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1    Introduction

Until recently, the performance of JavaTM networking has not been a major

concern. To begin with, Java programs run more slowly than comparable C or

C++ programs, suggesting that the performance bottleneck of most applica-

tions may not yet be communication, but computation. Furthermore, distrib-

uted computing is largely based on Java Remote Method Invocation, which is

designed first for flexibility and interoperability in heterogeneous environ-

ments and only second for performance. Because Java has been mainly used

for applications running on wide-area networks (i.e. the Internet), the level of

performance delivered by high-speed networks has not been particularly in-

teresting.

The growing interest in using Java for high-performance cluster appli-

cations [JG98] has sparked the need for improving its communication per-

formance on a cluster of workstations. These clusters are typically composed

of homogeneous, off-the-shelf PCs equipped with high-performance network

interfaces [Via97, Gig98] and connected by low-cost network fabrics with over

1Gbps of bandwidth. Recent research in just-in-time and static compilers, vir-

tual machine implementations, and garbage collectors for Java have delivered



2

promising results, reducing the performance gap between Java and C pro-

grams [ACL+98, ADM+98, BKM+98, FKR+99, MMG98].

Many attribute Java’s success to its being a “better C++”: not only is it

object-oriented but it is also a safe language. By a safe language we mean one

that is storage and type safe. Storage safety guarantees that no storage will be

prematurely disposed of, whether at the explicit request of the programmer or

implicitly by the runtime system [Ten81]1. Storage safety spares the program-

mer from de-allocating objects explicitly and tracking object references: inac-

cessible objects are automatically searched for and de-allocated by a garbage

collector whenever more storage is needed. Type safety ensures that references

to Java objects cannot be forged, so that a program can access an object only as

specified by the object’s type and only if a reference to that object is explicitly

obtained. Type safety is enforced by a combination of compile-time and run-

time checks2.

The goal of this thesis is to address two inefficiencies that arise when

interfacing Java to the underlying networking hardware. First, storage safety

in Java creates a hard separation between Java’s heap, which is garbage-

collected, and the native heap3, which is not. In modern clusters of PCs, net-

work interfaces make the raw performance of high-speed network fabrics—

low message latency and high bandwidth—available to applications. The key

advance is that data transfers between the network and application memory

are performed by the DMA engines of network devices, offloading the host

                                                
1Another aspect of storage safety is to ensure that the contents of a location are never accessed before its initializa-
tion (Sections 12.4 and 12.5 [LY97]).

2 Java virtual machines perform various runtime safety checks such as array bounds, array stores, null pointer, and
down-casting checks.

3 Native code (i.e. C, C++, or assembler code) is needed to interact with hardware devices directly or through na-
tive libraries.
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processor. Memory pages in which data resides must be present in (or

“pinned onto”) the physical memory so they can be directly accessed by those

DMA engines. This is ill matched to a garbage-collected system, where objects

can be moved around without the application and the device’s knowledge.

Objects must be copied into memory regions in a native, non-collected heap.

The result is that the performance benefits of direct DMA access are reduced

substantially: 10% to 40% of the raw bandwidth can be lost.

Second, Java objects must be serialized and de-serialized across the

network. Because type safety cannot be entirely enforced at compile-time,

even the simplest objects such as arrays carry meta-data for runtime safety

checks4. Meta-data complicates the in-memory layout of objects and calls for

serialization of objects across the network. Serialization is an expensive opera-

tion since the entire object and its typing information must be copied onto the

wire. De-serialization is equally expensive because types must be checked,

new storage allocated, and data must be copied from the wire and into the

newly allocated storage. Due to high serialization costs, the performance of

popular communication paradigms such as RMI is over an order of magni-

tude worse in Java than in an unsafe language like C.

Recent efforts for improving the performance of Java communication

have fallen into what will call “top-down” and “front-end” categories. The

top-down approach consists of implementing a high-level Java communica-

tion abstraction (e.g. RMI) on top of a native communication library [BDV+98,

MNV+99]. The front-end approach consists of providing “glue-code” to high-

level native communication libraries (e.g. MPI), making them accessible from

                                                
4 Incidentally, storage safety also generates meta-data, such as information for type-accurate garbage collection.
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Java [GFH+98]. Both approaches in general yield reasonable performance, but

generally lead to solutions that are specific to a particular abstraction, Java vir-

tual machine implementation, and/or communication library.

This thesis pursues a “bottom-up” approach: Java is interfaced directly

to the underlying network devices and higher level communications are built

in Java on top of the low-level interface. By cutting through layers of abstrac-

tions, this thesis focuses on the inefficiencies in the data path that are inherent

to the interaction between safe languages and hardware. Overheads in the

control transfer path—context switching, scheduling, and software inter-

rupts—are not fundamental to the language. Rather, they are associated to a

particular communication model (e.g. RMI) and depend on the host operating

system as well as the machine load.

1.1   Thesis Contribution

The main contribution is the thesis is a framework for using explicit memory

management to improve the communication performance in Java. The frame-

work is motivated by recent trends in network interface design, where appli-

cations, rather than devices, have full control over communication buffers and

control structures. Because certain management operations (such as mapping

user memory onto physical memory) can be very costly, the ability to re-use

those data structures becomes paramount: programmers can amortize the

high costs using application-specific information.

1.1.1   Jbufs: Safe and Explicit Management of Buffers

Jbufs are Java-level communication buffers that are directly accessed by the

DMA engines of network interfaces and by Java programs as primitive-typed

arrays. The central idea is to remove the hard separation between Java’s gar-
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bage-collected heap and the non-collected memory region in which DMA

buffers must normally be allocated. The programmer controls when a jbuf is

part of the garbage-collected heap so that the garbage collector can ensure it is

safely re-used or de-allocated, and when it is not, so it can be used for DMA

transfers. Unlike other techniques, jbufs preserve Java’s storage- and type-

safety and do not depend on a particular garbage collection scheme.

The safety, efficiency, and programmability of jbufs are demonstrated

throughout this thesis with implementations of an interface to the Virtual In-

terface architecture [Via97], of an Active Messages communication layer

[MC95], and of Java Remote Method Invocation (RMI) [Rmi99]. The impact on

applications is also evaluated using an implementation of cluster matrix mul-

tiplication as well as a publicly available RMI benchmark suite [NMB+99].

The impact of jbufs in basic, point-to-point communication perform-

ance is substantial: almost 100% of the raw performance of a commercial net-

work interface is made available from Java. Results show that explicit memory

management (i) outperforms conventional techniques in a cluster matrix mul-

tiplication application by at least 10%, and (ii) helps an active messages layer

attain nearly 95% of the raw network capacity.

1.1.2 Jstreams: Optimizing Serialization for Cluster Applications

To further enhance the performance of RMI on homogeneous clusters, the the-

sis proposes in-place object de-serialization: de-serialization without allocation

and copying of objects. This optimization takes advantage of the zero-copy

capabilities of network devices to reduce the per-object de-serialization to a

constant cost irrespective of object size, which is particularly beneficial for

large objects such as arrays. In-place de-serialization is realized using jstreams,
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an extension of jbufs with object I/O streams. Jstreams use the explicit mem-

ory management offered by jbufs to incorporate de-serialized objects into the

receiving Java virtual machine without compromising its integrity, without

restricting the usage of those objects, and without making assumptions about

the underlying garbage collection scheme.

The performance impact of jstreams on Java RMI and the benchmark

suite is evaluated. Results show that jstreams improve the point-to-point per-

formance of RMI by an order of magnitude, within a factor of two of the raw

performance. This translates to an improvement of 2% to as much as 10% in

the overall performance of several Java cluster applications.

1.1.3   Overview of Related Approaches

Several projects have recognized the importance of accessing non-collected

memory regions from Java for enhanced performance. One common approach

is to allocate specially annotated Java objects outside of the garbage-collected

heap [Jd97]: these objects can be passed between Java and C programs by ref-

erence (without copy). Efficient implementations of this approach [WC99]

achieve the same level of performance as that attained by jbufs when used for

high-performance communication. However, these “external” or “pinned”

objects require special annotation and are typically restricted in some way or

another (e.g. they cannot contain pointers to other objects). Another approach

is to integrate high-performance communication directly into custom Java vir-

tual machines [MNV+99] with non-copying garbage collectors. Jbufs and

jstreams impose no restrictions on the type or usage of Java objects, and can be

implemented with both non-copying and copying garbage collectors.



7

The poor performance of Java object serialization and RMI is well

known [Jg99] and is in part attributed to inefficient implementations in pub-

licly available Java systems [NPH99]. The in-place object de-serialization pre-

sented in this thesis attempts to aggressively optimize this operation for the

common case: homogeneous clusters of workstations equipped with zero-

copy network devices.

Most proposals for using explicit memory management are largely

aimed at improving the data locality and cache behavior of applications

[Ros67, Han90, BZ93, Sto97, GA98]. Some projects also consider safe aspects of

explicit memory management (e.g. safe regions [GA98] and mark-and-sweep

zones [Sto97]) and rely on reference counting and non-copying garbage collec-

tors. The framework proposed in this thesis considers explicit memory man-

agement in the presence of copying collectors as well.

1.2   Thesis Overview

Chapter 2 discusses the performance issues that arise when interfacing Java

with the user-level network interfaces. First, it gives the necessary background

on the Virtual Interface architecture, an industry standard of network inter-

faces, focusing on the features that are critical to high performance and the

programming language requirements for applications to capitalize on these

features. Second, it looks at conventional mechanisms for interfacing Java with

native code. It contrasts two central issues—the hard separation between the

garbage-collected and native heaps and the tension between efficiency and

portability—and argues that the former is inherent to the language/hardware

interaction. To motivate explicit buffer management, the chapter concludes
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with an evaluation a Java interface to the VI architecture (Javia-I) that respects

the heap separation.

Chapter 3 introduces jbufs and provides an in-depth look at their safety

properties and the interaction with the garbage collector. It justifies the need

for explicit de-allocation and describes an implementation in the Marmot sys-

tem with a copying collector. To demonstrate the use of jbufs as a framework

for communication, the chapter presents implementations of Javia-II (an im-

provement over Javia-I), of a cluster matrix multiplication program, and of a

messaging layer based on the Active Messages protocol. It concludes with a

discussion on our experiences in using jbufs and on their limitations.

Chapter 4 makes a case for specializing object serialization for homoge-

neous cluster computing. It presents an evaluation of several implementations

of the standard serialization protocol (Java Object Serialization) and analyses

the impact of Marmot’s static Java compiler on the costs of serialization. It

studies the effect of these costs in the performance of a Java RMI system over

Javia-I/II and of a benchmark suite consisting of six applications.

Chapter 5 introduces the in-place de-serialization technique and shows

how it can be realized using jstreams. It describes additional safety constraints

that must be met in order not to violate the integrity of the Java system on

which de-serialization is taking place. It evaluates a prototype implementation

of jstreams in Marmot and their impact in the performance of Java RMI and

several applications. The chapter concludes with a discussion on our experi-

ences in using jstreams.

Chapter 6 concludes the thesis with a summary and a discussion of

some open-ended issues.


