
clusters are truly indistinguishable, regardless of how many
users we have (since users are indifferent to the clusters);
and yet it is possible to achieve near-optimality in this case
by simply recommending the most heavily selected item.
From this, one notices that the analysis of a recommen-
dation algorithm must have a certain multiple-alternative
flavor: either the user population is diverse enough in its
preferences that the hidden clusters will be discernible, or
else most users are sufficiently indifferent to the clustering
that we can make good recommendations without isolating
them explicitly. These considerations reflect a sense in which
our goals here are quite different from what one encounters
in problems with “planted structure” (e.g. [3, 4]) — while
we do have an underlying generative model, it is possible to
perform well even in cases where the underlying structure is
provably unrecoverable.

Since the Weighted Model includes the Uniform Model, a
special case of Theorem 1.1 yields a near-optimal recommen-
dation algorithm for the Uniform Model. As we discussed

above, however, if one is concerned specifically with the Uni-
form Model, then one can also exploit certain of its partic-
ular features to design such an algorithm directly. While
Kumar et al. do not explicitly describe a convergent al-
gorithm, it is not difficult to develop one for the Uniform
Model using the analysis in Section 4 of their paper [14].3 It
is interesting that Kumar et al. restrict attention in [14] to
the case of equal-sized clusters, noting that it “seems chal-
lenging” to handle unequal sizes. In the present setting, this
is analogous to requiring W = 1; thus, our results help ex-
plain quantitatively why such an assumption is important,
and how to parametrize the more general cases.

To capture precisely why we cannot have the number of
samples depend only on k and γ−1 — and hence why de-
pendence on a parameter like W is necessary — we prove
the following.

Theorem 1.2. For any functions f and g the following
holds. There exists an instance of the Weighted Model with
at least f(N) users and at least g(k) samples per user, in
which no recommendation algorithm can achieve a net utility
within a factor better than O(1/k) times opt with constant
probability.

Of course, the instances used to establish this theorem nec-
essarily require large values of W.

The Mixture Model proposed by Hofmann and Puzicha
[13] can be thought of as a generalization of our Weighted
Model — here, each cluster induces a probability distribu-
tion over all items (i.e. each item has a fractional mem-
bership in each cluster), and a user selects an item by first
selecting a cluster and then selecting an item from the dis-
tribution induced by the cluster. We show that this model
is essentially too strong to allow for algorithms that are con-
vergent in our sense, even for a fixed value of W. We discuss
this topic in Section 5.

For mixture models, we also consider the problem of mak-
ing recommendations when the underlying cluster structure
is known, but the user preferences are not. To analyze the
performance of recommendation algorithms in this setting,
we introduce a further parameter Γ, which is essentially an
L1-analogue of the smallest singular value of item weights.
We can show that when both W and Γ are bounded, it is
possible to design a convergent algorithm requiring only a
small amount of data from each user.

Further related work. Other recent theoretical work on
collaborative filtering, specifically that of Azar et al. [2] and
Drineas et al. [6], has pursued models that are not directly
comparable with ours: these papers assume a latent linear
structure (rather than probabilistic clusters), and their focus
is on approximately recovering this full latent structure. Our
approach, on the other hand, requires significantly less data
on each user, and focuses on the task of making good recom-
mendations regardless of whether the underlying structure
can be recovered.

3Note that Kumar et al. explicitly give a (1 − γ)-
approximation for the case in which the clusters are actually
known to the recommendation algorithm, rather than being
hidden; this is a variant of the problem we do not consider
here.



2. A RECOMMENDATION ALGORITHM
FOR THE WEIGHTED MODEL

We now develop the algorithm for the Weighted Model
that will prove Theorem 1.1. The given collaborative filter-
ing system, with hidden clusters {c}, preferences {p(c|u)},
and item weights {wi}, will be referred to as the true system.
Our (1 − γ)-approximation algorithm works in three parts:
we first perform a correlation test on pairs of items, to build
a graph G; from the connected components of G we con-
struct an estimated system whose parameters approximate
those of the true system; and finally we make recommen-
dations as though the parameters of the estimated system
were those of the true system.

Recall that M = |U| and N = |I|. We define #r(i) to
be the number of times that item i is selected, when we
consider the first r ≤ s selections made by each user; we
write #(i) for #s(i). We define constants ε = γ/6 and

β = ε1 = ( ε2

202k6W2 )2.

The Correlation Test. For this part of the algorithm only,
we focus on just the first two selections made by each user;
this is enough to allow us to search for correlations, and it
makes the analysis cleaner. We define an item i to be light
if #2(i) < βM/(N2); we call i heavy otherwise. Light items
are infrequent enough that it is difficult to make estimates
based on them; at the same time, we do not lose much utility
by ignoring them.

For each pair of heavy items, we now apply a test to es-
timate whether or not they belong to the same cluster. In
doing this, we look at only the first two samples selected
by each user. We define #(i, j) to be the number of users
whose first two samples are equal to i and j; we will also re-
fer to this as the multiplicity of the pair (i, j). We define the
constant τ = ε2

1/(32k2). We declare i and j to be correlated
if and only if the following two conditions hold:

(a) #(i, j) ≥ β2M/N4, and
(b) there do not exist items `1 and `2 such that #(i, `1),

#(j, `1), #(i, `2), #(j, `2) ≥ β3M/(2N6) and

∣

∣

∣

∣

1 − #(i, `1)

#(j, `1)
/
#(i, `2)

#(j, `2)

∣

∣

∣

∣

> τ.

Constructing the Estimated System. We define a
graph G on the set of items I by joining all pairs of cor-
related heavy items. Let c1, . . . , ct denote the connected
components of G, and assign each light item arbitrarily to
one of the components.

We define a new collaborative filtering system in which
the clusters are these sets c1, . . . , ct; note that they form a
partition of I. We define a new weight function w̃ as follows:

if i belongs to cluster c, we set w̃i = #(i)/
(

∑

j∈c
#(j)

)

.

We define the preference of u for cluster c, denoted p̃(c|u),
to be the fraction of items that u selected from cluster c.

Making Recommendations. We now make a recommen-
dation to each user as though the parameters of the esti-
mated system were the true parameters. Hence, we sim-
ply recommend to each user u the item iu that maximizes
w̃ip̃(c(i)|u).

Overview of Analysis. Our algorithm is performing opti-
mal recommendations with respect to an estimated system
that is not the true one; thus, we must show that these
recommendations are not far from optimal when evaluated
under the utility function of the true system. In order to
do this, we construct a third collaborative filtering system,
the ideal system, that essentially interpolates between the
true and estimated systems. Its clusters are those of the
estimated system, but its item weight and user preference
parameters are set by aggregating the true system’s param-
eters over the estimated clusters. Specifically, the clusters
in the ideal system are c1, . . . , ct, the preference of user u
for cluster c is p∗(c|u) =

∑

i∈c
wip(c(i)|u), and the weight

of item i is

w∗
i =

∑

u∈U
wip(c(i)|u)

∑

u∈U
p∗(c(i)|u)

.

The analysis is then organized as follows. Using the prop-
erties of the correlation test, we show that if heavy items
from different true clusters end up in the same estimated
cluster c, then the true clusters containing them are ap-
proximately “indistinguishable” in a sense we define below.
Using this notion of indistinguishability, we show that rec-
ommendations have approximately equal utilities in the true
and ideal systems. Finally, on the assumption that each user
chooses a sufficiently large number of samples relative to k,
W, and γ−1, we show that the optimal recommendations in
the ideal and estimated systems are approximately the same.
Putting this together, we see that the optimal recommenda-
tion that we make in the estimated system has near-optimal
utility in the true system.

Selection with and without Repetition. We can model
users as making selections from clusters either with or with-
out repetitions. Depending on the collaborative filtering do-
main, one or the other possibility may make more sense —
one expects users to buy books without repetition, but to
visit popular Web pages (e.g. news sites or search engines)
with repetition. Our analysis here focuses on the version of
the model in which users make selections by sampling with
repetition; however the results can all be carried over to the
case of sampling without repetition, provided we are careful
about the following issue.

Suppose each user chooses s items without repetition,
and consider a cluster with the following weights. There
is one item of weight 1 − σ0, there are s − 1 items of
weight σ1, and there are many items of weight σ2, where
1 � σ0 � σ1 � σ2. Suppose that all users have their
preferences concentrated on this cluster. Then unless the
number of users is at least a function of σ−1

0 (which can be
arbitrarily larger than the other parameters in our bounds),
all users will select precisely the s heaviest items, since they
are sampling without repetition, and we will have no way to
distinguish the item of weight σ0 from the items of weight
σ1.

However, if we simply assume that the maximum weight
of any item is a sufficiently small constant relative to γ,
then the algorithm described above still achieves a (1 − γ)-
approximation with high probability. Due to space limita-
tions, we defer the details of this to the full version of the
paper. Thus, under this assumption, the same algorithm
works in both the model based on sampling with repetition
and the model based on sampling without repetition.



3. ANALYSIS: THE CORRELATION TEST
Let us order the users arbitrarily, as u1, u2, . . . , uM , and

define the selection vector of a cluster c to be the M -
dimensional vector (wcp(c|u1),wcp(c|u2), . . . ,wcp(c|uM )).
We say that two clusters are indistinguishable if their se-
lection vectors are parallel. Indeed, if we have two indistin-
guishable clusters with selection vectors x and y, there is no
way to tell from the selections of users that we don’t instead
have a single cluster with selection vector x + y.

We relax the notion of indistinguishability to an approxi-
mate version, by considering the inner products of selection
vectors. We say that two clusters with selection vectors x
and y are α-indistinguishable if (x · y)/(‖x‖‖y‖) ≥ 1 − α,
where x · y denotes the inner product of x and y, and ‖x‖
denotes the Euclidean norm of x. Note that indistinguisha-
bility corresponds to the case α = 0.

We will need the following basic lemma about α-indistin-
guishability.

Lemma 3.1. Let x and y be α-indistinguishable selection
vectors. Let v = (x/‖x‖) − (y/‖y‖). Then ‖v‖ ≤

√
2α,

and the L1 norm of v (the sum of the absolute values of its

coordinates) is at most
√

2αM .

We also define the notion of an essential item, which is
closely related to the notion of an item being heavy. Let
Ei denote the expected number of times item i is selected
when we consider a single selection by each user; that is,
Ei =

∑

u∈U
wip(c(i)|u). We say that item i is essential if

Ei ≥ βM/N2. Thus the expected value of #2(i) for any
essential item i is at least 2βM/N2; since this quantity is
a sum of independent 0-1 random variables, standard tail
inequalities imply that for M sufficiently large relative to N
and β, no essential item will be selected fewer than βM/N 2

times with high probability, and so all essential items will
be considered heavy by our algorithm.

Lemma 3.2. Define α = 2τ , where τ is the constant in
the correlation test. Then with high probability, the follow-
ing holds for all pairs of items i and j, provided that M is
sufficiently large relative to N and γ.

(i) If i and j are essential items that belong to the same
cluster in the true system, then they are joined by an edge
in G.

(ii) If i and j are joined by an edge in G, then they belong
to α-indistinguishable clusters.

Proof. Let Eij denote the expected value of #(i, j), if we
get two samples from each user. If i and j come from the
same cluster c, then Eij = 2wiwj

∑

u∈U
p(c|u)2. If i ∈ c

and j ∈ c′, where the clusters c and c′ are distinct, then
Eij = 2wiwj

∑

u∈U
p(c|u)p(c′|u). For those pairs (i, j) with

Eij ≥ β3M/(4N6), let Fij denote the event that Eij and
#(i, j) differ by a factor of at most (1 ± τ/64). For those
pairs (i, j) with Eij < β3M/(4N6), let Fij denote the event
that #(i, j) < β3M/(2N6). We write F = ∩i,jFij . Our con-
dition on M is that it be large enough so that the probability
of each event Fij is at least 1 − N−3; applying the Union
Bound, it follows that F has probability at least 1−N−1. In
particular, if F occurs, then all pairs (i, j) considered by the
correlation test will have the property that Eij and #(i, j)
differ by a factor of at most (1 ± τ/64).

Consequently, if i and j are essential items from the same

cluster c, then

Eij = 2wiwj

∑

u∈U
p(c|u)2 ≥ 2

M
wiwj

(
∑

u∈U
p(c|u)

)2

= 2
M

(Ei) (Ej) ≥ 2β2M

N4 .

Thus, given that F occurs, we have #(i, j) ≥ β2M/(N4),
as required by the correlation test. Moreover, if ` is any
other item, then Ei`/Ej` = wi/wj . Hence if the pairs
(i, `1), (j, `1), (i, `2), (j, `2) all have sufficiently large multi-
plicity, then given F all are within a factor of (1 ± τ/64) of
their expectations, and so we have

∣

∣

∣

∣

1 − #(i, `1)

#(j, `1)
/
#(i, `2)

#(j, `2)

∣

∣

∣

∣

≤ τ.

It follows that the pair (i, j) passes both parts of the corre-
lation test. This proves part (i).

For part (ii), suppose we have two heavy items i ∈ c and
j ∈ c′ such that c and c′ are not α-indistinguishable. We
want to show that, given F , they will not be joined by an
edge in G. Clearly, if #(i, j) < β2M/N4, then this will
be the case. Otherwise, consider some other item i1 in c
and j1 ∈ c′. By the argument from part (i), we must have
#(i, i1) ≥ β2M/(N4), since i and i1 belong to the same
cluster. Moreover, since i1 is essential, we have Ei1j/Eij =
wi1/wj ≥ β/N2, and so given F we have

#(j, i1) ≥ β3M/(2N6).

A symmetric argument applies to #(j, j1) and #(j, i1); thus,
given F , all four of these pairs have sufficient multiplicity to
be considered in part (b) of the correlation test for (i, j).

Now,

Eii1/Eji1 = (wi

∑

u∈U

p(c|u)2)/(wj

∑

u∈U

p(c|u)p(c′|u))

and

Eij1/Ejj1 = (wi

∑

u∈U

p(c|u)p(c′|u))/(wj

∑

u∈U

p(c′|u)
2
).

Thus, if we let x denote the selection vector c and x′ denote
the selection vector of c′, we have

Eii1

Eji1

/
Eij1

Ejj1

=

(
∑

u∈U
p(c|u)p(c′|u)

)2

(
∑

u∈U
p(c|u)2

) (
∑

u∈U
p(c′|u)2

) =

=
(x · x′)2

‖x‖2‖x′‖2 ≤ (1 − α)2 < (1 − α),

using the fact that c and c′ are not α-indistinguishable.
Since all these pairs have sufficiently large multiplicity, all
their values #(·, ·) will be within a factor of (1 ± τ/64) of
their expectations, given F , and hence we will have

∣

∣

∣

∣

1 − #(i, i1)

#(j, i1)
/
#(i, j1)

#(j, j1)

∣

∣

∣

∣

>
α

2
= τ.

It follows that the pair (i, j) will not pass the correlation
test.

Now, when we consider the connected components of G, we
see that all the essential items from any true cluster belong
to a single component. Other pairs of items joined by an
edge come from α-indistinguishable clusters; but since α-
indistinguishability is not transitive, we cannot immediately
draw a similar conclusion for essential items that belong to
the same component. For this, we need the following lemma.



Lemma 3.3. Suppose we have r clusters c1 . . . cr, and
cluster ci is ε2

i indistinguishable from ci+1, where εi ≤ 1/r.
Then c1 is 8 (

∑

εi)
2-indistinguishable from cr.

If essential items i and j belong to the same component
of G, then there is an i-j path in G such that the items
on the path change cluster membership at most k−1 times.
This, together with Lemmas 3.2 and 3.3, gives us the second
statement in the following theorem.

Theorem 3.4. If two essential items belong to the same
cluster, then they belong to the same component of G. If two
essential items belong to the same component of G, then they
belong to clusters that are (8k2α)-indistinguishable.

4. ANALYSIS: THE IDEAL SYSTEM
In relating the quality of our recommendation to the opti-

mal utility in the true system, there are a number of sources
of error to bound — both in the fact that the components
of G do not really correspond to the clusters, and in the fact
that we only have a bounded number of samples for each
user. To make this process more tractable, we now make
use of the ideal system defined at the end of Section 2.

A recommendation r to the full population of users can
be viewed as a vector of items, one item ru corresponding
to the individual recommendation for each user u. Let Λ(r)
denote the utility of the recommendation vector r, evaluated
according to the parameters of the true system. Let Λ∗(r)
denote the utility of r evaluated according to the parameters
of the ideal system. The following theorem is the second
main step in the analysis, showing that we do not lose much
through the merging of clusters implicit in the construction
of G. It is crucial that this theorem applies not just to
optimal recommendation vectors, as we will be using it with
r equal to our algorithm’s recommendation, which is not
necessarily optimal for either system.

Theorem 4.1. For every recommendation vector r, we
have

|Λ(r) − Λ∗(r)| ≤ ε · opt. (1)

Proof. First we outline the proof and then will go into
details.

Recall that Ei denotes the expected number of times item
i is selected in the true system when we consider a single
selection by each user; that is, Ei =

∑

u∈U
wip(c(i)|u). We

define the corresponding quantity E∗
i =

∑

u∈U
w∗

i p∗(c(i)|u),
and observe that by our construction of the ideal system, we
have

E∗
i = w∗

i

∑

u∈U

p∗(c(i)|u)

=

∑

u∈U
wip(c(i)|u)

∑

u∈U
p∗(c(i)|u)

×
∑

u∈U

p∗(c(i)|u)

=
∑

u∈U

wip(c(i)|u) = Ei

for every item i. Thus all items have the same expectation
in both systems.

For a recommendation vector r, let ru denote the item
recommended to user u. We show that

∑

u∈U

|wru
p(c(ru)|u) − w∗

ru
p∗(c(ru)|u)| ≤ εopt, (2)

which is sufficient to establish the theorem. The left-hand
side of (2) is a sum of M terms, and to bound this we divide
the users into three sets: those users for whom ru is an
inessential item; those users for whom ru belongs to a cluster
c in the true system with very low total preference (satisfying
∑

u∈U
p(c|u) ≤ 1

8Wk2 ); and all other users. The contribution
of the terms associated with the first two kinds of users can
be bounded using the fact that the corresponding items do
not represent very much utility.

Now, for each cluster c in the true system, we know by
Theorem 3.4 that there is a cluster c in the ideal system con-
taining all the essential items of c; we denote this by c v c.
Consider a user u of the third kind, who was recommended
an essential item i belonging to cluster c in the true system,
such that c v c for a cluster c in the ideal system. Even
if we are just interested in this single user, we need to esti-
mate the sum

∑

u
p∗(c|u) since it appears in the definition

of the item weight w∗
i . We do this by considering all true

clusters c1, . . . , cb v c; using Lemma 3.1 and the fact that all
these clusters are approximately indistinguishable (by The-
orem 3.4) we show how to approximate

∑

u
p∗(c|u) by the

sum of p(ca|u) over these clusters (a = 1, 2, . . . , b), scaled
by the lengths of their selection vectors. This will not be
possible for all users; but we can show that the set of users
to which our approximation does not apply also represents
a small contribution to the left-hand side of (2).

Now let us go into details of the proof. Again, we say
that a cluster c in the true system is essentially a subset of
a cluster c in the ideal system if every essential element of c
belongs to c, and we denote this by c v c. By Theorem 3.4,
every cluster c in the true system is essentially a subset of
some c.

By the definition of utility we can rewrite (1) as

|
∑

u∈U

wru
p(c(ru)|u) − w∗

ru
p∗(c(ru)|u)| ≤ εopt.

It is sufficient to prove the following:
∑

u∈U

|wru
p(c(ru)|u) − w∗

ru
p∗(c(ru)|u)| ≤ εopt. (3)

First we consider users who were recommended inessential
items. Let for item i, let Xi denote the set of users u for
whom ru = i, and let X denote the union of Xi over all
inessential items i. If i is an inessential item, then we have

∑

u∈Xi

|wip(c(i)|u) − w∗
i p∗(c(i)|u)|

≤
∑

u∈Xi

|wip(c(i)|u)| +
∑

u∈Xi

|w∗
i p∗(c(i)|u)|

≤ 2
∑

u∈U

|wip(c(i)|u)| ≤ 2
ε1

N2
M

and since there are at most N inessential items, it follows
that users who were recommended inessential items can con-
tribute to the left-hand side of (3) at most

2N
ε1

N2
M ≤ ε

4
opt.

Now we focus on users who were recommended essential
items. We partition these users into two types: those who
were recommended an item from a cluster c satisfying

∑

u∈U

p(c|u) ≤ 1

8Wk2
,



and all others. Let X ′ denote the set of users of the first
type. Users in X ′ can be handled by means analogous
to what we used above for users who were recommended
inessential items. Indeed, let Uc denote the set of users who
were recommended an item from cluster c, where c is essen-
tially a subset of c. Then we have

∑

u∈Uc

w∗
ru

p∗(c|u) ≤
∑

u∈Uc

w∗
l p∗(c|u)

where l is the heaviest item in cluster c. Thus
∑

u∈Uc
w∗

l p∗(c|u) ≤ ∑

u∈U
w∗

l p∗(c|u) =
∑

u∈U
wlp(c|u)

≤ w+

∑

u∈U
p(c|u) ≤ εw+

8k2W M

≤ ε
8k

opt,

and by similar reasoning we also have
∑

u∈Uc
wru

p(c|u) ≤
ε
8k

opt. Since there are k clusters, users of this type can
contribute to the left-hand side of (3) at most 2 ε

8
opt =

ε
4
opt.
Let Y denote the set of users of the second type; this

consists of all users not considered so far. We show that for
all but a tiny fraction of them, the corresponding terms in
the left-hand side of (3) are less then ε

4M
opt; and the tiny

fraction for which this fails to hold is small enough that it
cannot contribute much.

Consider a user u ∈ Y for whom i = ru ∈ c1 v c. Let x
denote the selection vector of c1. The idea of the remainder
of the proof is to express p∗(c|u)wi in terms of p(c|u)wi, or
to show that this user is from the tiny fraction mentioned
above. We divide the analysis into three parts.

1. First, we want to express p∗(c|u) in terms of the original
preferences. By definition we have:

p∗(c|u) =
∑

i∈c

p(c|u)wi

Since each cluster c is just a union of true clusters, up to
inessential items, we have

∑

cvc

p(c|u) − ε1/N ≤ p∗(c|u) ≤
∑

cvc

p(c|u) + ε1/N, (4)

and thus

∑

u∈U

∑

cvc

p(c|u)− ε1M

N
≤

∑

u∈U

p∗(c|u) ≤
∑

u∈U

∑

cvc

p(c|u)+
ε1M

N

(5)
Since the remainder of the proof involves a number of in-
equalities similar to the above, we introduce a more compact
notation. For real numbers x, a, and ε, we write x ∈ a± ε
to denote the pair of inequalities a−ε ≤ x ≤ a+ε More gen-
erally, we use this notation with more than one ± to indicate
that the left-hand side lies between the smallest and largest
one can obtain by substituting + or − for each occurrence
of ± on the right-hand side.

2. We now want to express p∗(c|u) in terms of p(c1|u) and
some global characteristics of other subclusters of c. This
will not be possible for all users, but we will show that it is
possible for almost all.

All clusters in c are 1
2
ε2
1-indistinguishable; therefore by

Lemma 3.1, any cluster c′ v c with selection vector v satis-
fies

∑

|vi − |v|
|x|xi| ≤

√

ε2
1M |v|. (6)

Let |c| =
√

∑

u∈U
[p(c|u)]2 and qc =

∑

u∈U
p(c|u). Now, by

the definition of the selection vector, we have

|qc′ −
|c′|
|c1|

qc1 | ≤
√

ε2
1M |c′|

and therefore

qc′ ∈ |c′|
|c1|

qc ± ε1

√
M |c′|.

Substituting this into (5) we have

∑

u∈U

p∗(c|u) ∈
∑

c′vc

qc1

[

|c′|
|c1|

± ε1

√
M |c′|

qc1

]

± εM

N
(7)

By using (6) again for any cluster c′ in c we have that at
most

√
ε1M users do not satisfy the following constraint:

|p(c′|u) − |c′|
|c1|

p(c1|u)| ≤ √
ε1. (8)

Thus the total number of users who do not satisfy (8) for
some cluster in c is at most k

√
ε1M , and hence there are

at most k2√ε1M users in (3) for whom (8) is not satisfied
for their cluster c1 and some other cluster c′. Clearly the
maximum amount of utility these users can contribute is at
most

k2√ε1Mw+ ≤ ε

4k
w−M ≤ ε

4
opt. (9)

For the rest of the users, the constraint (8) applies for all
essential subclusters of their new cluster, and thus

|c′|
|c1|

p(c1|u) −√
ε1 ≤ p(c′|u) ≤ |c′|

|c1|
p(c1|u) +

√
ε1.

Combining this with (4) we have

p(c|u) ∈ p(c1|u)[
∑

c′vc

|c′|
|c1|

] ± k
√

ε1 ± ε1

N
, (10)

3. Now we are ready to estimate w∗
i p∗(c|u). We have

w∗
i p∗(c|u) = p∗(c|u)

wiqc1
∑

u∈U
p∗(c|u)

and substituting here (10) and (7) we have

w∗
i p∗(c|u) ∈ p(c1|u)





∑

c′vc

|c′|
|c1|

± k
√

ε1 + ε1

N

p(c1|u)



 wiqc1

qc1





∑

c′vc

(
|c′|
|c1|

± ε1

√
M |c′|

qc1

) ± ε1M

Nqc1





.

Using here the fact that qc ≥ ε

8Wk3 M and |c1| <
√

M , and

ε1 ≤ ε2

64W2k4 we have

w∗
i p∗(c|u) ∈

wip(c1|u)





∑

c′vc

|c′|
|c1|

± ε

32kWp(c1|u)









∑

c′vc

|c′|
|c1|

(1 ± ε

8Wk
) ± ε

8Wk







and by introducing γ =
∑

c′vc

|c′|
|c1|

≥ 1, we can rewrite this
as

w∗
i p∗(c|u) ∈ wip(c1|u)

[

1 ± ε

32γkWp(c1|u)

]

[

1 ± ε

8Wk
± ε

8γWk

] .

This interval can be bounded (assuming ε << 1) by

wip(c1|u)(1 ± ε

6Wk
) ± εwi

32kW (1 ± ε

8Wk
)

and bounding wi by w+ and p(c1|u) by 1, we have

w∗
i p∗(c|u) ∈ wip(c1|u) ± εw+

4Wk
.

Using the fact that OPT ≥ Mw−

k
=

Mw−

Wk
, we immediately

have

w∗
i p∗(c|u) ∈ wip(c1|u) ± opt

4M
,

and combining this with (9) we have
∑

u∈Y

|p∗(c(ru)|u)w∗
ru

− p(c(ru)|u)wru
| ≤ ε

2
opt.

Combining the contributions from users in the sets X,
X ′, and Y , we see that the left-hand side of (3) is at most
( ε
4

+ ε
4

+ ε
2
)opt = εopt.

Now, for a recommendation vector r, let Λ̃(r) denote the
utility of r evaluated according to the parameters of the es-
timated system. (Recall that the recommendation returned
by our algorithm is optimal for the estimated system.) Re-

lating Λ∗(r) and Λ̃(r) is much more straightforward, since
both involve the same clusters; one must simply argue that
with enough samples per user, we can determine the item
i maximizing w∗

i p∗(c(i)|u) to within a close approximation,
for all users except a small fraction. The analysis here is
similar to Theorem 4 of Kumar et al. [14], adapted to the
case of the Weighted Model.

Lemma 4.2. Suppose there are at least s selections per
user, where s = κkWϕ−2 log(kϕ−1) for a constant κ and
for ϕ = ε/(4kW). If r denotes an optimal recommendation
vector for either the ideal or estimated system, then with
high probability we have (1− ε)Λ∗(r) ≤ Λ̃(r) ≤ (1+ ε)Λ∗(r).

We can now put all these bounds together to prove the main
result.

Proof of Theorem 1.1. Let r, r∗, and r̃ be recommen-
dation vectors such that r is optimal for the true system, r∗

is optimal for the ideal system, and r̃ is optimal for the esti-
mated system. Then by Theorem 4.1 and the optimality of
r∗, we have Λ(r) ≤ Λ∗(r) + ε · opt ≤ Λ∗(r∗) + ε · opt.
Applying Lemma 4.2 and the optimality of r̃, we have
Λ∗(r∗) ≤ (1+ε)Λ̃(r∗) ≤ (1+ε)Λ̃(r̃) ≤ (1+ε)2Λ∗(r̃). Finally,
Theorem 4.1 again shows that Λ∗(r̃) ≤ Λ(r̃) + ε · opt.

Combining these bounds, we have Λ(r) ≤ (1 + ε)2Λ(r̃) +

2ε·opt. Since opt = Λ(r), we have Λ(r̃) ≥ (1−2ε)

(1+ε)2
Λ(r); since

ε is small enough so that (1−2ε)

(1+ε)2
≥ 1− γ, this completes the

proof.

5. PARAMETRIZATIONS FOR DIFFER-
ENT MODELS

The parameter W. We now give a family of examples that
establishes Theorem 1.2, and shows why the parameter W
is needed in our sample bounds. The examples will actually
be instances in which all items in a given cluster have the
same weight, and thus they help explain why restricting to
clusters of equal size in the Uniform Model (as in [14]) can
be crucial.

We choose large quantities b and x; their relation to the
other parameters of the system will be established below.
Let c1, c2, . . . , ck be the k clusters; let ca have size x, for
a ≤ k − 1, and let ck have size x3. All the items in each
cluster have equal weight. We partition the set of users into
k groups U1, . . . , Uk, where Ua has size bx2 for i ≤ k − 1,
and Uk has size bx3. Users u ∈ Ua, for a = 1, 2, . . . , k − 1
have preferences that place probability mass x−1 on items in
cluster ca, and probability mass 1 − x−1 on items in cluster
ck. Users u ∈ Uk have preferences that place probability
mass 1 on items in cluster ck. We can make b as large as we
want, and hence make the number of users arbitrarily larger
than the number of items.

Now, if we were to recommend an item from cluster ca

to each user from group Ua, we obtain a utility of (k −
1)bx2(x−2) + bx3(x−3) = kb. But if each user selects only
g(k) items, and if x is large enough relative to g(k), then
with high probability at most O(kbx) users will select any
item from the set c1 ∪ · · ·∪ ck−1, and we can obtain a utility
of at most O(kbxx−2) = o(b) from them. For the remainder,
we see only samples from ck, and it is easy to show that no
algorithm will achieve a utility better than b + o(b) on this
set with high probability. Hence, no algorithm can perform
better than O(1/k) times opt with constant probability.

We observe that this example is tight, in view of the fol-
lowing result.

Proposition 5.1. If the number of users is sufficiently
large relative to the number of items, then the algorithm that
simply recommends to all users the item that has been se-
lected the most times achieves a utility that is Ω(1/k) times
opt with high probability.

The mixture model. Hofmann and Puzicha [13] pro-
posed a Mixture Model for collaborative filtering that can
be viewed as the following generalization of our Weighted
Model. There are clusters c1, . . . , ck, and user preferences
over clusters, as before. But instead of items being parti-
tioned into clusters, each cluster now induces a distribution
over the set of all items. Let w(i|c) denote the probability
mass placed on item i by cluster c. To select an item, a
user u first chooses a cluster c with probability p(c|u), and
then chooses an item i with probability w(i|c). As before,
the utility of recommending i to u is the probability that
u would select i; but since u can now select i through any
cluster, this probability is computed as

∑

c w(i|c)p(c|u).
This model has the appealing feature that items can be-

long to multiple genres. However it is general enough so that
parameterization based on k and W is not sufficient. We can
show that there are instances of this model, where natural
analogue of the W parameter is equal to 1; and yet no con-
vergent algorithm is possible. One can naturally define W



for this model to be the maximum ratio of the utility one can
obtain from a user whose preferences are completely concen-
trated on cluster i to the utility one can obtain from a user
whose preferences are completely concentrated on cluster j,
over all i and j.

Theorem 5.2. For any functions f and g the following
holds. There exists an instance of the Mixture Model with
at least f(N) users and at least g(k) samples per user, in
which no recommendation algorithm can achieve a net utility
within a factor better than O(1/k) times opt with constant
probability. This holds even when it is possible to obtain the
same utility from every user, regardless of her preference
vector (and hence the analogue of W is equal to 1).

Proof. Suppose that the set of items consists of k special
items i1, . . . , ik, and a very large number x of standard items.
For a very small number σ > 0, cluster ca places probability
mass σ on special item ia, probability mass 0 on each other
special item, and probability mass σ2 on each standard item.
The users are divided into k groups of equal size; the users
in group a place all their preference weight on cluster ca.

Now, if we recommend the special item ia to each user of
group a, we obtain a utility of σ on each user. However, if
each user selects g(k) ≥ k items, and if σ is much smaller
than 1/g(k), then a very small fraction of all users will select
any special item. For the rest, we see only a sample of stan-
dard items; and it is easy to show that on these users, any
algorithm will obtain utility at most O(σ/k) per user with
high probability. (Indeed, the strategy of recommending a
random special item to each of these users achieves (σ/k) per
user, and the strategy of recommending a standard item is
worse since σ2 < σ/k.)

One interesting and important point about this construction
is that the impossibility holds even for algorithms that know
the underlying cluster structure w(i|c) of the mixture model,
but not the user preferences.

Now, the following natural question arises. Suppose we
know w(i|c) but not the user preferences; can we find a
parametrization of the general Mixture Model under which
we can construct a convergent algorithm? In other words,
if the value of such a characterizing parameter remain fixed
as the amount of data per user grows, is there an algorithm
whose performance is (1 − γ) times optimal, for γ converg-
ing to 0? We have recently been able to show that such a
parametrization is indeed possible, as follows.

We use two parameters: W as defined above, and a new
parameter Γ, which is defined as follows. Let W denote the
matrix of mixture model parameters, with (i, c) entry equal
to the weight value w(i|c), and set

Γ = min
‖x‖

1
6=0

‖Wx‖1

‖x‖1

Thus, Γ can be viewed as an L1-analogue of the smallest
singular value of W (since the standard singular value σmin

would be obtained by replacing the L1 norm with the L2

norm).
For Γ > 0, we can show that there is a polynomial

function f and an algorithm that, provided with at least
f(γ, Γ,W, k, δ) samples per user yields recommendations
with net utility at least (1− γ)opt with probability at least
1 − δ. Further, we can show that some lower bound Γ > 0
is in a sense necessary for making good recommendations;

indeed, there are families of instances of the 2-cluster Mix-
ture Model for which Γ → 0, and no algorithm can produce
better than a ( 1

2
− o(1))-approximation with constant prob-

ability.4

We note that this parametrization in terms of Γ is much
stronger than the corresponding analysis in terms of the
standard L2 minimum singular value σmin. Indeed, for mak-
ing good recommendations, it is sufficient to have a lower
bound on σmin; however, we note that Γ = 1 for any in-
stance of the Weighted Model, while there are instances of
the Weighted Model in which σmin is arbitrarily small.

Whether it is possible to obtain convergent algorithms
when the cluster parameters of the Mixture Model are un-
known, subject to a lower bound on Γ, remains an interesting
open question.
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