
WHAT SHOULD WE TEACH IN AN INTRODUCTORY PROGRAMMING COURSE?

David Gries

Computer Science Department

Cornell University

Ithaca, New York 14850

I.

II.
III.

IV.
V.

Introduction
Problem Solving
Description of algorithms

a) The algorithmic language
b) Choosing a programming

language to teach
c) Program documentation

Conclusions
References

I. Introduction

An introductory course (and its suc-
cessor) in programming should be concerned
with three aspects of programming:

i. How to solve problems,
2. How to describe an algorithmic

solution to a problem,
3. How to verify that an algo-

rithm is correct.
i should like to discuss mainly the

first two aspects. The third is just as
important, but if the first two are car-
ried out in a systematic fashion, the third
is much easier than commonly supposed.
(Note that the third step is not "debug-
ging," because the word "debugging" con-
veys the impression that errors are al-
right -- that they are a natural pheno-
menon which, like flies in a house, must be
found and swatted. If "debugging" was
called "getting rid of one's mistakes,"
I'm sure most programmers would change
their attitude and work harder at pro-
ducing a correct program initially.)

I want to indicate what I feel is be-
ing taught as opposed to what should be
taught. My main theme is, of course, struc-
tured programming, but I will discuss some
other points. For example, I will outline
a replacement for that crutch the computer
industry has been using for so long, the
flow chart. While my remarks are aimed
at the instructors of introductory program-
ming courses, I feel they are important to
the whole programming profession.

Let us begin with the first aspect of
programming, problem solving.

II. Problem Solving

A course in programming is unique in

that it is the only course taken by a large
percentage of all students, which tries to
teach general problem solving methods. In
history courses one often reads what
Descartes, Mills, and other philosophers
have to say about problem solving, but
only for their philosophies; their ideas
are never put into practice by the stu-
dent. In English, one may come across an
article on the subject, like Poe's The
Philosophy of Composition [7], but m~--is
studied for its style rather than its con-
tent.

One would assume that problem solving
would be taught in a mathematics course,
but it rarely is. Instead, the student is
taught definitions and proofs of theorems,
and he learns how to solve specific
classes of problems. The bright student
is one who somehow magically catches on
and is able to generalize what has been
taught and apply it in other situations;
he has learned to solve problems. Simil-
arly, in physics or chemistry the student
learns to solve one particular kind of
problem, but he does not learn general
problem-solving methods.

In a programming course, we attempt
to teach the student how to program any-
thing that can be programmed -- that has
an algorithmic solution. When he has
finished the course, we feel he should be
capable of using the computer in his
mathematics course, his physics course,
and even his Enqlish course. To help him
we give such diverse problems as sorting,
solving linear equations, drawing a graph
on the line printer, "translating" Eng-
lish words into French, approximating
by a series, making a concordance, and so
on.

In essence, we want to teach how to
solve any problem by finding an algorith-
mic solution to it. But what do we really
teach? We describe the tools the student
has at his disposal (the do-loop, goto,
declarations, etc.), give a few examples,
and then tell him to write programs. Al-
most no word on how to begin, how to find
ideas, how to structure his thoughts, and
how to arrive at a well-structured, well-
written, readable program.

81

Let me make an analogy to make my
point clear. Suppose you attend a course
in cabinet making. The instructor brief-
ly shows you a saw, a plane, a hammer, and
a few other tools, letting you use each
one for a few minutes. He next shows you
a beautifully-finished cabinet. Finally,
he tells you to design and build your own
cabinet and bring him the finished product
in a few weeks.

You would think he was crazy! You
would want instructions on designing the
cabinet, his ideas on what kind of wood
to use, some individual attention when you
don't know what to do next, his opinion on
whether you have sanded enough, and so on.

You may object that the analogy is
unfair because it is impossible to teach
people to think creatively. But the typi-
cal programmer rarely creates something
totally original. By and large, the pro-
grams he writes can unfold in a systema-
tic manner that is the same no matter what
the subject. We should be able to teach
the simple problem solving required
through rules and many, many examples of
their application. Unfortunately, few
instructors have themselves ever thought
enough how they write programs in order to
teach others to do it.

Fortunately, some people have
thought quite hard about general problem
solving, and we would all do well to read
what they have written and apply it to
programming. For example, Descartes pre-
sented four rules in his Discourse on
Method [3]:

i. Never accept anything as true
unless it is certainly and evidently such:
carefully avoid all precipitation and pre-
judement.

2. Divide each of the difficult-
ies into as many parts as possible.

3. Think in an orderly fashion,
beginning with the things which are the
simplest and easiest to understand, and
gradually reach towards the more complex.

4. Make enumerations so complete
and reviews so general that it is certain
nothing is omitted.
And Hyman and Anderson [5] give, among
others, the rules

i. Run over all the elements of
the problem in rapid succession, many
times, until a pattern emerges which en-
compasses all these elements simultan-
eously.

2. Suspend judgement. Don't jump
to conclusions. [Compare with Descartes'
first rule]

You may feel these are just wise old
sayings and cliches without any value, but
if practiced in programming they lead to
systematization and discipline, which most
programmers don't have. They also can
give the beginner some ideas on how to
structure his maze of thoughts into some-
thing that begins to resemble an algorithm,
especially if the instructors can provide
him with example after example done on the
blackboard, perhaps extemporaneously.

Many of you have read Dijkstra's Notes
on structured prograr~min~ [4] which pro-
vided the impetus to the current wave of
research on the programming process. Many
of the ideas presented there can be seen
in the light of this discussion as appli-
cations of general problem solving tech-
niques to programming (this is not meant
to detract from Dijkstra's work, which I
value quite highly).

One book which I recommend most high-
ly is Polya's How to Solve It [8]. This
book contains many ideas on how to help
the student learn, and is valuable from
this standpoint alone. The main ideas in
the book are of course about problem solv-
ing, which Polya thinks of as a four-phase
process (the comments in brackets are
mine):

I. Understand the problem. [This
of course should always be emphasized. Too
many students are halfway through program-
ming before they discover they don't really
understand, and then have to start all over
again. In programming, where the problems
are often ill-defined, this phase includes
precisely defining the problem.]

2. Devise a plan. [That is, out-
line the solution. This may require a
good deal of work -- it often means looking
at related or simpler problems, designing
all the data structures, etc.]

3. Carry out the plan. [The plan
gives the general outline; here we have to
fit the pieces into a whole, which is ob-
viously correct. Every step must be
checked for correctness. In programming,
this should consist of producing a top-
down description of the program, irrespec-
tive of how the plan was devised.]

4. Look back. [We learn to pro-
gram not only by programming, but by stud-
ying how we programed. Would we do it
differently next time? Why was one point
so hard to see? How did others solve the
problem? In programming courses, various
solutions handed in by students should be
discussed in class, so that all can see
the different viewpoints.]

In discussing problem solving as re-
lated to programming, I have not attempted
to say exactly how one should teach a stu-
dent how to solve problems. I can't say
that -- I don't have all the answers.
Conway and I have tried to introduce prob-
lem solving in our introductory text [I].
There are many things wrong with the book,
and I view it as just a first attempt and
not the final solution.

III. Description of algorithms

Algorithms written in programming
languages are usually difficult to program,
read, and understand. (Contrast this with
algorithms in other languages -- recipes,
knitting, etc. The only other algorithms
which rival programs in complexity are
those found on income tax forms!) There
are several reasons for this:

i. They tend to be large -- many

82

are so large that one person cannot fully
comprehend them.

2. Even for small programs (say
under four pages), the structure of the
program is often too complex for human
understanding.

3. Programming languages require
too much detail. Often a simple algorithm
written in a suitable notation becomes
quite unwieldy when translated into a
programming language, only because of the
extra details needed and the way the
programmer implements these details.

4. Programming requires exactness
and precision unknown in many other fields.
Even in a mathematics paper, syntax errors
and many logical errors can be understood
as such and mentally corrected by the
reader. But a program must be exact in
ever~ detail.

5. Algorithms change values of
variables. We often try to understand
an algorithm by seeing how it manipulates
sample input data to produce a result.
We then try to generalize to understand
what happens with other input data. This
is difficult to do.

The programming profession must
(and has to a large extent) developed
methods for overcoming these weaknesses
of our programming languages. The
difficulty is to get programmers to use
these methods.

Point 5 can be overcome by viewing
relations among the val~es, instead of
the values t--~se-~e~. I ~on't have
time or space to discuss this here,
although it is important and should be
taught. See Dijkstra [4], W~rth ~9], or
Conway and Gries, page 192-207~I].

I would like instead to discuss
three other ways to simplify the tasks
of programming and understanding programs.

IIIa. The a l~orithmlc language. The
more complicated the structure of an
algorithm is (in terms Of the "flow of
control"), the harder the algorithm ~s
to understand. A straight-line algo-
rithm is the easiest to understand, while
an algorithm whose various flows of con-
trol form a complete graph is probably
the most difficult. Obviously, the
programmer should aim for algorithms
whose structure is simple --for algo-
rithms which are "intellectually manage-
able," as Dijkstra [4] says. One way
to do this is to allow him to use only
statements which always yield a simple
structure.

Let us consider an algorithmic
language built up as follows. The basic
or elementary statements are:

a) the assignment statement
b) input/output statements
c) procedure and macro calls (we

think of a procedure or macro call as a
high-level operation, performing some
action. $~en reading the call, we are
interested in what is being done, not
how.)

d) English imperative statements
£o perform an action, such as Sort array A,
Press the shirt, or Order more stock if
necessary.

Note that we allow English statements (or
for that matter commands in any notation
which fits the problem). An algorithm is
no less an algorithm just because it is
not in PL/I or FORTRAN, and we should use
any notation which makes an algorithm un-
derstandable. The main restriction on these
basic statements is that they be under-
standable by themselves - out of the con-
text in which they appear -- as long as
we know the definitions of variables they
use. A ~ is not a basic statement,
because understanding it requires know-
ledge of the context in which it appears
-- which labeled statement it branches to.

The second class of statements, the
control statements, indicate the flow of
cont~ between their substatements --
they describe the possible orders of exe-
cution of their substatements. We can
label the four main kinds of control
statements used in programming by: se-
quencing, selection, iteration, and
termination.

a) Sequencing. If $1,$2,...,S n
are statements, then the notation
[$I; S2;...;S n] means that first Sl
should be executed, then $2,..., and
finally Sn . If we want to consider
the whole sequence as unit, as a simple
statement, we add delimiters begin and
end:

b e~in Sl;S2;..;S n end

This is called a compound statement.
b) Selection. The conventional

conditional statement

if e then S 1 else S 2

allows us to choose between alternatives.
A generalization of this is the case
statement. Suppose that variable X" con-
tains one of n possible values
1,2,...,n, and that we want to execute
one of the statements SI,S2,...,S n de-
pending on the value of X. We write

case X of
n

1 : SI;

2 : $2;

n : S
n

end

Here are two examples where the notation
is the same but the selection variable
is not integer valued:

case WEATHER of

SUNNY: Take off shirt;
CLOUDY: Put on sweater;
RAINY: Put on raincoat;
SNOWY: Put on overcoat

end

83

case SIGN(B2-4*A*C) of

-i : X = 'complex';
0 : X = 'double root';

+i : X = 'real roots'

end

Breaking something up into disjoint
subcases occurs in every problem-solving
activity, and the student should be
encouraged to use notation to fit the
problem. The last step should be to put
the algorithm l~ PL/I, FORTRAN, or
whatever programming language is being
used.

c) Iteration. The only loop
which need be taught to express iteration
is the while loop:

while e do S 1

whose execution can be described by the
flowchart

Start ue

stop

d) Termination. The above three
methods of expressing flow of control are
all that is necessary to write any pro-
gram. However, it is sometimes advanta-
geous to terminate a subalgorithm named
A (say) using a statement

terminateA

For example, here is one version of a
binary search algorithm which looks for
the value of X in the array AI,A2,.-..A
where N > 1 . Upon termination A[J) = x-n
or, if x is not in All:N], J = 0.

binary search:
be@in F=I; /*if X is in list at all,*/

L=N; /*it is in A(F:L)*/
while F < L do
"-"'-~___9.~--J =-'FLOOR ((F+L)/2) ;

I f A(J)=X then terminate
l~ry search;

if A(J)<X then F=J+I else
L_---~/=I;

end end binary search

Programming languages already have
terminate statements for subalgorithms
which are procedures; they are written
as RETURN.

It is easiest to teach students
to write well-structured programs if we
restrict the control statements they use
to those which have the best chance of
producing structured programs. The four
control statements just described are
all the introductory student needs,
since they probably cover 95% or more of
all programming situations.

This does not mean that programs
written using these statements will be

well-structured or understandable.
This does also not mean that pro-

fessional programmers should only use
these four control statements. A pro-
grammer must be able to develop control
structures to fit his problem, when nec-
essary. Other suitable control structures
are (i) ~ $I until e which is equiva-
lent to $I; while ~ S l , (2) the state-
ment ~ eac~ a e X d-o $I where X is a
set, (3) decision ta~-~es, (4) coroutines,
and (5) the conventional do loop.

One might also consid-er using a con-
ventional ~oto, but only for a very good
reason.

You may wonder why I do not include
the conventional do loop as a basic tool
for beginning stu~[ents. First of all,
as soon as they see it, they use it all
the time instead of the while loop. They
think in "do I = " terms, ~ this re-
stricts the---kinds of algorithms they can
write. For example, the binary search
given earlier is difficult to put in the
"do I = " form. Secondly, the while loop
le-nds itself to proving correctness of
programs more easily (see the "Invariant
Relation Theorem" in Dijkstra [4]).
Thirdly, beginning students don't under-
stand the conventional do loop -- they
forget when the test is-~ade and when the
loop variable is incremented; and they of-
ten lose the concept of iteration and
think the whole thing happens at once.
If you don't believe me, try the follow-
ing question on an open book midterm or
final -- without hinting that such a
question will be on the test. It's a
simple question which any student who
understands loops should be able to answer
correctly in 2 minutes, especially on an
open book test. It is so simple, it should
be graded on an all or nothing basis. I
would like to hear your results.

Rewrite the following program segment
so that it accomplishes ~ the same
thing, without using the "do <var> = ..."
statement. You may use the while state-
ment or go tos.

M = A(I) ;

DO J = Z+I TQ N;
IF A(J) > M THEN M = A(J);
END;

IIIb. Choosin~ a programming language
tO teach. The main purpose of programming
courses should be to teach general problem
solving methods as applied to programming.
Upon completion of, say~ a two-course
sequence, the student should have a good
idea how to program problems in any sub-
ject matter with which he is familiar,
no matter what conventional high-level
language is available.

The programming language used in the
course is only a vehicle allowing us to
teach problem solving and the programming
concepts we feel are useful (e.g. block
structure, procedures, data structures).
If we believe in structured programming,

84

the language should be as close as possible
to the algorithmic language just described.
• t ~hou|~ ~|$o be simple, elegant, and
modular, so that features and concepts
not yet taught won't get in the way.

ALGOL, ALGOL 68, ALGOL W, PASCAL,
Carnegie-Mellon's BLISS, and Toronto's
system language for project SUE all
satisfy these conditions to a large extent.
Unfortunately they are not well-known
(outside the core group of computer
scientists) and it would be difficult
to introduce them into introductory
courses. The language taught is often
influenced by people outside the computer
science profession, even though their
opinions are not educated enough to
deserve recognition. Thus the computer
science departments are by and large
compelled to teach FORTRAN, BASIC, or
PL/I. Let us review each in turn.

FORTRAN was at the time of its
creation a great step forward, and its
creators are to be commended for it.
However, as we look at what we want
today, we find it is completely out of
date. For example it has none of the
cDntrol statements we feel are necessary.
The compound statement, the conditional
statement in its necessary generality,
the iterative while loop, and the termina-
tion statemente-q~ept for procedures)
are all missing. This results in programs
which are usually unreadable, even if
they are well-structured.

In our compiler writing course there
is usually a group project consisting
of implementing a small compiler. At
the end of the course, I sit with each
group and skim through their compiler
listing to see what data structures are
used, how certain statements were com-
piled and so on, and I can usually spot
3 or 4 errors in 15 minutes. I once
made the mistake of allowing a group to
write in FORTRAN, and for 30 minutes I
attempted to understand their compiler
with absolutely no success. This was
not because of lack of knowledge;
FORTRAN was my first love and I pro-
grammed it it (and assembly language)
for two years.

FORTRAN is out of date and
shouldn't be used unless there is
absolutely nothing else available.
If this is the case, use it under
protest and constantly bombard the
manufacturers or other authorities
with complaints, suggesting they
make available a more contemporary
language.

BASIC is a FORTRAN-like language
with even severer restrictions. For
example, the name of a variable must be
a letter followed optionally by one digit.
It does not enjoy FORTRAN's reputation
for being the first high-level language,
and should never have come into existence.
When it was contemplated, its designers
should have done their research to see
what programming and programming

languages are all about before plunging in.
I hesitate to think of the thousands

of students learning to think in an ad hoc,
unreadable language, under the guise of
time-sharing. I have doubts about teach-
ing students to think "on-line"; algorithms
should be designed and written slowly and
quietly at one's desk. Only when assured
of correctness is it time to go to the com-
puter and test the algorithm on-line.

If one must program in a well-known
language, the only choice is PL/I. It has
the compound statement, the conditional
statement and the while loop. The case
statement must of course be written using
goto's and perhaps label variables, but
this is all right as long as it is made
clear that the case statement is being
simulated. Similarly the termination
statement can be done with a goto. But we
don't go to do anything else, we go to,
stop execution of the algorithm. For ex-
ample, the binary search algorithm given
earlier would be written as

/*binary search for X in A(I:N), upon ter-
mination if X was in the list A(J) = X,
otherwise J = 0 */
/*Invariant relation of loop: If X is

in A(I:N), then it is in A(F:L)*/
F=I;L=N;
DO WHILE (F <= L);

J = FLOOR((F+L)/2) ;
IF A(J) = X THEN GOTO

TERMINATEBINSEARCH;
IF A(J) < X THEN F = J + I;

ELSE L = J - i;
END;

J = 0;
TERMINATEBINSEARCH:;

I choose PL/I solely because it's the
best choice, not because I particularly
like it. In fact, it took a lot of think-
ing before I decided to write an intro-
ductory programming book based on PL/I
[i]. What's wrong with PL/I? Its syntax
is enough to offend anyone who has stu-
died English grammar; its data structure
facilities (structures) could have been
less clumsy and much more elegant and usa-
ble (e.g. more like PASCAL, where one de-
fines new data types); it is not modular,
as claimed (it is difficult to teach one
feature without another getting in the
way); its astonishment factor is much too
high (e.g. what is 25 + 1/3 ?); its parr
allel programming features are difficult
to understand and use correctly; and so
on.

Yet, if we stick to its simpler fea-
tures, the language is usable. In our
first programrhing course, while teaching
how to program, the students learn about
(i) simple variables and arrays; (2) FIXED
DECIMAL, FLOAT DECIMAL, and CHARACTER data
types; (3) expressions and assignment
statements using these data types; (4) GET
LIST and PUT LIST; (5) the compound state-
ment, conditional statement, while loop,
and goto as used to simulate the termina-
tion statement; and (6) external

85

procedures with parameters and STATIC vari-
ables (but not EXTERNAL variables). Pri-
marily, the course is aimed at showing how
to design and program well-structured pro-
grams.

IIIc. Pro@ram documentation. The flow
chart has always been used as the main tool
for describing programs. Indeed, it is of-
ten required as part of program documenta-
tion. When used correctly, it can be of
help during the programming process and can
certainly aid in understanding.

Unfortunately, flow charts have sev-
eral disadvantages which are severe enough
to cause us to stop using them. Of course,
there will still be occasion to use them,
but for the most part high level programs
should be documented using the method out-
lined below.

~hat's wrong with flow charts? First
of all, I have rarely seen a programmer
who liked to draw them. Consequently, the
flow chart is often drawn after the pro-
gram is written and debugged; in fact there
are systems which will draw a flow chart
from the finished program. Used in this
way, the flow chart is of no use to the
person who needs it the most, the program-
mer. Program documentation should be
written while the program is being written,
if not before, and should be used by the
programmer in proving correctness and in
checking his program out.

Secondly, the flow chart allows, even
encourages complicated program structure.
Given a flow chart, it is always easier to
correct mistakes or add to the chart by
drawing in a few more arrows and boxe% than
it is to restructure the chart to make it
simpler and more systematic. And if the
flow chart is drawn from a completed pro-
gram, then it can be no better in struc-
ture than that program; its use will be
solely to provide a two-dimensional repres-
entation.

We need program documentation which
encourages systematic, structured program-
ming, and which can be used by the pro-
grammer as he programs. Furthermore, the
rules which govern its use must be such as
to force the programmer into trying to get
a correct program before he begins testing.

The method I advocate is a top-down
description of the program, using indenta-
tion to indicate refinement.

Now I don't expect every programmer
to program using step-wise refinement.
Problem solving is an individual, personal
thing, and although we can give rules to
aid in understanding problem solving, we
cannot expect all ideas to emerge in a
rigid, disciplined fashion. However on
the ideas for a program have been gener-
ated, the programmer must produce a top-
down description of his program.

Polya's second and third phases of
problem solving are: devising a plan and
carrying out the plan. In programming
terms this means

Devise a plan: Get the ideas for

the program; lay out the general structure,
play with various subparts so that data
structures can be determined, etc.

Carry out the plan: Systematically
produce a top-down description of the pro-
gram, checking each refinement for correct-
ness.

For those of you who are not familiar
with the terms "top-down" and "step-wise
refinement," let me briefly explain.

Top-down programming, or step-wise
refinement, is a method of producing a pro-
gram which proceeds as follows. One begins
with the statement SI: "solve the prob-
lem." One then refines this by giving a
sequence of statements [SI.I, Sl.2, Sl.3,
...,Sl.n] which solve that problem. Sl
specifies what to do; the sequence [SI.I,
...,Sl.n] in-~cates how to do it. The
sequence is an algorl~m which, if exe-
cuted, produces the desired result. Each
statement Sl.i is a command written in
English, PL/I or any suitable notation.
For example, SI.2 might be a loop while e
do Sl.2.1, where SI.2.1 is another com-
m-~nd in English, Pl/I or any suitable
notation.

The main point is that the sequence
[SI.I,...,SI.n] is specified at a high
enough level that its correctness is ob-
vious. This means that a lot of detail
has yet to be uncovered.

One then proceeds to refine each of
the statements SI.I,...,SI.n in turn.
Since these are independent of each other
in the sense that each can be understood
out of context, the order in which these
are refined is immaterial.

This process continues until all the
refinements have led to statements in the
programming language. Each refinement is
small enough so that its correctness is
obvious, and thus the whole program must
be correct.

One also makes data structure refine-
ments when necessary. For example one
might decide to implement a set by an
array, a linked list, or a bit string, de-
pending on the operations performed on the
set. This would require suitable refine-
ments or changes in statements which oper-
ate on that set.

It is not implied that a program can
be generated purely in this fashion. One
makes mistakes which must be corrected;
one may see a better way to implement
something that requires one to "back up"
and redo part of the program, and so on.

A top-down description of a program
consists of the program itself, together
with the series of refinements which led
to it. Thus, the reader is shown Sl,
then the sequence [SI.I,...,SI.n], then
the refinement of these, and so on. From
this, he can easily deduce ~he correctness
of the program, since each refinement is
small enough to easily understand.

The complete top-down description can
be interspersed within the program, using
indentation to show refinement. The
statements not in PL/I are written as

86

comments, as indicated below:

/*SI*/
SI.I;
SI.2;
/*SI.3"/

IF e
THEN Sl.3.1
ELSE SI.3.2;

/*Si.4"/
Sl.4.1;
DO WHILE (B);

SI.4.2
END;

SI.4.3

The advantage of this scheme is that
the reader can understand the program at
any level of detail he desires. He can
read just SI. To understand how Sl is im-
plemented, he reads its refinement -- he
indents his thinking 5 columns and reads
the sequence [SI.I, SI.2, Sl.3, Sl.4]. If
he has to, he can then easily understand
how Sl.4 is implemented by reading the
sequence of three statements which con-
stitute its refinement.

A second advantage of this scheme is
that it forces the programmer to put his
program together in a systematic, well-
structured manner. If he is careful, cor-
rectness is obvious, and the only errors
that testing should find are misprints,
keypunch errors, and so on.

You may complain that there is too
much indentation to worry about, and that
for large programs the final statements
will be so far indented that they can only
use, say, columns 60 - 72! But no pro-
gram segment should be over 1 or at most 2
pages long. Longer than this becomes too
hard to understand anyway. Liberal use
should be made of macros and procedures
to keep each program segment under 1 or
2 pages. There will be of course excep-
tions to this rule, but for the most part
it should be followed.

Please don't take this as a complete
discussion of how I feel programs should
be described; this is just an outline.
We are teaching this in our introductory
courses at Cornell, and by and large it
works well. Programs have much better
structure to them than before, and it is
much easier to look at various parts and
ascertain their correctness. This scheme
also tells students, perhaps for the first
time, what comments are for and where they
come from. Previously, comments were
something to insert after the program was
finished, and it wasn't clear what kinds
of comments to write. Now, a comment
is a command telling what to do, its in-
dented refinement expl-~s how to do it.

Of course there are problems. Stu-
dents sometimes tend to go overboard.
While the program below follows our rules,
each comment and its refinement are the
same, and the comments can be omitted.
The second segment below is less redundant
and clearer.

/*Initialize I*/
I = 0;

/*Read in command*/
GET LIST(COMMAND);

/*Loop until command is 'ENDRUN'*/
DO WHILE(COMMAND~'ENDRUN');

Process command
/*Read in command*/

GET LIST(COMMAND);
END;

I = 0;
GET LIST (COMMAND) ;
DO WHILE (COMMAND~'ENDRUN') '

Process command;
GET LIST(COMMAND);
END;

One of the hardest tasks for an in-
structor is to grade students' programs.
It is not enough to grade solely on the
correct result being printed out. More
important is to look painstakingly through
the program, writing comments to the stu-
dent about what was done correctly, indi-
cating where something could have been done
more systematically, and pointing out
where it is obvious that the program is
not well-structured, etc. Let me illus-
trate what I mean with a live example
from a course I am currently teaching.

The 3 - 4 page program from which the
segments below were taken did simplified
inventory accounting for a warehouse.
Based on a sequence of commands entered
through the normal input file, it kept
track of the number of units of each item
in stock, printed out sales slips, ordered
when stocks got too low, and so forth.

DECLARE NO TO ORDER FIXED DECIMAL INITIAL(0);

/*Determine how many to order and
print order*/

IF X < Y THEN NO TO ORDER = X;
IF Z < W THEN NO TO ORDER =

NO TO ORDER + Z;

Print out order;

NO TO ORDER = 0;

I tried to understand the refinement
of the statement "Determine how many to
order and print order" (the names X, Y, Z,
W were originally longer and mnemonic; I
have changed them since they are immater-
ial to this discussion). My first
thought when reading the first conditional
statement was that NO TO ORDER is not
initialized if X > Y. Thus I had to see
if NO TO ORDER was initialized earlier, or
if X < Y always held at this point of exe-
cution. I finally found the initialization
in the declaration.

But then I began to think about the
next time this subalgorithm would be exe-
cuted -- what value would NO TO ORDER have?

87

After a minute or two, I finally found the
statement NO TO ORDER=0 at the end of the
subalgorithm.

I had to spend several extra minutes
understanding the program because the pro-
gram was not well-structured. Even though
the program worked, the student lost some
points; in return he received a written
explanation from which I hoped he would
learn something.

The program was not well-structured
because that last statement of the refine-
ment, NO TO ORDER = 0;, ha~ nothing to do
with "Determine how many to order and print
order." True, it sets NO TO ORDER up for
the next execution of the algorithm, but
this was not stated as a purpose of the
algorithm. I would have had no trouble
understanding if the student had written
the equally efficient segment

/*Determine how many to order and print
order*/

NO TO ORDER = 0;
IF X < Y THEN NO TO ORDER =

NO TO ORDER + X;
IF Z < W THEN NO TO ORDER =

NO TO ORDER + Z;

Print out order;

Of course it is difficult to put so
much time and effort into grading, but in
the large programming courses we teach
these days, it is the only source of in-
dividual contact between instructor and
student. The student can learn the basic
programming language tools by himself
but he needs individual help with prob-
lem solving, and with understanding how
and why we want the program written. It
is not enough to mark on his program "-5
because you didn't follow rule such and
such." We must also explain how in this
particular instance violation of the rule
led to a less-understandable program or
even to an undetected error in the pro-
gram.

I would like to teach programming
to a group of, say, 15 students (rather
than 150) just to see whether the extra
individual attention would produce bet-
ter programmers. I'm sure it would.

IV. Conclusions

The programming profession and com-
puter industry are currently in a "soft-
ware crisis," brought on by the fact
that the profession is constantly asked
to solve larger and more complex prob-
lems than we ever dreamed of. The old
programming techniques don't work on the
larger problems. The solution is to edu-
cate new programmers in a different man-
ner, and to re-educate the old program-
mers. The emphasis should be on systema-
tic programming based on tested problem
solving principles, on discipline and care-
fulness, and on the production of neat,

elegant, simple algorithms which are proved
correct before they are tested on a com-
puter. Note that elegance and simplicity
do not preclude efficiency. On the con-
trary, only through simplicity can we see
a way to make things more efficient. I
would rather have a correct algorithm
which runs in ten minutes than one which
runs in one minute but whose correctness
I cannot ascertain.

However it is not enough to stand in
front of the class and mouth the clich4s
of problem solving and structured program-
ming. The students will easily sense whe-
ther vou believe in what you tell them,
and whether you yourself practice what you
teach. To teach structured programming
you must practice it yourself. Unfortun-
ately it takes time and hard work to
switch from bad habits to better ways of
programming (just as it takes time and
effort to play golf correctly). Anybody
contemplating teaching programming has a
lot of preparation to do. He should
study Polya's book How to Solve It [8],
and then read what others have to say on
problem solving. The book by Dahl,
Dijkstra and Hoare [4] should be read,
especially Dijkstra's Notes on Structured
Programmin@. Also skim through Wirth's
book on Systematic Programming [9], and
An Introduction to Programming by Conway
and myself [i] to see how we approach the
subject. Finally, and this is important,
write several programs, both large and
small, using the tools and techniques ad-
vocated. I'm sure if you do this you will
be pleasantly surprised.

I am not at all sure that any drastic
change will take place in the Universities
within the next few years, although I hope
I'm wrong. You would think that the Uni-
versity, where one searches for truth and
knowledge, would be the place for innova-
tive thinking, for people who are tuned to
new and better ideas. Yet Daniel McCracken
made a survey of 40 representative univer-
sities throughout the country about one
year ago [6], with which he concluded that

"Nobody would claim that FORTRAN
is ideal for anything, from teachability,
to understandability of finished programs,
to extensibility. Yet it is being used by
a whopping 70% of the students covered by
the survey, and the consensus among the
university people who responded to the sur-
vey is that nothing is going to change
much anytime soon."

Does this sound like educators who are
committed to teaching concepts, to teach-
ing people what they need to know to pre-
pare for the future?

Let's get with it and find what pro-
gramming is all about, and then make a
concerted effort to teach a better style
of programming to our students.

88

V.

[i]

[2]

[3]

[4]

[5]

References

Conway, R. and D. Gries. An Intro-
duction to Pro~rammin@, Winthrop Pub.,
Cambridge, Mass., 1973.

Dahl, O.-J., E.W. Dijkstra, and C.A.R.
Hoare. Structured Pro@ramming. Aca-
demic Press, New York, 1972.

Descartes, Ren~. Discourse on Method,
1637. Can be found in numerous texts
and anthologies in philosophy.

Dijkstra, E.W. Notes on Structured
Programming. In [2]. This provided
the impetus to the current wave of
research and articles on the pro-
gramming process and the structure of
programs. Unfortunately, the term
"structured programming" is not de-
fined in it! Consequently, different
people have different ideas on what
the term means. It deserves to be
read thoroughly by every programmer.

Hyman, R. and B. Anderson. Solving
Problems. International Science and
Technology (Sept. 1965), 36-41.

[6]

[7]

[8]

[9]

McCracken, D.
your future?
236-237.

Is there a FORTRAN in
Datamati~n [May i~73)f

Poe, Edgar Allen. The Ph~losophy of
Composftion. Graham's Magazine,
April 1846. (Appears in Stearn (edi-
tor), The Portable Poe, Viking Press,
1945. This amazing article describes
how Poe wrote The Raven, "step by
step, to its complet£on with the pre-
cision and rigid consequence of a
mathematical problem." We would call
it top-down programming.

Polya, G. How to Solve It. Princeton
University Press, Princeton, N.J.,
1945. Every instructor in an intro-
ductory programming course should
read this book.

Wirth, N. Systematic Programmin@:
An Introduction. Prentice-Hall,
Englewood Cliffs, N.J., 1973.

89

