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I. Introduction 

An introductory course (and its suc- 
cessor) in programming should be concerned 
with three aspects of programming: 

i. How to solve problems, 
2. How to describe an algorithmic 

solution to a problem, 
3. How to verify that an algo- 

rithm is correct. 
i should like to discuss mainly the 

first two aspects. The third is just as 
important, but if the first two are car- 
ried out in a systematic fashion, the third 
is much easier than commonly supposed. 
(Note that the third step is not "debug- 
ging," because the word "debugging" con- 
veys the impression that errors are al- 
right -- that they are a natural pheno- 
menon which, like flies in a house, must be 
found and swatted. If "debugging" was 
called "getting rid of one's mistakes," 
I'm sure most programmers would change 
their attitude and work harder at pro- 
ducing a correct program initially.) 

I want to indicate what I feel is be- 
ing taught as opposed to what should be 
taught. My main theme is, of course, struc- 
tured programming, but I will discuss some 
other points. For example, I will outline 
a replacement for that crutch the computer 
industry has been using for so long, the 
flow chart. While my remarks are aimed 
at the instructors of introductory program- 
ming courses, I feel they are important to 
the whole programming profession. 

Let us begin with the first aspect of 
programming, problem solving. 

II. Problem Solving 

A course in programming is unique in 

that it is the only course taken by a large 
percentage of all students, which tries to 
teach general problem solving methods. In 
history courses one often reads what 
Descartes, Mills, and other philosophers 
have to say about problem solving, but 
only for their philosophies; their ideas 
are never put into practice by the stu- 
dent. In English, one may come across an 
article on the subject, like Poe's The 
Philosophy of Composition [7], but m~--is 
studied for its style rather than its con- 
tent. 

One would assume that problem solving 
would be taught in a mathematics course, 
but it rarely is. Instead, the student is 
taught definitions and proofs of theorems, 
and he learns how to solve specific 
classes of problems. The bright student 
is one who somehow magically catches on 
and is able to generalize what has been 
taught and apply it in other situations; 
he has learned to solve problems. Simil- 
arly, in physics or chemistry the student 
learns to solve one particular kind of 
problem, but he does not learn general 
problem-solving methods. 

In a programming course, we attempt 
to teach the student how to program any- 
thing that can be programmed -- that has 
an algorithmic solution. When he has 
finished the course, we feel he should be 
capable of using the computer in his 
mathematics course, his physics course, 
and even his Enqlish course. To help him 
we give such diverse problems as sorting, 
solving linear equations, drawing a graph 
on the line printer, "translating" Eng- 
lish words into French, approximating 
by a series, making a concordance, and so 
on. 

In essence, we want to teach how to 
solve any problem by finding an algorith- 
mic solution to it. But what do we really 
teach? We describe the tools the student 
has at his disposal (the do-loop, goto, 
declarations, etc.), give a few examples, 
and then tell him to write programs. Al- 
most no word on how to begin, how to find 
ideas, how to structure his thoughts, and 
how to arrive at a well-structured, well- 
written, readable program. 
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Let me make an analogy to make my 
point clear. Suppose you attend a course 
in cabinet making. The instructor brief- 
ly shows you a saw, a plane, a hammer, and 
a few other tools, letting you use each 
one for a few minutes. He next shows you 
a beautifully-finished cabinet. Finally, 
he tells you to design and build your own 
cabinet and bring him the finished product 
in a few weeks. 

You would think he was crazy! You 
would want instructions on designing the 
cabinet, his ideas on what kind of wood 
to use, some individual attention when you 
don't know what to do next, his opinion on 
whether you have sanded enough, and so on. 

You may object that the analogy is 
unfair because it is impossible to teach 
people to think creatively. But the typi- 
cal programmer rarely creates something 
totally original. By and large, the pro- 
grams he writes can unfold in a systema- 
tic manner that is the same no matter what 
the subject. We should be able to teach 
the simple problem solving required 
through rules and many, many examples of 
their application. Unfortunately, few 
instructors have themselves ever thought 
enough how they write programs in order to 
teach others to do it. 

Fortunately, some people have 
thought quite hard about general problem 
solving, and we would all do well to read 
what they have written and apply it to 
programming. For example, Descartes pre- 
sented four rules in his Discourse on 
Method [3]: 

i. Never accept anything as true 
unless it is certainly and evidently such: 
carefully avoid all precipitation and pre- 
judement. 

2. Divide each of the difficult- 
ies into as many parts as possible. 

3. Think in an orderly fashion, 
beginning with the things which are the 
simplest and easiest to understand, and 
gradually reach towards the more complex. 

4. Make enumerations so complete 
and reviews so general that it is certain 
nothing is omitted. 
And Hyman and Anderson [5] give, among 
others, the rules 

i. Run over all the elements of 
the problem in rapid succession, many 
times, until a pattern emerges which en- 
compasses all these elements simultan- 
eously. 

2. Suspend judgement. Don't jump 
to conclusions. [Compare with Descartes' 
first rule] 

You may feel these are just wise old 
sayings and cliches without any value, but 
if practiced in programming they lead to 
systematization and discipline, which most 
programmers don't have. They also can 
give the beginner some ideas on how to 
structure his maze of thoughts into some- 
thing that begins to resemble an algorithm, 
especially if the instructors can provide 
him with example after example done on the 
blackboard, perhaps extemporaneously. 

Many of you have read Dijkstra's Notes 
on structured prograr~min~ [4] which pro- 
vided the impetus to the current wave of 
research on the programming process. Many 
of the ideas presented there can be seen 
in the light of this discussion as appli- 
cations of general problem solving tech- 
niques to programming (this is not meant 
to detract from Dijkstra's work, which I 
value quite highly). 

One book which I recommend most high- 
ly is Polya's How to Solve It [8]. This 
book contains many ideas on how to help 
the student learn, and is valuable from 
this standpoint alone. The main ideas in 
the book are of course about problem solv- 
ing, which Polya thinks of as a four-phase 
process (the comments in brackets are 
mine): 

I. Understand the problem. [This 
of course should always be emphasized. Too 
many students are halfway through program- 
ming before they discover they don't really 
understand, and then have to start all over 
again. In programming, where the problems 
are often ill-defined, this phase includes 
precisely defining the problem.] 

2. Devise a plan. [That is, out- 
line the solution. This may require a 
good deal of work -- it often means looking 
at related or simpler problems, designing 
all the data structures, etc.] 

3. Carry out the plan. [The plan 
gives the general outline; here we have to 
fit the pieces into a whole, which is ob- 
viously correct. Every step must be 
checked for correctness. In programming, 
this should consist of producing a top- 
down description of the program, irrespec- 
tive of how the plan was devised.] 

4. Look back. [We learn to pro- 
gram not only by programming, but by stud- 
ying how we programed. Would we do it 
differently next time? Why was one point 
so hard to see? How did others solve the 
problem? In programming courses, various 
solutions handed in by students should be 
discussed in class, so that all can see 
the different viewpoints.] 

In discussing problem solving as re- 
lated to programming, I have not attempted 
to say exactly how one should teach a stu- 
dent how to solve problems. I can't say 
that -- I don't have all the answers. 
Conway and I have tried to introduce prob- 
lem solving in our introductory text [I]. 
There are many things wrong with the book, 
and I view it as just a first attempt and 
not the final solution. 

III. Description of algorithms 

Algorithms written in programming 
languages are usually difficult to program, 
read, and understand. (Contrast this with 
algorithms in other languages -- recipes, 
knitting, etc. The only other algorithms 
which rival programs in complexity are 
those found on income tax forms!) There 
are several reasons for this: 

i. They tend to be large -- many 
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are so large that one person cannot fully 
comprehend them. 

2. Even for small programs (say 
under four pages), the structure of the 
program is often too complex for human 
understanding. 

3. Programming languages require 
too much detail. Often a simple algorithm 
written in a suitable notation becomes 
quite unwieldy when translated into a 
programming language, only because of the 
extra details needed and the way the 
programmer implements these details. 

4. Programming requires exactness 
and precision unknown in many other fields. 
Even in a mathematics paper, syntax errors 
and many logical errors can be understood 
as such and mentally corrected by the 
reader. But a program must be exact in 
ever~ detail. 

5. Algorithms change values of 
variables. We often try to understand 
an algorithm by seeing how it manipulates 
sample input data to produce a result. 
We then try to generalize to understand 
what happens with other input data. This 
is difficult to do. 

The programming profession must 
(and has to a large extent) developed 
methods for overcoming these weaknesses 
of our programming languages. The 
difficulty is to get programmers to use 
these methods. 

Point 5 can be overcome by viewing 
relations among the val~es, instead of 
the values t--~se-~e~. I ~on't have 
time or space to discuss this here, 
although it is important and should be 
taught. See Dijkstra [4], W~rth ~9], or 
Conway and Gries, page 192-207~I]. 

I would like instead to discuss 
three other ways to simplify the tasks 
of programming and understanding programs. 

IIIa. The a l~orithmlc language. The 
more complicated the structure of an 
algorithm is (in terms Of the "flow of 
control"), the harder the algorithm ~s 
to understand. A straight-line algo- 
rithm is the easiest to understand, while 
an algorithm whose various flows of con- 
trol form a complete graph is probably 
the most difficult. Obviously, the 
programmer should aim for algorithms 
whose structure is simple --for algo- 
rithms which are "intellectually manage- 
able," as Dijkstra [4] says. One way 
to do this is to allow him to use only 
statements which always yield a simple 
structure. 

Let us consider an algorithmic 
language built up as follows. The basic 
or elementary statements are: 

a) the assignment statement 
b) input/output statements 
c) procedure and macro calls (we 

think of a procedure or macro call as a 
high-level operation, performing some 
action. $~en reading the call, we are 
interested in what is being done, not 
how.) 

d) English imperative statements 
£o perform an action, such as Sort array A, 
Press the shirt, or Order more stock if 
necessary. 

Note that we allow English statements (or 
for that matter commands in any notation 
which fits the problem). An algorithm is 
no less an algorithm just because it is 
not in PL/I or FORTRAN, and we should use 
any notation which makes an algorithm un- 
derstandable. The main restriction on these 
basic statements is that they be under- 
standable by themselves - out of the con- 
text in which they appear -- as long as 
we know the definitions of variables they 
use. A ~ is not a basic statement, 
because understanding it requires know- 
ledge of the context in which it appears 
-- which labeled statement it branches to. 

The second class of statements, the 
control statements, indicate the flow of 
cont~ between their substatements -- 
they describe the possible orders of exe- 
cution of their substatements. We can 
label the four main kinds of control 
statements used in programming by: se- 
quencing, selection, iteration, and 
termination. 

a) Sequencing. If $1,$2,...,S n 
are statements, then the notation 
[$I; S2;...;S n] means that first Sl 
should be executed, then $2,..., and 
finally Sn . If we want to consider 
the whole sequence as unit, as a simple 
statement, we add delimiters begin and 
end: 

b e~in Sl;S2;..;S n end 

This is called a compound statement. 
b) Selection. The conventional 

conditional statement 

if e then S 1 else S 2 

allows us to choose between alternatives. 
A generalization of this is the case 
statement. Suppose that variable X" con- 
tains one of n possible values 
1,2,...,n, and that we want to execute 
one of the statements SI,S2,...,S n de- 
pending on the value of X. We write 

case X of 
n 

1 : SI; 

2 : $2; 

n : S 
n 

end 

Here are two examples where the notation 
is the same but the selection variable 
is not integer valued: 

case WEATHER of 

SUNNY: Take off shirt; 
CLOUDY: Put on sweater; 
RAINY: Put on raincoat; 
SNOWY: Put on overcoat 

end 
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case SIGN(B2-4*A*C) of 

-i : X = 'complex'; 
0 : X = 'double root'; 

+i : X = 'real roots' 

end 

Breaking something up into disjoint 
subcases occurs in every problem-solving 
activity, and the student should be 
encouraged to use notation to fit the 
problem. The last step should be to put 
the algorithm l~ PL/I, FORTRAN, or 
whatever programming language is being 
used. 

c) Iteration. The only loop 
which need be taught to express iteration 
is the while loop: 

while e do S 1 

whose execution can be described by the 
flowchart 

Start ue 

stop 

d) Termination. The above three 
methods of expressing flow of control are 
all that is necessary to write any pro- 
gram. However, it is sometimes advanta- 
geous to terminate a subalgorithm named 
A (say) using a statement 

terminateA 

For example, here is one version of a 
binary search algorithm which looks for 
the value of X in the array AI,A2,.-..A 
where N > 1 . Upon termination A[J) = x-n 
or, if x is not in All:N], J = 0. 

binary search: 
be@in F=I; /*if X is in list at all,*/ 

L=N; /*it is in A(F:L)*/ 
while F < L do 
"-"'-~___9.~--J =-'FLOOR ((F+L)/2 ) ; 

I f A(J)=X then terminate 
l~ry search; 

if A(J)<X then F=J+I else 
L_---~/=I; 

end end binary search 

Programming languages already have 
terminate statements for subalgorithms 
which are procedures; they are written 
as RETURN. 

It is easiest to teach students 
to write well-structured programs if we 
restrict the control statements they use 
to those which have the best chance of 
producing structured programs. The four 
control statements just described are 
all the introductory student needs, 
since they probably cover 95% or more of 
all programming situations. 

This does not mean that programs 
written using these statements will be 

well-structured or understandable. 
This does also not mean that pro- 

fessional programmers should only use 
these four control statements. A pro- 
grammer must be able to develop control 
structures to fit his problem, when nec- 
essary. Other suitable control structures 
are (i) ~ $I until e which is equiva- 
lent to $I; while ~ S l ,  (2) the state- 
ment ~ eac~ a e X d-o $I where X is a 
set, (3) decision ta~-~es, (4) coroutines, 
and (5) the conventional do loop. 

One might also consid-er using a con- 
ventional ~oto, but only for a very good 
reason. 

You may wonder why I do not include 
the conventional do loop as a basic tool 
for beginning stu~[ents. First of all, 
as soon as they see it, they use it all 
the time instead of the while loop. They 
think in "do I = " terms, ~ this re- 
stricts the---kinds of algorithms they can 
write. For example, the binary search 
given earlier is difficult to put in the 
"do I = " form. Secondly, the while loop 
le-nds itself to proving correctness of 
programs more easily (see the "Invariant 
Relation Theorem" in Dijkstra [4]). 
Thirdly, beginning students don't under- 
stand the conventional do loop -- they 
forget when the test is-~ade and when the 
loop variable is incremented; and they of- 
ten lose the concept of iteration and 
think the whole thing happens at once. 
If you don't believe me, try the follow- 
ing question on an open book midterm or 
final -- without hinting that such a 
question will be on the test. It's a 
simple question which any student who 
understands loops should be able to answer 
correctly in 2 minutes, especially on an 
open book test. It is so simple, it should 
be graded on an all or nothing basis. I 
would like to hear your results. 

Rewrite the following program segment 
so that it accomplishes ~ the same 
thing, without using the "do <var> = ..." 
statement. You may use the while state- 
ment or go tos. 

M = A(I) ; 

DO J = Z+I TQ N; 
IF A(J) > M THEN M = A(J); 
END; 

IIIb. Choosin~ a programming language 
tO teach. The main purpose of programming 
courses should be to teach general problem 
solving methods as applied to programming. 
Upon completion of, say~ a two-course 
sequence, the student should have a good 
idea how to program problems in any sub- 
ject matter with which he is familiar, 
no matter what conventional high-level 
language is available. 

The programming language used in the 
course is only a vehicle allowing us to 
teach problem solving and the programming 
concepts we feel are useful (e.g. block 
structure, procedures, data structures). 
If we believe in structured programming, 
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the language should be as close as possible 
to the algorithmic language just described. 
• t ~hou|~ ~|$o be simple, elegant, and 
modular, so that features and concepts 
not yet taught won't get in the way. 

ALGOL, ALGOL 68, ALGOL W, PASCAL, 
Carnegie-Mellon's BLISS, and Toronto's 
system language for project SUE all 
satisfy these conditions to a large extent. 
Unfortunately they are not well-known 
(outside the core group of computer 
scientists) and it would be difficult 
to introduce them into introductory 
courses. The language taught is often 
influenced by people outside the computer 
science profession, even though their 
opinions are not educated enough to 
deserve recognition. Thus the computer 
science departments are by and large 
compelled to teach FORTRAN, BASIC, or 
PL/I. Let us review each in turn. 

FORTRAN was at the time of its 
creation a great step forward, and its 
creators are to be commended for it. 
However, as we look at what we want 
today, we find it is completely out of 
date. For example it has none of the 
cDntrol statements we feel are necessary. 
The compound statement, the conditional 
statement in its necessary generality, 
the iterative while loop, and the termina- 
tion statemente-q~ept for procedures) 
are all missing. This results in programs 
which are usually unreadable, even if 
they are well-structured. 

In our compiler writing course there 
is usually a group project consisting 
of implementing a small compiler. At 
the end of the course, I sit with each 
group and skim through their compiler 
listing to see what data structures are 
used, how certain statements were com- 
piled and so on, and I can usually spot 
3 or 4 errors in 15 minutes. I once 
made the mistake of allowing a group to 
write in FORTRAN, and for 30 minutes I 
attempted to understand their compiler 
with absolutely no success. This was 
not because of lack of knowledge; 
FORTRAN was my first love and I pro- 
grammed it it (and assembly language) 
for two years. 

FORTRAN is out of date and 
shouldn't be used unless there is 
absolutely nothing else available. 
If this is the case, use it under 
protest and constantly bombard the 
manufacturers or other authorities 
with complaints, suggesting they 
make available a more contemporary 
language. 

BASIC is a FORTRAN-like language 
with even severer restrictions. For 
example, the name of a variable must be 
a letter followed optionally by one digit. 
It does not enjoy FORTRAN's reputation 
for being the first high-level language, 
and should never have come into existence. 
When it was contemplated, its designers 
should have done their research to see 
what programming and programming 

languages are all about before plunging in. 
I hesitate to think of the thousands 

of students learning to think in an ad hoc, 
unreadable language, under the guise of 
time-sharing. I have doubts about teach- 
ing students to think "on-line"; algorithms 
should be designed and written slowly and 
quietly at one's desk. Only when assured 
of correctness is it time to go to the com- 
puter and test the algorithm on-line. 

If one must program in a well-known 
language, the only choice is PL/I. It has 
the compound statement, the conditional 
statement and the while loop. The case 
statement must of course be written using 
goto's and perhaps label variables, but 
this is all right as long as it is made 
clear that the case statement is being 
simulated. Similarly the termination 
statement can be done with a goto. But we 
don't go to do anything else, we go to, 
stop execution of the algorithm. For ex- 
ample, the binary search algorithm given 
earlier would be written as 

/*binary search for X in A(I:N), upon ter- 
mination if X was in the list A(J) = X, 
otherwise J = 0 */ 
/*Invariant relation of loop: If X is 

in A(I:N), then it is in A(F:L)*/ 
F=I;L=N; 
DO WHILE (F <= L); 

J = FLOOR((F+L)/2) ; 
IF A(J) = X THEN GOTO 

TERMINATEBINSEARCH; 
IF A(J) < X THEN F = J + I; 

ELSE L = J - i; 
END; 

J = 0; 
TERMINATEBINSEARCH:; 

I choose PL/I solely because it's the 
best choice, not because I particularly 
like it. In fact, it took a lot of think- 
ing before I decided to write an intro- 
ductory programming book based on PL/I 
[i]. What's wrong with PL/I? Its syntax 
is enough to offend anyone who has stu- 
died English grammar; its data structure 
facilities (structures) could have been 
less clumsy and much more elegant and usa- 
ble (e.g. more like PASCAL, where one de- 
fines new data types); it is not modular, 
as claimed (it is difficult to teach one 
feature without another getting in the 
way); its astonishment factor is much too 
high (e.g. what is 25 + 1/3 ?); its parr 
allel programming features are difficult 
to understand and use correctly; and so 
on. 

Yet, if we stick to its simpler fea- 
tures, the language is usable. In our 
first programrhing course, while teaching 
how to program, the students learn about 
(i) simple variables and arrays; (2) FIXED 
DECIMAL, FLOAT DECIMAL, and CHARACTER data 
types; (3) expressions and assignment 
statements using these data types; (4) GET 
LIST and PUT LIST; (5) the compound state- 
ment, conditional statement, while loop, 
and goto as used to simulate the termina- 
tion statement; and (6) external 
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procedures with parameters and STATIC vari- 
ables (but not EXTERNAL variables). Pri- 
marily, the course is aimed at showing how 
to design and program well-structured pro- 
grams. 

IIIc. Pro@ram documentation. The flow 
chart has always been used as the main tool 
for describing programs. Indeed, it is of- 
ten required as part of program documenta- 
tion. When used correctly, it can be of 
help during the programming process and can 
certainly aid in understanding. 

Unfortunately, flow charts have sev- 
eral disadvantages which are severe enough 
to cause us to stop using them. Of course, 
there will still be occasion to use them, 
but for the most part high level programs 
should be documented using the method out- 
lined below. 

~hat's wrong with flow charts? First 
of all, I have rarely seen a programmer 
who liked to draw them. Consequently, the 
flow chart is often drawn after the pro- 
gram is written and debugged; in fact there 
are systems which will draw a flow chart 
from the finished program. Used in this 
way, the flow chart is of no use to the 
person who needs it the most, the program- 
mer. Program documentation should be 
written while the program is being written, 
if not before, and should be used by the 
programmer in proving correctness and in 
checking his program out. 

Secondly, the flow chart allows, even 
encourages complicated program structure. 
Given a flow chart, it is always easier to 
correct mistakes or add to the chart by 
drawing in a few more arrows and boxe% than 
it is to restructure the chart to make it 
simpler and more systematic. And if the 
flow chart is drawn from a completed pro- 
gram, then it can be no better in struc- 
ture than that program; its use will be 
solely to provide a two-dimensional repres- 
entation. 

We need program documentation which 
encourages systematic, structured program- 
ming, and which can be used by the pro- 
grammer as he programs. Furthermore, the 
rules which govern its use must be such as 
to force the programmer into trying to get 
a correct program before he begins testing. 

The method I advocate is a top-down 
description of the program, using indenta- 
tion to indicate refinement. 

Now I don't expect every programmer 
to program using step-wise refinement. 
Problem solving is an individual, personal 
thing, and although we can give rules to 
aid in understanding problem solving, we 
cannot expect all ideas to emerge in a 
rigid, disciplined fashion. However on 
the ideas for a program have been gener- 
ated, the programmer must produce a top- 
down description of his program. 

Polya's second and third phases of 
problem solving are: devising a plan and 
carrying out the plan. In programming 
terms this means 

Devise a plan: Get the ideas for 

the program; lay out the general structure, 
play with various subparts so that data 
structures can be determined, etc. 

Carry out the plan: Systematically 
produce a top-down description of the pro- 
gram, checking each refinement for correct- 
ness. 

For those of you who are not familiar 
with the terms "top-down" and "step-wise 
refinement," let me briefly explain. 

Top-down programming, or step-wise 
refinement, is a method of producing a pro- 
gram which proceeds as follows. One begins 
with the statement SI: "solve the prob- 
lem." One then refines this by giving a 
sequence of statements [SI.I, Sl.2, Sl.3, 
...,Sl.n] which solve that problem. Sl 
specifies what to do; the sequence [SI.I, 
...,Sl.n] in-~cates how to do it. The 
sequence is an algorl~m which, if exe- 
cuted, produces the desired result. Each 
statement Sl.i is a command written in 
English, PL/I or any suitable notation. 
For example, SI.2 might be a loop while e 
do Sl.2.1, where SI.2.1 is another com- 
m-~nd in English, Pl/I or any suitable 
notation. 

The main point is that the sequence 
[SI.I,...,SI.n] is specified at a high 
enough level that its correctness is ob- 
vious. This means that a lot of detail 
has yet to be uncovered. 

One then proceeds to refine each of 
the statements SI.I,...,SI.n in turn. 
Since these are independent of each other 
in the sense that each can be understood 
out of context, the order in which these 
are refined is immaterial. 

This process continues until all the 
refinements have led to statements in the 
programming language. Each refinement is 
small enough so that its correctness is 
obvious, and thus the whole program must 
be correct. 

One also makes data structure refine- 
ments when necessary. For example one 
might decide to implement a set by an 
array, a linked list, or a bit string, de- 
pending on the operations performed on the 
set. This would require suitable refine- 
ments or changes in statements which oper- 
ate on that set. 

It is not implied that a program can 
be generated purely in this fashion. One 
makes mistakes which must be corrected; 
one may see a better way to implement 
something that requires one to "back up" 
and redo part of the program, and so on. 

A top-down description of a program 
consists of the program itself, together 
with the series of refinements which led 
to it. Thus, the reader is shown Sl, 
then the sequence [SI.I,...,SI.n], then 
the refinement of these, and so on. From 
this, he can easily deduce ~he correctness 
of the program, since each refinement is 
small enough to easily understand. 

The complete top-down description can 
be interspersed within the program, using 
indentation to show refinement. The 
statements not in PL/I are written as 
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comments, as indicated below: 

/*SI*/ 
SI.I; 
SI.2; 
/*SI.3"/ 

IF e 
THEN Sl.3.1 
ELSE SI.3.2; 

/*Si.4"/ 
Sl.4.1; 
DO WHILE (B); 

SI.4.2 
END; 

SI.4.3 

The advantage of this scheme is that 
the reader can understand the program at 
any level of detail he desires. He can 
read just SI. To understand how Sl is im- 
plemented, he reads its refinement -- he 
indents his thinking 5 columns and reads 
the sequence [SI.I, SI.2, Sl.3, Sl.4]. If 
he has to, he can then easily understand 
how Sl.4 is implemented by reading the 
sequence of three statements which con- 
stitute its refinement. 

A second advantage of this scheme is 
that it forces the programmer to put his 
program together in a systematic, well- 
structured manner. If he is careful, cor- 
rectness is obvious, and the only errors 
that testing should find are misprints, 
keypunch errors, and so on. 

You may complain that there is too 
much indentation to worry about, and that 
for large programs the final statements 
will be so far indented that they can only 
use, say, columns 60 - 72! But no pro- 
gram segment should be over 1 or at most 2 
pages long. Longer than this becomes too 
hard to understand anyway. Liberal use 
should be made of macros and procedures 
to keep each program segment under 1 or 
2 pages. There will be of course excep- 
tions to this rule, but for the most part 
it should be followed. 

Please don't take this as a complete 
discussion of how I feel programs should 
be described; this is just an outline. 
We are teaching this in our introductory 
courses at Cornell, and by and large it 
works well. Programs have much better 
structure to them than before, and it is 
much easier to look at various parts and 
ascertain their correctness. This scheme 
also tells students, perhaps for the first 
time, what comments are for and where they 
come from. Previously, comments were 
something to insert after the program was 
finished, and it wasn't clear what kinds 
of comments to write. Now, a comment 
is a command telling what to do, its in- 
dented refinement expl-~s how to do it. 

Of course there are problems. Stu- 
dents sometimes tend to go overboard. 
While the program below follows our rules, 
each comment and its refinement are the 
same, and the comments can be omitted. 
The second segment below is less redundant 
and clearer. 

/*Initialize I*/ 
I = 0; 

/*Read in command*/ 
GET LIST(COMMAND); 

/*Loop until command is 'ENDRUN'*/ 
DO WHILE(COMMAND~'ENDRUN'); 

Process command 
/*Read in command*/ 

GET LIST(COMMAND); 
END; 

I = 0; 
GET LIST (COMMAND) ; 
DO WHILE (COMMAND~'ENDRUN') ' 

Process command; 
GET LIST(COMMAND); 
END; 

One of the hardest tasks for an in- 
structor is to grade students' programs. 
It is not enough to grade solely on the 
correct result being printed out. More 
important is to look painstakingly through 
the program, writing comments to the stu- 
dent about what was done correctly, indi- 
cating where something could have been done 
more systematically, and pointing out 
where it is obvious that the program is 
not well-structured, etc. Let me illus- 
trate what I mean with a live example 
from a course I am currently teaching. 

The 3 - 4 page program from which the 
segments below were taken did simplified 
inventory accounting for a warehouse. 
Based on a sequence of commands entered 
through the normal input file, it kept 
track of the number of units of each item 
in stock, printed out sales slips, ordered 
when stocks got too low, and so forth. 

DECLARE NO TO ORDER FIXED DECIMAL INITIAL(0); 

/*Determine how many to order and 
print order*/ 

IF X < Y THEN NO TO ORDER = X; 
IF Z < W THEN NO TO ORDER = 

NO TO ORDER + Z; 

Print out order; 

NO TO ORDER = 0; 

I tried to understand the refinement 
of the statement "Determine how many to 
order and print order" (the names X, Y, Z, 
W were originally longer and mnemonic; I 
have changed them since they are immater- 
ial to this discussion). My first 
thought when reading the first conditional 
statement was that NO TO ORDER is not 
initialized if X > Y. Thus I had to see 
if NO TO ORDER was initialized earlier, or 
if X < Y always held at this point of exe- 
cution. I finally found the initialization 
in the declaration. 

But then I began to think about the 
next time this subalgorithm would be exe- 
cuted -- what value would NO TO ORDER have? 
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After a minute or two, I finally found the 
statement NO TO ORDER=0 at the end of the 
subalgorithm. 

I had to spend several extra minutes 
understanding the program because the pro- 
gram was not well-structured. Even though 
the program worked, the student lost some 
points; in return he received a written 
explanation from which I hoped he would 
learn something. 

The program was not well-structured 
because that last statement of the refine- 
ment, NO TO ORDER = 0;, ha~ nothing to do 
with "Determine how many to order and print 
order." True, it sets NO TO ORDER up for 
the next execution of the algorithm, but 
this was not stated as a purpose of the 
algorithm. I would have had no trouble 
understanding if the student had written 
the equally efficient segment 

/*Determine how many to order and print 
order*/ 

NO TO ORDER = 0; 
IF X < Y THEN NO TO ORDER = 

NO TO ORDER + X; 
IF Z < W THEN NO TO ORDER = 

NO TO ORDER + Z; 

Print out order; 

Of course it is difficult to put so 
much time and effort into grading, but in 
the large programming courses we teach 
these days, it is the only source of in- 
dividual contact between instructor and 
student. The student can learn the basic 
programming language tools by himself 
but he needs individual help with prob- 
lem solving, and with understanding how 
and why we want the program written. It 
is not enough to mark on his program "-5 
because you didn't follow rule such and 
such." We must also explain how in this 
particular instance violation of the rule 
led to a less-understandable program or 
even to an undetected error in the pro- 
gram. 

I would like to teach programming 
to a group of, say, 15 students (rather 
than 150) just to see whether the extra 
individual attention would produce bet- 
ter programmers. I'm sure it would. 

IV. Conclusions 

The programming profession and com- 
puter industry are currently in a "soft- 
ware crisis," brought on by the fact 
that the profession is constantly asked 
to solve larger and more complex prob- 
lems than we ever dreamed of. The old 
programming techniques don't work on the 
larger problems. The solution is to edu- 
cate new programmers in a different man- 
ner, and to re-educate the old program- 
mers. The emphasis should be on systema- 
tic programming based on tested problem 
solving principles, on discipline and care- 
fulness, and on the production of neat, 

elegant, simple algorithms which are proved 
correct before they are tested on a com- 
puter. Note that elegance and simplicity 
do not preclude efficiency. On the con- 
trary, only through simplicity can we see 
a way to make things more efficient. I 
would rather have a correct algorithm 
which runs in ten minutes than one which 
runs in one minute but whose correctness 
I cannot ascertain. 

However it is not enough to stand in 
front of the class and mouth the clich4s 
of problem solving and structured program- 
ming. The students will easily sense whe- 
ther vou believe in what you tell them, 
and whether you yourself practice what you 
teach. To teach structured programming 
you must practice it yourself. Unfortun- 
ately it takes time and hard work to 
switch from bad habits to better ways of 
programming (just as it takes time and 
effort to play golf correctly). Anybody 
contemplating teaching programming has a 
lot of preparation to do. He should 
study Polya's book How to Solve It [8], 
and then read what others have to say on 
problem solving. The book by Dahl, 
Dijkstra and Hoare [4] should be read, 
especially Dijkstra's Notes on Structured 
Programmin@. Also skim through Wirth's 
book on Systematic Programming [9], and 
An Introduction to Programming by Conway 
and myself [i] to see how we approach the 
subject. Finally, and this is important, 
write several programs, both large and 
small, using the tools and techniques ad- 
vocated. I'm sure if you do this you will 
be pleasantly surprised. 

I am not at all sure that any drastic 
change will take place in the Universities 
within the next few years, although I hope 
I'm wrong. You would think that the Uni- 
versity, where one searches for truth and 
knowledge, would be the place for innova- 
tive thinking, for people who are tuned to 
new and better ideas. Yet Daniel McCracken 
made a survey of 40 representative univer- 
sities throughout the country about one 
year ago [6], with which he concluded that 

"Nobody would claim that FORTRAN 
is ideal for anything, from teachability, 
to understandability of finished programs, 
to extensibility. Yet it is being used by 
a whopping 70% of the students covered by 
the survey, and the consensus among the 
university people who responded to the sur- 
vey is that nothing is going to change 
much anytime soon." 

Does this sound like educators who are 
committed to teaching concepts, to teach- 
ing people what they need to know to pre- 
pare for the future? 

Let's get with it and find what pro- 
gramming is all about, and then make a 
concerted effort to teach a better style 
of programming to our students. 
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