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Abstract

Kleene Algebra with Tests is an extension of Kleene Algebra, the algebra of regular ex-
pressions, which can be used to reason about programs. We develop a coalgebraic theory
of Kleene Algebra with Tests, along the lines of the coalgebraic theory of regular expres-
sions based on deterministic automata. Since the known automata-theoretic presentation
of Kleene Algebra with Tests does not lend itself to a coalgebraic theory, we define a new
interpretation of Kleene Algebra with Tests expressions and a corresponding automata-
theoretic presentation. One outcome of the theory is a coinductive proof principle, that can
be used to establish equivalence of our Kleene Algebra with Tests expressions.

1 Introduction

Kleene algebraiA) is the algebra of regular expressions [2,4]. As is well known,
the theory of regular expressions enjoys a strong connection with the theory of
finite-state automata. This connection was used by Rutten [12] to give a coalge-
braic treatment of regular expressions. One of the fruits of this coalgebraic treat-
ment iscoinduction a proof technique for demonstrating the equivalence of regular
expressions [14]. Other methods for proving the equality of regular expressions
have previously been established - for instance, reasoning by using a sound and
complete axiomatization [5,15], or by minimization of automata representing the
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expressions [3]. However, the coinduction proof technique can give relatively short
proofs, and is fairly simple to apply.

Recently, Kozen [6] introduced Kleene Algebra with Te&tAT), an extension
of KA designed for the particular purpose of reasoning about programs and their
properties. The regular expressionKa#T allow one to intersperse boolean tests
along with program actions, permitting the convenient modelling of programming
constructs such as conditionals amidile loops. The utility ofKAT is evidenced by
the fact that it subsumes propositional Hoare logic, providing a complete deductive
system for Hoare-style inference rules for partial correctness assertions [8].

The goal of this paper is to develop a coalgebraic theorl AT, paralleling
the coalgebraic treatment KA. Our coalgebraic theory yields a coinductive proof
principle for demonstrating the equality AT expressions, in analogy to the coin-
ductive proof principle for regular expressions. The development of our coalgebraic
theory proceeds as follows. We first introduce a form of deterministic automaton
and define the language accepted by such an automaton. Next, we develop the
theory of such automata, showing that coinduction can be applied to the class of
languages representable by our automata. We then give a class of expressions,
which play the same role as the regular expressions in classical automata theory,
and fairly simple rules for computing derivatives of these expressions.

The difficulty of our endeavor is that the known automata-theoretic presentation
of KAT [9] does not lend itself to a coalgebraic theory. Moreover, the notion of
derivative, essential to the coinduction proof principle in this context, is not readily
definable forKAT expressions as they are defined by Kozen [6]. Roughly, these
difficulties arise from tests being commutative and idempotent, and suggest that
tests need to be handled in a special way. In order for the coalgebraic theory to
interact smoothly with tests, we introducéy@e systemalong with new notions of
strings, languages, automata, and expressions, which wenis&itl stringsmixed
languages mixed automataandmixed expressionsespectively. (We note that
none of these new notions coincide with those already developed in the theory of
KAT.) All well-formed instances of these notions can be assigned types by our type
system. Our type system is inspired by the type system devised by Kozen [7,10]
for KA andKAT, but is designed to address different issues.

This paper is structured as follows. In the next section, we introduce mixed
strings and mixed languages, which will be used to interpret our mixed expressions.
In Section 3, we define a notion of mixed automaton that is used to recognize mixed
languages. We then impose a coalgebraic structure on such automata. In Section 4,
we introduce our type system f&AT, and connect typed AT expressions with
the mixed language they recognize. In Section 5, we give an example of how to use
the coalgebraic theory, via the coinductive proof principle, to establish equivalence
of typedKAT expressions. In Section 6, we show that our technique is complete,
that is, it can establish the equivalence of any two tyléd expressions that are
in fact equivalent. We conclude in Section 7 with considerations of future work.
For reasons of space, we leave the complete proofs for the full paper.
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2 Mixed languages

In this section, we define the notions of mixed strings and mixed languages that we
will use throughout the paper. Our strings will be defined over two alphabets: a
set of primitive programs (denoté®d) and a set of primitive tests (denot&jl. We
allow P to be infinite, but require thas be finite.

Primitive tests can be put together to form more complicated testgeral |
is a primitive testh € B or its negatiorb; the underlying primitive tesk is said
to be the base of the literal, and is denotedbbye(l). When A is a subset o8,
lit(A) denotes the set of all literals over. A testis a nonempty set of literals
with distinct bases. Intuitively, a test can be understood as the conjunction of the
literals it comprises. Thease of a test, denoted byase(t), is defined to be the set
{base(l) : I € t}, in other words, the primitive tests the tess made up from. We
extend the notion of base to primitive programs, by definingotse of a primitive
programp € P asd.

Primitive programs and tests are used to create mixed stringsix@d string
is either the empty string, denoted &yor a sequence = a; . . . a, (Wheren > 1)
with the following properties:

(1) eachu; is either a test or primitive program,

(2) fori =1,...,n—1,if a; is atest, them, . is a primitive program,

3) fori =1,...,n—1,Iif a; is a primitive program, then,_, is a test, and

(4) fori=2,...,n—1,if a; is a test, themase(a;) = B.

Hence, a mixed string is an alternating sequence of primitive programs and tests,
where each test in the sequence is a “complete” test, except possibly if it occurs as
the first or the last element of the sequence. The length of the empty mixedestring
is 0, while the length of a mixed string, . . . a,, iSn.

We define the concatenation of two mixed stringgnd ¢’, denoted byo -

o', as follows. If one ofr, ¢’ is the empty string, then their concatenation is the

other string. If bothv = a,...a, ando’ = b, ...b,, have non-zero length, their
concatenation is defined as:

Q) r=ay...a,b;...0b,, if exactly one ofa,,, b; is a primitive program and is a
mixed string;

2 7 =ay...ap_1(a, Uby)by...by, if a, andb; are tests such thatse(a,) N
base(b;) = @ andr is a mixed string; and is

(3) undefined otherwise.

Intuitively, concatenation of the two strings is obtained by concatenating the se-
guence of string elements, possibly by combining the last test of the first string
with the first test of the second string, provided that the result is a valid mixed
string. We note that concatenation of strings is an associative operation.

We assign one or more types to mixed strings in the following way. A type is of
the formA — B, whereA and B are subsets df. Intuitively, a mixed string has
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type A — B if the first element of the string has badeand it can be concatenated
with an element with bas&. The mixed string: has many types, namely it has
type A — A, forall A € p(B). A mixed string of lengthl consisting of a single
testt has typebase(t) U A — A, for any A € p(B) such thatd N base(t) = 2.
A mixed string of lengthl consisting of a single programhas types — B. A
mixed stringa; . .. a, of lengthn > 1 has typebase(a;) — B\ base(a,). For
example, consider the mixed stridg}p{b, c}q{b, ¢}, with respect taP = {p, ¢}
andB = {b, c}. Itis easy to establish that it has type — @.

A mixed languagés a set of mixed strings, and is typeable, with type- B,
if all of the mixed strings it contains have type— B. In this paper, we will only
be concerned with typeable mixed languages.

We will be interested in different operations on mixed languages in the follow-
ing sections. Wheli,L,, andL are mixed languages, we use the notatign L.
to denote the sefo, - 05 : 01 € Ly,090 € Lo}, L° to denote the sefe}, and for
n > 1, L" to denote the set - L"~!. The following two operations will be useful
in Section 4. The operatdr, defined by

T(L)={o:0¢€ L,|o| =1,0is ates},

extracts from a language all the mixed strings made up of a single test. The operator
¢, defined by

e(L) = LNn{e},

essentially checks if the empty mixed stringg in L, sincee(L) is nonempty if and
only if the empty mixed string is ifk.

3 Mixed automata

A mixed automatover the set of primitive prograny8 and set of primitive tests
Bis a 3-tupleM = ((Sa)acpn),0: (04)acpm)), CONsisting of a set, of states
for each test basd (we call states i, program states), an output function
Sz — {0, 1}, and transition functiong, : Sy x P — Sz and (forA # o)
04 1 Sa x lit(A) — Uaecs) Sa, subject to the following two conditions:
Al. 5,4(8, l) € SA\{base(l)}a and
A2. for every state in S 4, for every test with baseA, and for any two orderings
(Z1,...,Tm)y (Y1, ..., Ym) Of the literals int, if s =5 ... 2% 5, ands 2
.2 5, thens; = ss.
(For convenience, we write —— s if da(s,l) = s for Athe base of.)

As in the coalgebraic treatment of automata [12], and contrary to standard def-
initions, we allow both the state spacg&s and the seP of primitive programs to
be infinite. We also do not force mixed automata to have initial states, for reasons
that will become clear.
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We define ahomomorphisnbetween mixed automat® and M’ to be a se-
quencef = (fa)acp) Of functionsf, : Sy — S such that:

(1) foralls € Sg,0(s) = o' (fz(s)),andforallp € P, f5(dx(s,p)) = d,(fz(s),p),
and

(2) foralls € S4 (A # @)andalll € lit(A), fA\{base(l)}((SA(S, l)) = (514(](,4(8), l)

We write f : M — M’ when f is a homomorphism between automataand M.
For convenience, we often wrif s) for f4(s) when the typed of s is understood.
It is straightforward to verify that mixed automata form a category (dendted),
where the morphisms of the category are mixed automata homomorphisms.

A bisimulationbetween two mixed automafd = ((Sa)ace(B), 0, (04) acp(B))
andM’ = ((5)) acp(B), 0, (04) acp(n)) IS @ sequence of relatiof® 1) 4c,z) Where
R4 C 5S4 x S’ such that the following two conditions hold:

(1) for all s € Sy ands’ € S, if sRzs', theno(s) = o/(s’) and for allp € P,
dx(s,p)RBd(s',p), and

(2) foralls € Sy ands’ € 5 (for A # @), if sRas’, then for alll € lit(A),
5A(37Z)RA\{base(l)}(S;;(S/, l).

A bisimulation between/ and itself is called a bisimulation al¥. Two states
s ands’ of the same type3 are said to bdisimilar, denoted by ~ ¢, if there
exists a bisimulatiof R 4) 4c.(5) such thatsRgs’. The relation~ is the union of
all bisimulations, and in fact is the greatest bisimulation.

In order to establish bisimilarity of states, it will be useful to consider a weaker
type of bisimulation. Apseudo-bisimulatiofrelative to the ordering,, . . . , bz of
the primitive tests iB) between two mixed automadd = ((S)acp(B): 0; (04) aco(B))
andM’ = ((5) acp(), 0, (6') acp(p)) IS @ SEQUENCE Of relatiol&;),—o,... 5 Where
R; C Sy, x 8 (with A; denoting{b; : j < i,j € {1,...,|B|}}) such that the
following two conditions hold:

(1) foralls € Sy ands’ € S, if sRys’, theno(s) = o'(s') and for allp € P,
dz(s,p) R0 (s’, p), and

(2) foralli = 1,...,[B|, forall s € Sy, ands’ € &, if sR;s’, then for all
I € lit(b;), 04,(s, 1) Ri—104 (s',1).

The sense in which pseudo-bisimulation is weaker than a bisimulation is that
there need not be a relation for each elemenp@). As the following theorem
shows, however, we can always complete a pseudo-bisimulation to a bisimulation.

Theorem 3.1 If (R;);—,.. 5 iS a pseudo-bisimulation (relative to the ordering
by, ..., by of the primitive tests iB), then there exists a bisimulatiqi&’,) such
that R/, = R; forall i = 1,...,|B| (with 4; denoting{b; : j < i,j €
{1,...,[B[}}).

Let us say that two statess’ arepseudo-bisimilaif they are related by some
R; in a pseudo-bisimulatiofir;); it follows directly from Theorem 3.1 that pseudo-
bisimilar states are bisimilar.



CHEN AND PUCELLA

We now define the mixed language recognized by a state of a mixed automaton.
Call a sequencg = e; ... e, of primitive programs and literals laearizationof
a mixed stringr = a; ... a, if u can be obtained from by substituting each test
in o by a sequence of length;| containing exactly the literals im;. For example,
with respect taP? = {p, ¢} andB = {b, ¢}, the mixed string{b}p{b, c}q{b, ¢} (of
type {b} — @) has four linearizationsbpbcqgbe, bpcbgbe, bpbegeb, and bpcbgeb.
Intuitively, a mixed stringr is recognized by an automaton if a linearizatioroof
Is accepted by the automaton according to the usual definition. Formally, a mixed
stringo is acceptedy a states of an automatord/ if either

(1) o ise ands is a program state with(s) = 1 (i.e., s is an accepting program
state), or

(2) there exists a linearization . .. e,, of o such thats =% ... % ¢, s'is a
program state, and(s’) = 1.

If o is accepted (by a statg in virtue of satisfying the second criterion, then every
linearization is a witness to this fact — in other words, the existential quantification
in the second criterion could be substituted by a universal quantification (over all
linearizations otr) without any change in the actual definition. This is because of
conditionA2 in the definition of a mixed automaton, which can be thought of as a
sort of “path independence”.

We define the mixed language accepted by stabé automaton)M, written
Ly (s), as the set of mixed strings accepted by stai€)M . It is easy to verify that
all the strings accepted by a state have the same type, namelg if S 4, then
every string inL,,(s) has typed — &, and hencd.,(s) has typed — &.

We can verify the following relationships between accepted languages, homo-
morphisms, and bisimulations. They are similar to those given by Rutten [12].

Proposition 3.2 If s is a state ofM and s’ is a state of M’ with s ~ &', then
LM(S> = LM/(S/).
Proposition 3.3 If f : M — M’ is a mixed automaton homomorphism, then
Lar(s) = Lar (f ()

It turns out that we can impose a mixed automaton structure on the aét of
mixed languages with typd — @. We take as states mixed languages of type
A — @. A state is accepting if the empty striags in the language. It remains to
define the transitions between states; we adapt the idea of Brzozowski derivatives
[1]. Our definition of derivative depends on whether we are taking the derivative
with respect to a program element or a literal.

If the mixed languag€. has typez — B andp € P is a primitive program,
define

Dy,(L)={o : p-o €L}

If the mixed languagd. has typeA — B (for A # @) andl € lit(A) is a
literal, then

D(L)={o : {l}-0c€L}.
6
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Define £ 4 to be the set of mixed languages of tyde— @. Define L to
be ((La) acpB), 0z, (0a) acpB)), Whereos(L) = 1if e € L, and0 otherwise;
dz(L,p) = D,(L); andds(L,l) = Dy(L), for A # @ andl € lit(A). Itis easy
to verify that £ is indeed a mixed automaton. The following propertieadre
significant.

Proposition 3.4 For a mixed automato/ with states(S4) aco(s), the mapsf, :
S, — L mapping a states in .S, to the languagel,,(s) is a mixed automaton
homomorphism.

Proposition 3.5 For any mixed languagé in £, the mixed language accepted by
stateL in L is L itself, thatis,L.(L) = L.

These facts combine into the following fundamental propertg,afamely, that
L is a final automaton.

Theorem 3.6 L is final in the categoryM A, that is, for every mixed automaton
M, there is a unigue homomorphism framhto L.

Proof. Let M be a mixed automaton. By Proposition 3.4, there exists a homomor-
phismf from M to the final automato, mapping a stateto the languagé. ,;(s)
recognized by that state. L¢tbe another homomorphism frofd to £. To estab-
lish uniqueness, we need to show that for any state)/, we havef(s) = f'(s):
f(s) = Ly(s)  (by definition of f)

= L(f'(s)) (by Proposition 3.3)

= f'(s) (by Proposition 3.5)
Hence,f is the required unique homomorphism. O

The finality of £ gives rise to the following coinduction proof principle for
language equality, in a way which is by now standard [14].

Corollary 3.7 For two mixed language&” and L of typeA — &, if K ~ L then
K = L.

In other words, to establish the equality of two mixed languages, it is sufficient
to exhibit a bisimulation between the two languages when viewed as states of the
final automatorC. In the following sections, we will use this principle to analyze
equality of languages described by a typed fornKAT expressions.

4 Mixed expressions and derivatives

A mixed expressiofover the set of primitive prograny8 and the set of primitive
testsB) is any expression built via the following grammar:

ex=0]1|p|l]e+e|e-e]e

(with p € P andl € lit(B)). For simplicity, we often writez; e, for e; - e;. We
also freely use parentheses when appropriate. Intuitively, the constamis 1

7
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stand for failure and success respectively. The expregsiepresents a primitive
action, whilel represents a primitive test. The operatipms used for choice, for
sequencing, andfor iteration. These are, of course, simply KAT expressions, as
defined by Kozen [6]. (In addition to allowing negated primitive tests, Kozen also
allows negated tests.) We call them mixed expressions to emphasize the different
interpretation we have in mind.

In a way similar to regular expressions denoting regular languages, we define a
mappingM from mixed expressions to mixed languages inductively as follows:

M0)=go
M(1) = {e}
M (p) ={p}
M(1)={{l}}
M(ey +ex) =M (e1) U M(es)
M(er - e2)=M(er) - M(€2)
M(e*) = U M(e

The mappingV/ is a rather canonical homomorphism from mixed expressions
to mixed languages. (It is worth noting that we have not defined any axioms for
deriving the “equivalence” of mixed expressions, and it is quite possible for distinct
mixed expressions to give rise to the same mixed language.)

Inspired by a type system devised by Kozen [7,10Ké&randKAT expressions,
we impose a type system on mixed expressions. The types have thelfesnB,
whereA, B € p(B), the same types we assigned to mixed strings in Section 2. We
shall soon see that this is no accident. We assign a type to a mixed expression via
atype judgmentvrittent e : A — B. The following inference rules are used to
derive the type of a mixed expression:

FO:A— B F1:A— A Fp:o—B
Fl:AU{base(l)} — A\ {base(l)}

ep:A—B Fe:A— B Feg:A— B Fey:B—C

Fe +e:A— B Fel-eg: A—C

e:A— A
e A— A
It is clear from these rules that any subexpression of a mixed expression having
a type judgment also has a type judgment.
The typeable mixed expressions (which intuitively are the “well-formed” ex-

pressions) induce typeable mixed languages via the mapginas formalized by
the following proposition.

Proposition 4.1 If +e: A — B, thenM(e) is a mixed language of typé — B.
Our goal is to manipulate mixed languages by manipulating the mixed expres-
8
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sions that represent them via the mappiig(Of course, not every mixed language
is in the image of//.) In particular, we are interested in the operati@it4.) and
(L), as defined in Section 2, as well as the language derivatiyeend D, intro-
duced in the last section.

We now define operators on mixed expressions that capture those operators on
the languages denoted by those mixed expressions. We dgiiictively on the
structure of mixed expressions, as follows:

(wherep € P andl ¢ lit(B)). The operatofl’ “models” the operatof’(L), as
made precise in the following way.

Proposition 4.2 If +e: A — B, thenT(e) is a typeable mixed expression such
thatT'(M(e)) = M(T(e)).
We defines inductively on the structure of mixed expressions, as follows:

1 otherwise
Lif é(e;) = €é(ex) =1

0 otherwise

1
0
0
éler +e2) = { 0if é(er) = é(ez) =0

(wherep € P and! € lit(B)). Note thaté(e) is always the mixed expressioror
1. In analogy to Proposition 4.2, we have the following fact connecting trelé
operators.

Proposition 4.3 1If + e: A — B, thené(e) is a typeable mixed expression such
thate(M(e)) = M(é(e)).

Finally, we define, by induction on the structure of mixed expressions, the
derivative operator) for typeable mixed expressions. There are two forms of
the derivative, in analogy to the two forms of derivative for mixed languages: the
derivative D, with respect to a literal € /it(), and the derivativé), with respect

9
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to a primitive progranmp € P. The two forms of derivative are defined similarly,
except on the product of two expressions. (Strictly speaking, since the definition of
the derivative depends on the type of the expressions being differentiatauld

take type derivations as arguments rather than simply expressions. To lighten the
notation, we writeD as though taking mixed expressions as arguments, with the
understanding that the appropriate types are available.)

The derivativef)p with respect to a primitive program € P is defined as
follows:

D
. B Dy(e1) - e, if B# o
| { Dy(e1) - ea + é(ey) - Dy (ez) otherwise
where-¢;, : A — Bandr- ey, : B — C
[)p(e*> = [)p(e) e’

The derivativeD; with respect to a literal € lit(B) is defined as follows:

0
0
0
. 1ifl=1
Dy(l')=
0 otherwise

ﬁl(el + 62) = ﬁl(el) + Dl(eg)

. Di(e1) - es if base(l) ¢ B
Dl(el . 62) = R R . .
Dl(el) - €y + T(@l) . Dl(eg) otherwise
wheret¢e, : A — Bandrk ey : B — C
D,(e*)=D(e) - e*
We have the following proposition, similar to the previous two, connecting the
derivative D to the previously defined derivative on mixed languages.

Proposition 4.4 Suppose that-¢e¢: A — B.
If A= @, thenforallp € P, D,(M(e)) = M(D,(e)).
If A+ @, then foralll € lit(A), D;(M(e)) = M(D(e)).

10
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5 Example

In this section, we use the notions of pseudo-bisimulation and the coinduction proof
principle (Corollary 3.7), along with the derivative operaforto prove the equiv-
alence of two mixed languages specified as mixed expressions.

Fix P to be the set of primitive progran{®, ¢}, andB to be the set of primitive
tests{b, c}. Let [b] be a shorthand fofb + b). Definea to be the mixed expression

(bp([b]cq)™e)*D,
andg to be the mixed expression
bp([b]cq + bep)*eb + b.

Our goal is to prove that and$ are equivalent, in the sense that they induce
the same language via the mappihg In other words, we want to establish that
M («) = M(3). This example demonstrates the equivalence of the program

while b do {

p;
while c do q
+

and the program

if b then {
p;
while b + ¢ do
if c then q else p

3

This equivalence is a component of the proof of the classical result that\stxdey
program can be simulated bywvehile program with at most one while loop, as
presented by Kozen [6]. We refer the reader there for more details.

There are a few ways to establish this equivalence. One is to rely on a sound
and complete axiomatization of the equational theot AT, and derive the equiv-
alence ofv and algebraically [11]. Another approach is to first construct for each
expression an automaton that accepts the language it denotes, and then minimize
both automata [9]. Two expressions are then equal if the two resulting automata are
isomorphic.

In this paper, we describe a third approach, using the coinductive proof principle
for mixed languages embodied by Corollary 3.7. Since the theory we developed in
Section 3 applies only to mixed languages of type~ @, we verify that indeed
we havet- « : {b} — @ andt § : {b} — @, so that, by Proposition 4.1/ («)
andM () are languages of typg} — o.

We prove the equivalence of and 8 by showing that the mixed languages
M («) and M (3) are pseudo-bisimilar, that is, they are related by some pseudo-
bisimulation. More specifically, we exhibit a pseudo-bisimulation, relative to the

11
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orderingb; = b, bs = ¢, on the final automatod, such thatV/(«) and M (/) are
pseudo-bisimilar. This is sufficient for proving equivalence, since by Theorem 3.1,
the languaged/(a) and M (/3) are then bisimilar, and by Corollary 3./ («) =

M(B).

Definec’ to be the mixed expression

([beq) ea,

and define?’ to be the mixed expression

([b]eq + bep)*eb.

Notice that3 = bps’ + b.

We note that (using the notation of the definition of pseudo-bisimulation}+
@, Ay = {b}, andA, = {b, c}. We claim that the following three relations form a
pseudo-bisimulation:

Ry ={(M(/), M(£")), B ={(M([blga"), M([blg5")),

(M(0), M(0))} (M(ar), M(B3))}
Ry = {(M(pa'), M(pf)),
(M(qa'), M(gp')),
(M(1), M(1)),
(M(0), M(0))}

It is straightforward to verify that Ry, R, Ry) is a pseudo-bisimulation on
L, using the operators defined in the previous section. For instance, consider
Dy(M(«)), which is equal taV/ (Dy(«)) by Proposition 4.4. We comput@,(«)
here.

Hence,D,(M(a)) = M(Dy()) = M(pca'). The other cases are similar.

As we shall see shortly, there is a way to mechanically construct such a bisim-
ulation to establish the equivalence of two mixed expressions.

We remark that an alternative approach to establish equivalence of while pro-
grams based on coalgebras is described by Rutten [13]. This approach uses the
operational semantics of the programs instead of an algebraic framework.

12
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6 Completeness

Thus far, we have established a coinductive proof technique for establishing the
equality of mixed languages (Section 3), and illustrated its use by showing the
equality of two particular mixed languages specified by mixed expressions (Sec-
tion 5), making use of the derivative calculus developed in Section 4. A natural
guestion about this proof technique is whether or not it can establish the equiv-
alence ofany two mixed expressions that are equivalent (in that they specify the
same mixed language). In this section, we answer this question in the affirmative
by formalizing and proving a completeness theorem for our proof technique. In par-
ticular, we show that given two equivalent mixed expressions, a finite bisimulation
relating them can be effectively constructed, by performing only simple syntactic
manipulations. In fact, we exhibit a deterministic procedure for deciding whether
or not two mixed expressions are equivalent.

In order to state our completeness theorem, we need a few definitions. We
say that two mixed expressioag ande, areequal up to ACI propertigswritten
e1 = ey, if e, ande, are syntactically equal, up to the associativity, commutativity,
and idempotence of. That is,e; ande, are equal up to ACI properties if the
following three rewriting rules can be applied to subexpressioms tuf obtaine,:

et (f+g)=(e+f)+y
et f=f+e

et+e=c¢e

Given a relation? between mixed expressions, we define an induced relation
R*" as follows: e; R*“e, if and only if there exists], ¢}, such thate, = ¢/,

ACT D/
ey = €, ande] Rej,.

We define asyntactic bisimulatiorbetween two mixed expressions and e,
having the same typB — @ (for someB C B) to be a sequenck = (R ) acy(5)

of relations such that
(1) for all mixed expressions ¢, if eR ¢/, then-e: A — @andk ¢/ : A — @,
(2) €RB€/,
(3) for all mixed expressions ¢, if eRye', thené(e) = é(¢’), and for allp € P,
D,(e)R§”" Dy(€'), and
(4) for all mixed expressions, ¢/, if eRae (for A + @), then for alll € lit(A),
Dl(e)Rzif{base(l)}Dl(el)'
A syntactic bisimulation resembles a bisimulation, except that it is defined over
mixed expressions, rather than over mixed languages. The next theorem shows that
any two equivalent mixed expressions are related fayi syntactic bisimulation,

that is, a syntactic bisimulatioR where the number of pairs in each relatiép is
finite.

Theorem 6.1 For all mixed expressions, e;, of typeA — &, M(ey) = M(es) if
13
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and only if there exists a finite syntactic bisimulation betwegesind es.

Proof. (<) Itis easy to check that a syntactic bisimulatiBrinduces a bisimula-
tion R such that; R 4e, if and only if M (e;) R4 M (e;). The result then follows by
Corollary 3.7.

(=) We first show how to construct, for every mixed expressiamith - ¢ :

A. — B,, afinite-state automatol = ((Sa)acp(B): (04) acp(s)) With transition
functionsdy : Sy x P — Sg and (forA # @) 64 : Sa x lit(A) — UAEp(B) Sa,
satisfying the conditions (iJ4(s,1) € Sa\fsse)}, (i) the states of5, are mixed
expressions having typé — B, (iii) e is a state ofS4_, (iv) if dz(s1,p) = s2,
thenD,(s1) =" sy, and (v) ifd4(s1,1) = 9, thenDy(s;) *=' s,. This automaton

can be defined by induction on the structureeoRoughly speaking, the states of

the automaton are the mixed expressions (equal up to ACI properties) obtainable
from e by taking one or more derivatives.

Given equivalent mixed expressionsande, of type A — &, a finite syn-
tactic bisimulation’z can be constructed as follows. First, construct the automata
M, and M, corresponding t@; ande,. Then, initialize R to contain the pair
(e1,e5), and iterate the following process: for evefy,¢') in R, add the pairs
(01,8(e,x), 09 5(€¢',z)) (Wheree, ¢’ have typeB — @), for all z. Perform this
iteration until no new pairs are added £ This must terminate, because there
are finitely many pairs of statds, ¢’) with e in M; ande’ in M. It is straight-
forward to check thai? is a syntactic bisimulation, under the assumption that
M(e1) = M(e2). O

The procedure described in the proof of Theorem 6.1 in fact can be easily turned
into a procedure for deciding if two mixed expressions are equivalent. To perform
this decision, construdk, and verify that at all pairs of statés, ¢’) in R, é(e) =
é(e'). If this verification fails, then the two mixed expressions are not equivalent,
otherwise; they are equivalent.

The bisimulation in Section 5 is indeed a bisimulation induced by a syntactic
bisimulation on the mixed expressionsand(.

7 Conclusions and future work

We believe that proofs of equivalence between mixed expressions suclaras

[ via bisimulation are in general more easily derived than ones obtained through
a sound and complete axiomatizationkKOAT. Given two equivalent mixed ex-
pressions, we can exhibit a bisimulation using the purely mechanical procedure
underlying Theorem 6.1: use the derivative operators to construct a finite bisimu-
lation in which the two expressions are paired. In contrast, equational reasoning
typically requires creativity.

The “path independence” of a mixed automaton (conditi@hgives any mixed
automaton a certain form of redundancy. This redundancy persists in the definition
of bisimulation, and is the reason why a pseudo-bisimulation, a seemingly weaker
notion of bisimulation, gives rise to a bisimulation. An open question is to cleanly

14
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eliminate this redundancy; a particular motivation for doing this would be to make
proofs of expression equivalence as simple as possible. Along these lines, it would
be of interest to develop other weaker notions of bisimulation that give rise to bisim-
ulations; pseudo-bisimulations require a sort of “fixed variable ordering” that does
not seem absolutely necessary.

Another issue for future work would be to give a class of expressions wider
than our mixed expressions for which there are readily understandable and appli-
cable rules for computing derivatives. In particular, a methodology for computing
derivatives of the&KAT expressions defined by Kozen [6] would be nice to see. In-
tuitively, there seems to be a tradeoff between the expressiveness of the regular
expression language and the simplicity of computing derivatives (in the context
of KAT). Formal tools for understanding this tradeoff could potentially be quite
useful.
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