Chapter 8
Arrays

Lesson page 8-1. Introduction to arrays

Activity 8-1-1 Introduction to arrays
Question 1. The base type of an array declared as below is <type>:
<type> [1...[] b;

Question 2. T[] is a class whose objects are arrays of elements of type T.

Question 3. The name of a newly created array of 30 elements whose base
type is long.

Question 4. String[] strArray; strArray= new String[40];
Question 5. String[] strArray= new String[5];

Question 6. No. The elements of an array must have the same type.

Activity 8-1-2 The length of an array

Question 7. temps.length .

Activity 8-1-3 Referencing array elements
Question 8. A subscripted variable has the form
<wariable> [ <ezpression> ]

where <variable> is the name of an array (or any expression that yields the
name of an array) and <ezpression> has type int .

Question 9. In a reference d[i] to an element of array d, the value of
expression i is called the index of that array element. The plural of index is
“indexes” or “indices”.

Question 10. Because the first element is numbered 0. For example, an array
g of size 2 has elements numbered 0 and 1, so the last element has index 1,
which equals 2-1, which is g.length-1.

Question 11. for (int i= 0; i != arr.length; i= i+1)
Question 12. System.out.println(arr[1]+arr[3]+arr[2]+arr[0]);

Question 13. The output is: ace. The two statement-comments are:



78 Chapter 8. Arrays

// store first 5 alphabet letters in array arr
// print every other position of arr, starting at O
Activity 8-1-4 Array initializers

Question 14. Line 1: ‘a’ is a char, not a String.
Line 2: There is a period, not a comma, after 6.
Line 3: The delimiters are () instead of {} and the third item is not a String.

Question 15. Here is a snapshot of the variables after execution:

int[] pop int[] bees int x
array al: array a33: m

Activity 8-1-5 Where can array initializers be used?

Question 16. An array initalizer {...} can be used only in a declaration-
assignment, and no nowhere else.

Lesson page 8-2. Talking about array segments

Activity 8-2-1 The notation b[i. . j]
Question 1. The elements in b[1..4]: 44, 2, 45, 2.
Question 2. The subsection b[1..5] has 5 elements.
Question 3. (j-1)+1-i = j-i.
Question 4. b[3..4] or b[3..b.length-2].

Activity 8-2-2 Picturing array elements
Question 5. x[c..d] and x[c..e-1].
Question 6. The underlined expressions: 0; 4; x.length; e-1.
Question 7. The underlined parts: d+1-c; e-3; e-2; e-c = 0 (or e = c);
d-c = -1 (ord = c-1).
Activity 8-2-3 Using pictures to present relations about arrays
Question 8. False; it has length 3.
Question 9. False; it is b[m. .m]
Question 10. False: if n = length-1 the second segment has 1 element.

Question 11. False; which is smallest depends on b.length. If b.length=n,
the last segment is smallest because it is empty; otherwise, the middle segment
is smallest.



Chapter 8. Arrays 79

Question 12. Write ".<3" or just "<3"
Question 13. Write ".>b[3..length-1]" or just ">b[3..]"

Lesson page 8-3. Some programs that use arrays

Activity 8-3-1 A schema for processing array segments
Question 1. (1) The size is 0. (2) The program segment is:

// inv: start <= i <= end+l; z[start..i-1] has been printed.
for (int i= start; i <= end; i++) {
System.out.println(z[i]);

}

Activity 8-3-2 Processing array segments in reverse order
Question 2. The two schemata are:

// Process c[h..k-1], from end to beginning
// invariant P: h-1 <= i < k and
// c[i+1..k-1] has been processed
for (int i= k-1; i != h-1; i--) {
Process c[i]

}

// Process cl[h..k], from end to beginning
// invariant P: h-1 <= i <= k and
// c[i+1..k] has been processed
for (int i= k; i !'= h-1; i--) {
Process c[i]

}
Question 3. The elements with even indices in z[0. .i] have been printed.
Question 4. z[0]
Question 5. If z.lengthis even, z[z.length-2]; otherwise, z[z.length-1].

Question 6. If b.length is odd, the middle element belongs to the last half:

// Print the first half of z.
// invariant: z[0..i-1] has been printed and
// 0 <= i <= z.length/2
for(int i= 0; i != z.length/2; i++) {
System.out.println(z[i]);

}
Question 7. If b.length is odd, the middle element belongs to the last half:



80 Chapter 8. Arrays

// Print the last half of z in reverse order.
// invariant: z[i+1..length-1] has been printed and
// z.length/2-1 <= i <= z.length-1
for(int i= z.length-1; z.length/2 <= i; i--) {
System.out.println(z[il]);

}

Activity 8-3-3 Printing input values in reverse order

Question 8. Here’s the program:

// Read 5 integers and print their squares
// in reverse order.
import java.io.*;
public class ReverseSquares {
public static void main(String[] gopher)
throws Exception {

int[] numbers= new int[5]; // the read ints

// Link to the keyboard and prompt the user.
BufferedReader br= new BufferedReader(
new InputStreamReader(System.in));
System.out.println("Enter 5 integers " +
"and press return after each one:");

// Read 5 ints from the keyboard and store them
// in numbers in the order they are read in.
// inv: 0 <= i <= length and
// numbers[0..i-1] has been processed
for (int i= 0; i != numbers.length; i= i+1) {
numbers[i]= (new Integer(
br.readLine())).intValue();

}

// Write the squares of number[O0..],
// in reverse order
// inv: -1 <= i < length and
// numbers[i+1..length-1] has been
// processed
for (int i= numbers.length-1; i>=0; i--) {
System.out.println(
numbers [1] *numbers[i]) ;



Chapter 8. Arrays 81

Activity 8-3-4 Finding the number of smaller elements

Question 9. Here is the method:

// = number of elements of b that are less than v
public static int numberLess(int[] b, int v) {
int c= 0;

//
/7
/7

c= (no. elements of b[0..b[length-1]] less than v)
inv: 0 <= i <= b.length and
¢ = (no.elements of b[0..i-1] less than v)

for (int i= 0; i != b.length; i++) {

}

if (b[i]l < v) { c= c+1; }

return c;

}

Question 10. If the doubles represented $, a cheaper price would be good.

Activity 8-3-5 Testing function numberLess

Question 11. These are not the only errors, just a few of the tricky ones.

1.
2.

The initialization of the String array is missing braces ({}).

In the for loop, if i = b.length and the program tries to access b[i],
there will be an array-out-of-bounds exception.

Also in the for loop, what are the commas doing there?

In the conditions for the while loops, there is this mysterious “i”. Where
did it come from? What is its initial value? What is the value of i after
printing the second line and does that value change before printing the
third line? And the fourth?

The charAt positions are wrong for the third and fourth lines.

public class TestA {
public static void main(String[] args) {

/7

//
//
//
//
//

String[] lines= {"Jack", "Sage", "Theo"};
pp(lines);

On the first line, print the first char of
each element of b

On the second line, print the second char of
each element of b

On the third line, print the third char of
each element of b

On the fourth line, print the fourth char of



82 Chapter 8. Arrays

// each element of b
public static void pp(Stringl[] b) {
int i;

// output the first line
for (i= 0; i != b.length; i= i+1) {
System.out.print(b[il.charAt(0));

}

System.out.println();

// output the second line
i= 0;
while (i != b.length) {
System.out.print(b[i].charAt(1));
i= i+1;
}

System.out.println();

// output the third line
i= 0;
while (i<b.length) {
System.out.print(b[i].charAt(2));
i= i+1;
}

System.out.println();

// output the fourth line

i= -1;
while (i<b.length-1) {
i= i+1;

System.out.print(b[i].charAt(3));

}

Question 12. There is no character "Jo" .charAt (2). The following program
uses a simpler method pp.

public class TestB {
public static void main(String[] args) {
String[] lines= {"Mel", "Mary", "Jo"};
pp(lines);
}

// On the first line, print the first char of each element
// of b; on the second line, the second char; on the third



Chapter 8. Arrays 83

// line, the third char, and on the fourth line; the fourth
// char; print a blank for a nonexisting character
public static void pp(String[] b) {
for (int pos= 0; pos <= 3; pos++) {
// Print line pos (the first line is line 0)
for (int i= 0; i != b.length; i++) {
if (pos < b[il.length())
{ System.out.print(
b[il.charAt(pos)); }
else { System.out.print(" "); }

}

System.out.println();

}

Activity 8-3-6 Checking for equality of arrays
Question 13. Here is the method:

// = "arrays b and c are equal"
public static boolean equals(Object[] a, Object[] b) {

// return true if both refer to the same object
if (a==b) return true;

// return false if one is null or if
// they are of different lengths
if (a==null || b==null || a.length != b.length)
return false;

// return false if al[i]!'=b[i] for some i
for (int i=0; i'=a.length; i= i+1) {
if (!(ali].equals(b[i]))) return false;
}

// {al0..a.length-1] = b[0..b.length-1]}
return true;

}
Activity 8-3-7 Returning an array

Question 14. The value of a variable that is an argument can not be changed
by assignment to the corresponding parameter, because the “call by value”
technique is used for parameter-argument correspondence. The VALUE of the
argument is stored in the parameter.



84 Chapter 8. Arrays

Thus, whether the argument is a variable of a primitive type or a class
type doesn’t matter; it can’t be changed by assignment to the corresponding
parameter.

However, the object that is named by an argument CAN be changed by the
method.

Lesson page 8-4. Arrays and classes

Activity 8-4-1 Class Student
Question 1. True. getGrade is not a static method. Only static methods
can be called without creating an object of that class type.
Question 2. The name is an empty String.
Question 3. Here is the new constructor:
// Constructor: a student with name and grade
// supplied by the user

public Student() {
read();

}
Activity 8-4-2 Class StudentReport

Question 4. Nothing would have to be changed.

Activity 8-4-3 Class StudentReport (continued)
Question 5. In class StudentReport:

// Read in the title of the report

public void getTitle() {
System.out.print ("Enter the title of the report: ");
title= JLiveRead.readLineString();

}

In main, after declaring a new StudentReport: r.getTitle();
Add to the top of printReport:

System.out.println("\n" + title);
for (int i=0; i != title.length(); i++) {
System.out.print("-");

}

System.out.println();

Activity 8-4-4 Private leaks
Question 6. y contains: 4, 2, 99, 1; x contains: 4, 2, 99, 1.



Chapter 8. Arrays 85

Activity 8-4-5 Using class DynamicArray
Question 7. Here is the program segment:
DynamicArray z= new DynamicArray();
for (int i=0; i != z.length(); i++) {
z.set(i, ixi);

System.out.print(z.get(i) + ", ");

}
Activity 8-4-6 Explaining class DynamicArray
Question 8. Here are the headers, with specifications:
// Constructor: an array with e (>0) elements allocated

public DynamicArray(int e)

// = the number of elements in array that are currently
// in use: 1+(maximum index into which a value was

// stored)

public int length()

// = the size of the allocated array
public int allocatedLength()

// = the element at index i (given 0 <= i < length())
public int get(int i)

// set the element at position i to v (0 <= i)
public void set(int i, int v)

Question 9. Here is the program segment:

DynamicArray z= new DynamicArray(20);

for (int i= 0; i !'= z.allocatedLength(); i++) {
z.set (i, i*i);
System.out.print(z.get(i) + ", ");

}

Question 10. Class DynamicArray allows the size of the array to change, so
there is no need for a limit of 15 students.

Lesson page 8-5. Some basic array algorithms

Activity 8-5-1 Finding the first value

Question 1. Here is the new linearSearch.



86 Chapter 8. Arrays

public class Test {
public static void main(String args([]) {

String[] testArray= uan’ Ilbll, llall, "C", Ilall;
System.out.println(Test.linearSearch(testArray,
0, 4, "a"));
¥

/* = the index of the first occurrence of x in
b[h..k-1], or k if x is not in b[h..k-1].
*/

public static int linearSearch(Object[] b, int h,
int k, Object x) {

int i= h;
// invariant P: h<=i<=k and x not in b[h..i-1]
while (i!=k && !'x.equals(b[i])) {
i= i+1;
}

return i;

}

Activity 8-5-2 Another version of linear search
Question 2. Here is function lastLinearSearch:

// = index of last occurrence of x in array b,

// or -1 if x is not in b.

// Precondition: b and x have method equals.

public static int reverseLinSearch(Object[] b, Object x) {
// inv: -1<=i<b.length and x not in b[i+1..b.length-1]
for (int i= b.length-1; 0 <= i; i--) {

if (b[i].equals(x)) { return i; }

}

return -1;

}
Question 3. Here is the filled-in method:

// Print the index of each occurrence of x in b and return
// the index of the first occurrence of x (-1 if none)
public static int linearSearch(Object[] b, Object x) {

// location of first occurrence (-1 if none)

int first= -1;

// inv: 0<=i<=b.length and location of all

// x in bl[h..i-1] has been printed, and



Chapter 8. Arrays 87

// first= first position of x in b[h..i-1]
// (-1 if none).
for (int i= 0; i != b.length; i++) {
if (x.equals(b[il)) {
System.out.println(i);
if (first < 0)
{ first= i; }
}
}

return first;

}

Activity 8-5-3 Finding the minimum value
Question 4. Here is the function that returns the maximum value:

// = the maximum value in b.
public static int maxValue(int[] b) {
int max= b[0];
// {inv: max is the largest value in b[0..i-1]}
for (int i= 1; i!=b.length; i++) {
if (max < b[i]) { max= b[i]; }
}

return max;

}

Activity 8-5-4 Inserting into a sorted array segment
Question 5. Here is the rewritten method:

// blh..k-1] is sorted in ascending order, and b[k]
// contains a value. Sort b[h..k]
public static void insertValue(String[] b, int h, int k) {
String v= blk]l;
int i= k;
/* inv: (1) Placing v in b[i] makes b[h..k] a
permutation of its initial value
(2) blh..k] with b[i] removed is
initial blh..k-1]
(3) v < bli+1..k]

*/

while ((i !'= h) && ( v.compareTo(b[i-1]) < 0 ) ) {
blil= bl[i-1];
i= i-1;

}

blil= v;



88 Chapter 8. Arrays

Activity 8-5-5 Partitioning an array segment
Question 6. The possible values of i are 2 and 3.
Question 7. Here is the algorithm:

h i k
P: Db | X | <= x | ? >= x

// Given Q true, truthify R1
i= h+1;
j= k;
// {inv: b[h+1..i-1] <= b[h] = x <= b[j+1..k]}
while (i<=j) {
if (b[i]l <= b[h]) { i= i+1; }
else if (b[jl >= blh]l) { j= j-1; }
else { // {b[j]l < x < b[il}
int ti= b[il; blil= b[j1; bljl= t1;
i= i+1; j= j-1;

}
Activity 8-5-6 Median of three

Question 8. The completed methods are:

// Swap b[i] and b[j].

public static void stwap(int[] b, int i, int j) {
int temp= b[i];
blil= b[j];
b[jl= temp;

}

// Swap blh]l, bl[(h+k)/2], and b[k] (if necessary)
// so that b[h] <= b[(h+k)/2] <= b[k].
// Precondition: b[h..k] has at least three elements
public static void sort3(int[] b, int h, int k) {
int mid= (h+k)/2;

// Put the largest of b[h], b[mid], and b[k] in b[k]
if (b[h] > b[k]) { swap(b, h, k); }
if (b[mid] > blk]) { swap(b, mid, k); }

if (b[h] > blmid]) { swap(b, h, mid); }



Chapter 8. Arrays 89

Activity 8-5-7 Merging two sorted array segments

Question 9. Here is the method, with the missing code no longer missing:

// = a sorted array containing the elements of x and y.
// Precondition: Arrays x and y are in ascending order.
public static int[] arrayMerge(int[] x, int[] y) {

int[] merge= new int[x.length + y.length];

int m= 0;
int i= 0;
int j= 0;

// {inv: merge[0..m-1] contains x[0..i-1] and
// y[0..j-11, and merge[0..m-1]
// is in ascending order}
while (i != x.length && j != y.length) {
if (x[i] < y[j1) { mergelm]l= x[i]; i= i+1; }
else { merge[m]= y[jl; j= j+1; }
m= m+1;

}

// copy into merge the end of whichever array
// has yet to be completely copied
while (i != x.length)
{ merge[m]= x[i]; i= i+l; m= m+1; }
while (j != y.length)
{ merge[m]l= y[jl; j= j+1; m= m+1; }

return merge;

}
Activity 8-5-8 Binary search

Question 10. Here is binary search:

// Assume virtual elements b[-1] = -infinity and
// b.[b.length] = +infinity. Return an index
// i that satisfies R: b[i] <= x < b[i+1]
public static int binarySearch(int[] b, int x) {
int i= -1;
int j= b.length;
// {P:b[i] <= x < b[j] and -1 <= i < j <= b.length}
while (j !'= i+1) {
int e= (i+j)/2;
// {-1 <= i < e < j <= b.length}
if (ble] <= x) { i= e; }



90 Chapter 8. Arrays

else { j= e; }

ieturn i;
}
i|j | mid 11 |e 1 1)le
115 2 -1 5 (2 -1 5 ]2
Question 11. 2 3 210 2 3
3 4 0 1 3
4 1

Lesson page 8-6. Selection sort and insertion sort

Question 1. False, sort of. Traditionally, “sorted” means in ascending order
(e.g. the dictionary). It is correct to say “the array is sorted in descending
order”, but when you say “the array is sorted”, most will assume you mean
in ascending order.

Question 2. True.

Question 3. The array is sorted by the lengths of its elements.
Activity 8-6-1 Selection sort
Question 4. Precondition Q and postcondition R are fine. Invariant P is

0 j length
P: b ‘ sorted ‘ >= b[0..j-1]

The algorithm is:

int j= 0;

// {inv: P (see above)}

while (j !'= b.length) {
int k= index of smallest value in b[j..];
Swap bl[k] and b[jl;
j= 3+

}

Activity 8-6-2 Selection sort revisited

Question 5. Use a statement-comment to provide more structure to a pro-
gram and to make it easier to read at different levels: read the statement-



Chapter 8. Arrays 91

comment to understand what is to be done and read its implementation to
understand how the what is done.

Question 6. Here is the program segment:

// Store in p the index of the minimum of b[j..]

int p= j;
// {inv: blp] is the minimum of b[j..i-1]1}
for (int i= j+1; j !'= b.length; i++) {

if (b[i]l < blpl) {

p= i;

}

}

Activity 8-6-3 Insertion sort

Question 7. Here is insertionSort and insertValue:

// Sort b into descending order
public static void insertionSortDescend(String[] b) {
// {inv P: b[0..j-1] is in descending order}
for (int j= 1; j < b.length; i= i+1) {
insertValueDescend(b, 0, j);
}
}

// Insert b[k] into b[h..k-1] in descending order

// Precondition: b[h..k-1] is in descending order.

public static void insertValueDescend(String[] b, int h, int k) {
String v= blk];

int i= k;

while ((i !'= h) && (v.compareTo(b[i-1]) > 0) ) {
b[il= b[i-1];
i= i-1;

}

bli]l= v;



92 Chapter 8. Arrays



