
115

6 Conclusions

The networking performance in state-of-the-art Java systems is not

commensurate with that of high-performance network interfaces for cluster

computing. This thesis argues that the fundamental bottlenecks in the data-

transfer path are the (i) separation between Java’s garbage-collected heap and

the native, non-collected heap that is directly accessible to network interfaces

(Chapter 2), and (ii) the high costs of object serialization (Chapter 4). The first

bottleneck is inherent to the interaction between a storage-safe language and

the underlying networking hardware; the second is inherent to the language’s

type-safety. Although this thesis studies these bottlenecks in the context of

Java, we believe they are applicable to other safe languages.

The approach proposed in this thesis—explicit buffer management—is

motivated by state-of-the-art user-level network interfaces. The thesis is that,

in order to take advantage of zero-copy capabilities of network devices,

programmers should be able to perform buffer management tasks in Java just

as they can in C, and most importantly, without breaking the storage and type

safety in Java. To this end, the main contributions of jbufs (Chapter 3) are in (i)

recognizing the role of the garbage collector in explicit memory management,

namely the ability to verify whether a buffer can be re-used or de-allocated

116

safely, in (ii) exposing this role to programmers through a simple interface

(unRef and a callback), and in (iii) identifying the essential support needed

from a garbage collector that is independent of the collection scheme, namely

the ability to change the scope of the collected heap dynamically.

Jbufs offer two key benefits for Java applications that directly interact

with network interfaces: efficient access to a non-collected region of memory

as primitive-typed arrays and the ability to re-use that region. Our experiences

with cluster matrix multiplication (Section 3.3) suggest that efficient access is

convenient, reduces communication times, but currently has limited impact on

overall performance, which is dominated by poor cache locality and by

runtime safety checks. Our experiences with an implementation of Active

Messages (Section 3.4) indicate that the buffer re-use is useful: for example,

communication system designers can implement their own buffer

management schemes or delegate them to applications. However, our

experiences with Java RMI (Section 4.2) using standard object serialization

reveal that efficient access and buffer re-use are essentially immaterial:

overheads are dominated by high serialization costs.

Jbufs stand out from related approaches in that they can be extended to

support in-place object de-serialization in a clean, safe, and efficient manner

(Chapter 5). The resulting abstraction, jstreams, is able to cut the cost of object

de-serialization to a constant irrespective to object size on homogeneous

clusters. This translates to an order of magnitude improvement in point-to-

point RMI performance and improvements (of up to 10%) to a set of

benchmarked RMI-based applications. The re-use of jstreams allows

applications to tune the RMI system for performance; measuring the

effectiveness of this tuning, however, is beyond the scope of this thesis.

117

For applications that exchange RMIs intensively, such as cluster matrix

multiplication, two variables come in play when tuning the size of the buffer

pool: data locality and garbage collection. A pool with a large number of

jstreams decreases the frequency of garbage collections, but harms the data

locality of the application. Our experiences with cluster matrix multiplication

reveal that tuning the buffer pool size is hard and that the overall application

performance with jstreams can be actually worse (by at least 10%) than with

standard object serialization. This is in part attributed to the semi-space

copying collector being used, which yields high collection costs (15% of total

execution time). A generational collector will likely reduce these costs in a

substantial way.

Jstreams employ a simple optimization during serialization: array

objects that reside in jbufs are transferred in a zero-copy fashion. While it

works well for all the RMI applications used in this thesis, achieving zero-

copy serialization of arbitrary objects in a clean fashion is still an open problem.

The fundamental difficulty is that objects can be scattered all over the heap33;

even with user cooperation (e.g. having the user allocate objects into a single

jbuf34 so they remain “adjacent” with one another), it is still difficult to control

the location of all Java objects35.

The ideas presented in this thesis are applicable to other kinds of high-

performance Java applications that interact with I/O devices, such as file

systems and persistent object systems. For example, a file could be memory-

33 Solutions based on DMA scatter-gather operations are vulnerable in that they do not scale well (due to resource
limitations of the underlying network interface) and that scatter-gather operations are expensive to set up
[MNV+99].

34 A jbuf can be easily extended with an object allocation interface.

35 For example, character arrays of Java strings are typically “interned” in some internal table maintained by the
JVM.

118

mapped into a jbuf and accessed directly by Java file I/O streams. Also, a heap

of persistent objects could be serialized into stable storage, and later in-place

de-serialized and incorported into the JVM. It is clear that the base

performance of these systems will improve [Wel99], though substantial

improvements in overall application performance remains to be seen.

