Chapter 17

GUlIs and event-
driven programs

Lesson page 17-1. GUlIs and event-driven

programming

Question 1. GUI stands for “Graphical User Interface”.

Question 2. The newer one, the Swing package, provides more flexibility,
and the fact that most of its classes are lightweight is an additional advantage.
However, it is not fully implemented on all systems, and it is sometimes messy
to get it working with applets. If you are on a Windows PC, there is no
problem, but the Macintosh may give a few problems. (Mac OS X solves
these problems.)

Question 3. A lightweight class is one that is written entirely in Java.

Question 4. A heavyweight class is one that is written at least partially
using native methods —methods that are written in another programming
language or in a machine language.

Question 5. Anther name for the Swing package is the ”Java Foundation
Classes”, or JFC.

Question 6. Use a JFrame. A JFrame has a title and can be resized and
dragged around; a JWindow doesn’t have these properties.

Question 7. Here’s the sequence:
JFrame jf= new JFrame("JFrame");

jf.pack(Q;
jf.setVisible(true);

Lesson page 17-2. Components and containers

Question 1. Here are the components:

1. JButton: a button is a component that can be clicked on (with the
mouse) to have some action performed.

2. JLabel: a label is a sequence of characters, which can be changed by
the program but not by the user.



132

Chapter 17. GUIs and event-driven programming

3. JTextField: a text field is an editable line of text; typically, the user
can type into it, and the program can monitor the typing or read it all
at once, for example, when a button is pressed.

4. JTextArea: a text area is like a text field, except that it typically con-
tains more than one line; scroll bars appear automatically when the
displayed area is not big enough for the text.

5. JList: a list contains a series of items. The user can select one or more of
them (depending on how the list is constructed). The list automatically
has a scroll bar if all its items can’t be displayed at one time.

Question 2. The other possible arguments are: BorderLayout . WEST, Border-
Layout.NORTH, BorderLayout.SOUTH, and BorderLayout.CENTER. See the
first footnote on Lesson page 17-3 for a picture that shows what each of these
arguments means.

Question 3. Container is a Java class whose instances are objects that can
contain Components (e.g. JButtons).

Question 4. Here are the statements:

JPanel jp= new JPanel();

JButton buttonl= new JButton("first");

JButton button2= new JButton("second");
jp.add(buttonl) ;

jp.add(button2) ;

jf.getContentPane () .add(jp, BorderLayout.EAST);

Lesson page 17-3. Layout managers

Question 1. A layout manager is an instance of a class that is associated
with a container and performs the task of laying out the components in the
container.

Question 2. We don’t draw a picture here; instead, look near the top of
the first footnote on Lesson page 17.3 for a picture. A statement that will
add a component jb to JFrame jf is shown below. The <argument> can
be one of BorderLayout.EAST, BorderLayout.WEST, BorderLayout.NORTH,
BorderLayout .SOUTH, and BorderLayout . CENTER.

jf.getContentPane () .add(jb, <argument>) ;

Question 3. jp.add(jb);

Question 4. Since the layout manager is a FlowLayout manager, the five
components appear one after another, in a row. If there is not enough room
for them all in one row, then a second row is used, and so on. If the panel is



Chapter 17. GUlIs and event-driven programming 133

resized and made wider, then more of them will be placed in the first row; if
it is resized and made narrower, then fewer of them appear in each row.

Question 5. jf.getContentPane().setLayout(new FlowLayout());

Lesson page 17-4. Listening to a GUI

Question 1. The four underlined items are: ActionListener; actionPer-
formed; ActionEvent; jb.addActionListener(this) ;.

Question 2. We show only method actionPerformed. The only other
thing to do is to add the statement bw.setText(""); after the statement
bw.setEnabled (false) ;.

public void actionPerformed(ActionEvent e) {
boolean b= (be.isEnabled());
be.setEnabled(!b);
bw.setEnabled(b);
if (be.isEnabled()) {
be.setText ("first");
bw.setText ("");

}
else {
be.setText ("");
bw.setText ("second");
}



