
Electronic Notes in Theoretical Computer Science 82 No. 1 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume82.html 16 pages

A Coalgebraic Approach to Kleene Algebra
with Tests

Hubie Chen1

Department of Computer Science
Cornell University

Ithaca, NY 14853 USA

Riccardo Pucella2

Department of Computer Science
Cornell University

Ithaca, NY 14853 USA

Abstract

Kleene Algebra with Tests is an extension of Kleene Algebra, the algebra of regular ex-
pressions, which can be used to reason about programs. We develop a coalgebraic theory
of Kleene Algebra with Tests, along the lines of the coalgebraic theory of regular expres-
sions based on deterministic automata. Since the known automata-theoretic presentation
of Kleene Algebra with Tests does not lend itself to a coalgebraic theory, we define a new
interpretation of Kleene Algebra with Tests expressions and a corresponding automata-
theoretic presentation. One outcome of the theory is a coinductive proof principle, that can
be used to establish equivalence of our Kleene Algebra with Tests expressions.

1 Introduction

Kleene algebra (KA) is the algebra of regular expressions [2,4]. As is well known,
the theory of regular expressions enjoys a strong connection with the theory of
finite-state automata. This connection was used by Rutten [12] to give a coalge-
braic treatment of regular expressions. One of the fruits of this coalgebraic treat-
ment iscoinduction, a proof technique for demonstrating the equivalence of regular
expressions [14]. Other methods for proving the equality of regular expressions
have previously been established – for instance, reasoning by using a sound and
complete axiomatization [5,15], or by minimization of automata representing the

1 Email: hubes@cs.cornell.edu
2 Email: riccardo@cs.cornell.edu

c©2003 Published by Elsevier Science B. V.

Chen and Pucella

expressions [3]. However, the coinduction proof technique can give relatively short
proofs, and is fairly simple to apply.

Recently, Kozen [6] introduced Kleene Algebra with Tests (KAT), an extension
of KA designed for the particular purpose of reasoning about programs and their
properties. The regular expressions ofKAT allow one to intersperse boolean tests
along with program actions, permitting the convenient modelling of programming
constructs such as conditionals andwhile loops. The utility ofKAT is evidenced by
the fact that it subsumes propositional Hoare logic, providing a complete deductive
system for Hoare-style inference rules for partial correctness assertions [8].

The goal of this paper is to develop a coalgebraic theory ofKAT, paralleling
the coalgebraic treatment ofKA. Our coalgebraic theory yields a coinductive proof
principle for demonstrating the equality ofKAT expressions, in analogy to the coin-
ductive proof principle for regular expressions. The development of our coalgebraic
theory proceeds as follows. We first introduce a form of deterministic automaton
and define the language accepted by such an automaton. Next, we develop the
theory of such automata, showing that coinduction can be applied to the class of
languages representable by our automata. We then give a class of expressions,
which play the same role as the regular expressions in classical automata theory,
and fairly simple rules for computing derivatives of these expressions.

The difficulty of our endeavor is that the known automata-theoretic presentation
of KAT [9] does not lend itself to a coalgebraic theory. Moreover, the notion of
derivative, essential to the coinduction proof principle in this context, is not readily
definable forKAT expressions as they are defined by Kozen [6]. Roughly, these
difficulties arise from tests being commutative and idempotent, and suggest that
tests need to be handled in a special way. In order for the coalgebraic theory to
interact smoothly with tests, we introduce atype systemalong with new notions of
strings, languages, automata, and expressions, which we callmixed strings, mixed
languages, mixed automata, andmixed expressions, respectively. (We note that
none of these new notions coincide with those already developed in the theory of
KAT.) All well-formed instances of these notions can be assigned types by our type
system. Our type system is inspired by the type system devised by Kozen [7,10]
for KA andKAT, but is designed to address different issues.

This paper is structured as follows. In the next section, we introduce mixed
strings and mixed languages, which will be used to interpret our mixed expressions.
In Section 3, we define a notion of mixed automaton that is used to recognize mixed
languages. We then impose a coalgebraic structure on such automata. In Section 4,
we introduce our type system forKAT, and connect typedKAT expressions with
the mixed language they recognize. In Section 5, we give an example of how to use
the coalgebraic theory, via the coinductive proof principle, to establish equivalence
of typedKAT expressions. In Section 6, we show that our technique is complete,
that is, it can establish the equivalence of any two typedKAT expressions that are
in fact equivalent. We conclude in Section 7 with considerations of future work.
For reasons of space, we leave the complete proofs for the full paper.

2

Chen and Pucella

2 Mixed languages

In this section, we define the notions of mixed strings and mixed languages that we
will use throughout the paper. Our strings will be defined over two alphabets: a
set of primitive programs (denotedP) and a set of primitive tests (denotedB). We
allowP to be infinite, but require thatB be finite.

Primitive tests can be put together to form more complicated tests. Aliteral l
is a primitive testb ∈ B or its negationb; the underlying primitive testb is said
to be the base of the literal, and is denoted bybase(l). WhenA is a subset ofB,
lit(A) denotes the set of all literals overA. A test is a nonempty set of literals
with distinct bases. Intuitively, a test can be understood as the conjunction of the
literals it comprises. Thebase of a testt, denoted bybase(t), is defined to be the set
{base(l) : l ∈ t}, in other words, the primitive tests the testt is made up from. We
extend the notion of base to primitive programs, by defining thebase of a primitive
programp ∈ P as∅.

Primitive programs and tests are used to create mixed strings. Amixed string
is either the empty string, denoted byε, or a sequenceσ = a1 . . . an (wheren ≥ 1)
with the following properties:

(1) eachai is either a test or primitive program,

(2) for i = 1, . . . , n− 1, if ai is a test, thenai+1 is a primitive program,

(3) for i = 1, . . . , n− 1, if ai is a primitive program, thenai+1 is a test, and

(4) for i = 2, . . . , n− 1, if ai is a test, thenbase(ai) = B.

Hence, a mixed string is an alternating sequence of primitive programs and tests,
where each test in the sequence is a “complete” test, except possibly if it occurs as
the first or the last element of the sequence. The length of the empty mixed stringε
is 0, while the length of a mixed stringa1 . . . an is n.

We define the concatenation of two mixed stringsσ andσ′, denoted byσ ·
σ′, as follows. If one ofσ, σ′ is the empty string, then their concatenation is the
other string. If bothσ = a1 . . . an andσ′ = b1 . . . bm have non-zero length, their
concatenation is defined as:

(1) τ = a1 . . . anb1 . . . bm if exactly one ofan, b1 is a primitive program andτ is a
mixed string;

(2) τ = a1 . . . an−1(an ∪ b1)b2 . . . bm if an andb1 are tests such thatbase(an) ∩
base(b1) = ∅ andτ is a mixed string; and is

(3) undefined otherwise.

Intuitively, concatenation of the two strings is obtained by concatenating the se-
quence of string elements, possibly by combining the last test of the first string
with the first test of the second string, provided that the result is a valid mixed
string. We note that concatenation of strings is an associative operation.

We assign one or more types to mixed strings in the following way. A type is of
the formA → B, whereA andB are subsets ofB. Intuitively, a mixed string has

3

Chen and Pucella

typeA→ B if the first element of the string has baseA, and it can be concatenated
with an element with baseB. The mixed stringε has many types, namely it has
typeA → A, for all A ∈ ℘(B). A mixed string of length1 consisting of a single
testt has typebase(t) ∪ A → A, for anyA ∈ ℘(B) such thatA ∩ base(t) = ∅.
A mixed string of length1 consisting of a single programp has type∅ → B. A
mixed stringa1 . . . an of lengthn > 1 has typebase(a1) → B \ base(an). For
example, consider the mixed string{b}p{b, c}q{b, c}, with respect toP = {p, q}
andB = {b, c}. It is easy to establish that it has type{b} → ∅.

A mixed languageis a set of mixed strings, and is typeable, with typeA→ B,
if all of the mixed strings it contains have typeA→ B. In this paper, we will only
be concerned with typeable mixed languages.

We will be interested in different operations on mixed languages in the follow-
ing sections. WhenL1,L2, andL are mixed languages, we use the notationL1 · L2

to denote the set{σ1 · σ2 : σ1 ∈ L1, σ2 ∈ L2}, L0 to denote the set{ε}, and for
n ≥ 1, Ln to denote the setL · Ln−1. The following two operations will be useful
in Section 4. The operatorT , defined by

T (L) = {σ : σ ∈ L, |σ| = 1, σ is a test},

extracts from a language all the mixed strings made up of a single test. The operator
ε, defined by

ε(L) = L ∩ {ε},

essentially checks if the empty mixed stringε is inL, sinceε(L) is nonempty if and
only if the empty mixed string is inL.

3 Mixed automata

A mixed automatonover the set of primitive programsP and set of primitive tests
B is a 3-tupleM = (〈SA〉A∈℘(B), o, 〈δA〉A∈℘(B)), consisting of a setSA of states
for each test baseA (we call states inS∅ program states), an output functiono :
S∅ → {0, 1}, and transition functionsδ∅ : S∅ × P → SB and (forA 6= ∅)
δA : SA × lit(A)→

⋃
A∈℘(B) SA, subject to the following two conditions:

A1. δA(s, l) ∈ SA\{base(l)}, and

A2. for every states in SA, for every testt with baseA, and for any two orderings
〈x1, . . . , xm〉, 〈y1, . . . , ym〉 of the literals int, if s

x1−→ . . .
xm−→ s1 ands

y1−→
. . .

ym−→ s2 thens1 = s2.
(For convenience, we writes

l−→ s′ if δA(s, l) = s′ for A the base ofs.)

As in the coalgebraic treatment of automata [12], and contrary to standard def-
initions, we allow both the state spacesSA and the setP of primitive programs to
be infinite. We also do not force mixed automata to have initial states, for reasons
that will become clear.

4

Chen and Pucella

We define ahomomorphismbetween mixed automataM andM ′ to be a se-
quencef = 〈fA〉A∈℘(B) of functionsfA : SA → S ′A such that:

(1) for alls ∈ S∅, o(s) = o′(f∅(s)), and for allp ∈ P, fB(δ∅(s, p)) = δ′
∅

(f∅(s), p),
and

(2) for all s ∈ SA (A 6= ∅) and alll ∈ lit(A), fA\{base(l)}(δA(s, l)) = δ′A(fA(s), l).

We writef : M → M ′ whenf is a homomorphism between automataM andM ′.
For convenience, we often writef(s) for fA(s) when the typeA of s is understood.
It is straightforward to verify that mixed automata form a category (denotedMA),
where the morphisms of the category are mixed automata homomorphisms.

A bisimulationbetween two mixed automataM = (〈SA〉A∈℘(B), o, 〈δA〉A∈℘(B))
andM ′ = (〈S ′A〉A∈℘(B), o

′, 〈δ′A〉A∈℘(B)) is a sequence of relations〈RA〉A∈℘(B) where
RA ⊆ SA × S ′A such that the following two conditions hold:

(1) for all s ∈ S∅ ands′ ∈ S ′
∅

, if sR∅s′, theno(s) = o′(s′) and for allp ∈ P,
δ∅(s, p)RBδ

′
∅

(s′, p), and

(2) for all s ∈ SA ands′ ∈ S ′A (for A 6= ∅), if sRAs
′, then for alll ∈ lit(A),

δA(s, l)RA\{base(l)}δ
′
A(s′, l).

A bisimulation betweenM and itself is called a bisimulation onM . Two states
s ands′ of the same typeB are said to bebisimilar, denoted bys ∼ s′, if there
exists a bisimulation〈RA〉A∈℘(B) such thatsRBs

′. The relation∼ is the union of
all bisimulations, and in fact is the greatest bisimulation.

In order to establish bisimilarity of states, it will be useful to consider a weaker
type of bisimulation. Apseudo-bisimulation(relative to the orderingb1, . . . , b|B| of
the primitive tests inB) between two mixed automataM = (〈SA〉A∈℘(B), o, 〈δA〉A∈℘(B))
andM ′ = (〈S ′A〉A∈℘(B), o

′, 〈δ′〉A∈℘(B)) is a sequence of relations〈Ri〉i=0,...,|B| where
Ri ⊆ SAi × S ′Ai (with Ai denoting{bj : j ≤ i, j ∈ {1, . . . , |B|}}) such that the
following two conditions hold:

(1) for all s ∈ S∅ ands′ ∈ S ′
∅

, if sR0s
′, theno(s) = o′(s′) and for allp ∈ P,

δ∅(s, p)R|B|δ
′
∅

(s′, p), and

(2) for all i = 1, . . . , |B|, for all s ∈ SAi ands′ ∈ S ′Ai , if sRis
′, then for all

l ∈ lit(bi), δAi(s, l)Ri−1δ
′
Ai

(s′, l).

The sense in which pseudo-bisimulation is weaker than a bisimulation is that
there need not be a relation for each element of℘(B). As the following theorem
shows, however, we can always complete a pseudo-bisimulation to a bisimulation.

Theorem 3.1 If 〈Ri〉i=0,...,|B| is a pseudo-bisimulation (relative to the ordering
b1, . . . , b|B| of the primitive tests inB), then there exists a bisimulation〈R′A〉 such
that R′Ai = Ri for all i = 1, . . . , |B| (with Ai denoting{bj : j ≤ i, j ∈
{1, . . . , |B|}}).

Let us say that two statess, s′ arepseudo-bisimilarif they are related by some
Ri in a pseudo-bisimulation〈Ri〉; it follows directly from Theorem 3.1 that pseudo-
bisimilar states are bisimilar.

5

Chen and Pucella

We now define the mixed language recognized by a state of a mixed automaton.
Call a sequenceµ = e1 . . . em of primitive programs and literals alinearizationof
a mixed stringσ = a1 . . . an if µ can be obtained fromσ by substituting each testai
in σ by a sequence of length|ai| containing exactly the literals inai. For example,
with respect toP = {p, q} andB = {b, c}, the mixed string{b}p{b, c}q{b, c} (of
type {b} → ∅) has four linearizations:bpbcqbc, bpcbqbc, bpbcqcb, andbpcbqcb.
Intuitively, a mixed stringσ is recognized by an automaton if a linearization ofσ
is accepted by the automaton according to the usual definition. Formally, a mixed
stringσ is acceptedby a states of an automatonM if either

(1) σ is ε ands is a program state witho(s) = 1 (i.e., s is an accepting program
state), or

(2) there exists a linearizatione1 . . . em of σ such thats
e1−→ . . .

em−→ s′, s′ is a
program state, ando(s′) = 1.

If σ is accepted (by a states) in virtue of satisfying the second criterion, then every
linearization is a witness to this fact – in other words, the existential quantification
in the second criterion could be substituted by a universal quantification (over all
linearizations ofσ) without any change in the actual definition. This is because of
conditionA2 in the definition of a mixed automaton, which can be thought of as a
sort of “path independence”.

We define the mixed language accepted by states of automatonM , written
LM(s), as the set of mixed strings accepted by states of M . It is easy to verify that
all the strings accepted by a state have the same type, namely, ifs is in SA, then
every string inLM(s) has typeA→ ∅, and henceLM(s) has typeA→ ∅.

We can verify the following relationships between accepted languages, homo-
morphisms, and bisimulations. They are similar to those given by Rutten [12].

Proposition 3.2 If s is a state ofM and s′ is a state ofM ′ with s ∼ s′, then
LM(s) = LM ′(s

′).

Proposition 3.3 If f : M → M ′ is a mixed automaton homomorphism, then
LM(s) = LM ′(f(s′)).

It turns out that we can impose a mixed automaton structure on the set ofall
mixed languages with typeA → ∅. We take as states mixed languages of type
A → ∅. A state is accepting if the empty stringε is in the language. It remains to
define the transitions between states; we adapt the idea of Brzozowski derivatives
[1]. Our definition of derivative depends on whether we are taking the derivative
with respect to a program element or a literal.

If the mixed languageL has type∅ → B andp ∈ P is a primitive program,
define

Dp(L) = {σ : p · σ ∈ L}.

If the mixed languageL has typeA → B (for A 6= ∅) and l ∈ lit(A) is a
literal, then

Dl(L) = {σ : {l} · σ ∈ L}.
6

Chen and Pucella

DefineLA to be the set of mixed languages of typeA → ∅. DefineL to
be (〈LA〉A∈℘(B), oL, 〈δA〉A∈℘(B)), whereoL(L) = 1 if ε ∈ L, and 0 otherwise;
δ∅(L, p) = Dp(L); andδA(L, l) = Dl(L), for A 6= ∅ andl ∈ lit(A). It is easy
to verify thatL is indeed a mixed automaton. The following properties ofL are
significant.

Proposition 3.4 For a mixed automatonM with states〈SA〉A∈℘(B), the mapsfA :
SA → L mapping a states in SA to the languageLM(s) is a mixed automaton
homomorphism.

Proposition 3.5 For any mixed languageL in L, the mixed language accepted by
stateL in L isL itself, that is,LL(L) = L.

These facts combine into the following fundamental property ofL, namely, that
L is a final automaton.

Theorem 3.6 L is final in the categoryMA, that is, for every mixed automaton
M , there is a unique homomorphism fromM toL.

Proof. LetM be a mixed automaton. By Proposition 3.4, there exists a homomor-
phismf fromM to the final automatonL, mapping a states to the languageLM(s)
recognized by that state. Letf ′ be another homomorphism fromM toL. To estab-
lish uniqueness, we need to show that for any states of M , we havef(s) = f ′(s):

f(s) = LM(s) (by definition off)

= LL(f ′(s)) (by Proposition 3.3)

= f ′(s) (by Proposition 3.5)

Hence,f is the required unique homomorphism. 2

The finality of L gives rise to the following coinduction proof principle for
language equality, in a way which is by now standard [14].

Corollary 3.7 For two mixed languagesK andL of typeA → ∅, if K ∼ L then
K = L.

In other words, to establish the equality of two mixed languages, it is sufficient
to exhibit a bisimulation between the two languages when viewed as states of the
final automatonL. In the following sections, we will use this principle to analyze
equality of languages described by a typed form ofKAT expressions.

4 Mixed expressions and derivatives

A mixed expression(over the set of primitive programsP and the set of primitive
testsB) is any expression built via the following grammar:

e ::= 0 | 1 | p | l | e1 + e2 | e1 · e2 | e∗

(with p ∈ P and l ∈ lit(B)). For simplicity, we often writee1e2 for e1 · e2. We
also freely use parentheses when appropriate. Intuitively, the constants0 and 1

7

Chen and Pucella

stand for failure and success respectively. The expressionp represents a primitive
action, whilel represents a primitive test. The operation+ is used for choice,· for
sequencing, and∗ for iteration. These are, of course, simply KAT expressions, as
defined by Kozen [6]. (In addition to allowing negated primitive tests, Kozen also
allows negated tests.) We call them mixed expressions to emphasize the different
interpretation we have in mind.

In a way similar to regular expressions denoting regular languages, we define a
mappingM from mixed expressions to mixed languages inductively as follows:

M(0) =∅

M(1) = {ε}
M(p) = {p}
M(l) = {{l}}

M(e1 + e2) =M(e1) ∪M(e2)

M(e1 · e2) =M(e1) ·M(e2)

M(e∗) =
⋃
n≥0

M(e)n

The mappingM is a rather canonical homomorphism from mixed expressions
to mixed languages. (It is worth noting that we have not defined any axioms for
deriving the “equivalence” of mixed expressions, and it is quite possible for distinct
mixed expressions to give rise to the same mixed language.)

Inspired by a type system devised by Kozen [7,10] forKA andKAT expressions,
we impose a type system on mixed expressions. The types have the formA → B,
whereA,B ∈ ℘(B), the same types we assigned to mixed strings in Section 2. We
shall soon see that this is no accident. We assign a type to a mixed expression via
a type judgmentwritten ` e : A → B. The following inference rules are used to
derive the type of a mixed expression:

` 0 : A→ B ` 1 : A→ A ` p : ∅→ B

` l : A ∪ {base(l)} → A \ {base(l)}

` e1 : A→ B ` e2 : A→ B

` e1 + e2 : A→ B

` e1 : A→ B ` e2 : B → C

` e1 · e2 : A→ C

e : A→ A

e∗ : A→ A

It is clear from these rules that any subexpression of a mixed expression having
a type judgment also has a type judgment.

The typeable mixed expressions (which intuitively are the “well-formed” ex-
pressions) induce typeable mixed languages via the mappingM , as formalized by
the following proposition.

Proposition 4.1 If ` e : A→ B, thenM(e) is a mixed language of typeA→ B.

Our goal is to manipulate mixed languages by manipulating the mixed expres-

8

Chen and Pucella

sions that represent them via the mappingM . (Of course, not every mixed language
is in the image ofM .) In particular, we are interested in the operationsT (L) and
ε(L), as defined in Section 2, as well as the language derivativesDp andDl intro-
duced in the last section.

We now define operators on mixed expressions that capture those operators on
the languages denoted by those mixed expressions. We defineT̂ inductively on the
structure of mixed expressions, as follows:

T̂ (0) = 0

T̂ (1) = 1

T̂ (p) = 0

T̂ (l) = l

T̂ (e1 + e2) = T̂ (e1) + T̂ (e2)

T̂ (e1 · e2) = T̂ (e1) · T̂ (e2)

T̂ (e∗) = T̂ (e)∗

(wherep ∈ P and l ∈ lit(B)). The operator̂T “models” the operatorT (L), as
made precise in the following way.

Proposition 4.2 If ` e : A → B, thenT̂ (e) is a typeable mixed expression such
thatT (M(e)) = M(T̂ (e)).

We definêε inductively on the structure of mixed expressions, as follows:

ε̂(0) = 0

ε̂(1) = 1

ε̂(p) = 0

ε̂(l) = 0

ε̂(e1 + e2) =

 0 if ε̂(e1) = ε̂(e2) = 0

1 otherwise

ε̂(e1 · e2) =

 1 if ε̂(e1) = ε̂(e2) = 1

0 otherwise

ε̂(e∗) = 1

(wherep ∈ P andl ∈ lit(B)). Note that̂ε(e) is always the mixed expression0 or
1. In analogy to Proposition 4.2, we have the following fact connecting theε andε̂
operators.

Proposition 4.3 If ` e : A → B, thenε̂(e) is a typeable mixed expression such
that ε(M(e)) = M(ε̂(e)).

Finally, we define, by induction on the structure of mixed expressions, the
derivative operatorD̂ for typeable mixed expressions. There are two forms of
the derivative, in analogy to the two forms of derivative for mixed languages: the
derivativeD̂l with respect to a literall ∈ lit(B), and the derivativêDp with respect

9

Chen and Pucella

to a primitive programp ∈ P. The two forms of derivative are defined similarly,
except on the product of two expressions. (Strictly speaking, since the definition of
the derivative depends on the type of the expressions being differentiated,D̂ should
take type derivations as arguments rather than simply expressions. To lighten the
notation, we writeD̂ as though taking mixed expressions as arguments, with the
understanding that the appropriate types are available.)

The derivativeD̂p with respect to a primitive programp ∈ P is defined as
follows:

D̂p(0) = 0

D̂p(1) = 0

D̂p(q) =

 1 if p = q

0 otherwise

D̂p(l) = 0

D̂p(e1 + e2) = D̂p(e1) + D̂p(e2)

D̂p(e1 · e2) =

 D̂p(e1) · e2 if B 6= ∅

D̂p(e1) · e2 + ε̂(e1) · D̂p(e2) otherwise

where` e1 : A→ B and` e2 : B → C

D̂p(e
∗) = D̂p(e) · e∗

The derivativeD̂l with respect to a literall ∈ lit(B) is defined as follows:

D̂l(0) = 0

D̂l(1) = 0

D̂l(p) = 0

D̂l(l
′) =

 1 if l = l′

0 otherwise

D̂l(e1 + e2) = D̂l(e1) + D̂l(e2)

D̂l(e1 · e2) =

 D̂l(e1) · e2 if base(l) /∈ B

D̂l(e1) · e2 + T̂ (e1) · D̂l(e2) otherwise

where` e1 : A→ B and` e2 : B → C

D̂l(e
∗) = D̂l(e) · e∗

We have the following proposition, similar to the previous two, connecting the
derivativeD̂ to the previously defined derivativeD on mixed languages.

Proposition 4.4 Suppose that` e : A→ B.
If A = ∅, then for allp ∈ P,Dp(M(e)) = M(D̂p(e)).

If A 6= ∅, then for alll ∈ lit(A),Dl(M(e)) = M(D̂l(e)).

10

Chen and Pucella

5 Example

In this section, we use the notions of pseudo-bisimulation and the coinduction proof
principle (Corollary 3.7), along with the derivative operatorD̂, to prove the equiv-
alence of two mixed languages specified as mixed expressions.

Fix P to be the set of primitive programs{p, q}, andB to be the set of primitive
tests{b, c}. Let [b] be a shorthand for(b+ b). Defineα to be the mixed expression

(bp([b]cq)∗c)∗b,

andβ to be the mixed expression

bp([b]cq + bcp)∗cb+ b.

Our goal is to prove thatα andβ are equivalent, in the sense that they induce
the same language via the mappingM . In other words, we want to establish that
M(α) = M(β). This example demonstrates the equivalence of the program

while b do {

p;

while c do q

}

and the program

if b then {

p;

while b + c do

if c then q else p

}

This equivalence is a component of the proof of the classical result that everywhile
program can be simulated by awhile program with at most one while loop, as
presented by Kozen [6]. We refer the reader there for more details.

There are a few ways to establish this equivalence. One is to rely on a sound
and complete axiomatization of the equational theory ofKAT, and derive the equiv-
alence ofα andβ algebraically [11]. Another approach is to first construct for each
expression an automaton that accepts the language it denotes, and then minimize
both automata [9]. Two expressions are then equal if the two resulting automata are
isomorphic.

In this paper, we describe a third approach, using the coinductive proof principle
for mixed languages embodied by Corollary 3.7. Since the theory we developed in
Section 3 applies only to mixed languages of typeA → ∅, we verify that indeed
we havè α : {b} → ∅ and` β : {b} → ∅, so that, by Proposition 4.1,M(α)
andM(β) are languages of type{b} → ∅.

We prove the equivalence ofα andβ by showing that the mixed languages
M(α) andM(β) are pseudo-bisimilar, that is, they are related by some pseudo-
bisimulation. More specifically, we exhibit a pseudo-bisimulation, relative to the

11

Chen and Pucella

orderingb1 = b, b2 = c, on the final automatonL, such thatM(α) andM(β) are
pseudo-bisimilar. This is sufficient for proving equivalence, since by Theorem 3.1,
the languagesM(α) andM(β) are then bisimilar, and by Corollary 3.7,M(α) =
M(β).

Defineα′ to be the mixed expression

([b]cq)∗cα,

and defineβ′ to be the mixed expression

([b]cq + bcp)∗cb.

Notice thatβ = bpβ′ + b.
We note that (using the notation of the definition of pseudo-bisimulation),A0 =

∅, A1 = {b}, andA2 = {b, c}. We claim that the following three relations form a
pseudo-bisimulation:

R2 = {(M(α′),M(β′)),

(M(0),M(0))}

R1 = {(M([b]qα′),M([b]qβ′)),

(M(α),M(β))}

R0 = {(M(pα′),M(pβ′)),

(M(qα′),M(qβ′)),

(M(1),M(1)),

(M(0),M(0))}

It is straightforward to verify that〈R0, R1, R2〉 is a pseudo-bisimulation on
L, using the operators defined in the previous section. For instance, consider
Db(M(α)), which is equal toM(D̂b(α)) by Proposition 4.4. We computêDb(α)
here.

D̂b(α) = D̂b((bp([b]cq)
∗c)∗)b+ T̂ ((bp([b]cq)∗c)∗)D̂b(b)

= D̂b(bp([b]cq)
∗c)(bp([b]cq)∗c)∗b+ T̂ ((bp([b]cq)∗c)∗)0

= p([b]cq)∗c(bp([b]cq)∗c)∗b

= pα′

Hence,Db(M(α)) = M(D̂b(α)) = M(pα′). The other cases are similar.
As we shall see shortly, there is a way to mechanically construct such a bisim-

ulation to establish the equivalence of two mixed expressions.
We remark that an alternative approach to establish equivalence of while pro-

grams based on coalgebras is described by Rutten [13]. This approach uses the
operational semantics of the programs instead of an algebraic framework.

12

Chen and Pucella

6 Completeness

Thus far, we have established a coinductive proof technique for establishing the
equality of mixed languages (Section 3), and illustrated its use by showing the
equality of two particular mixed languages specified by mixed expressions (Sec-
tion 5), making use of the derivative calculus developed in Section 4. A natural
question about this proof technique is whether or not it can establish the equiv-
alence ofany two mixed expressions that are equivalent (in that they specify the
same mixed language). In this section, we answer this question in the affirmative
by formalizing and proving a completeness theorem for our proof technique. In par-
ticular, we show that given two equivalent mixed expressions, a finite bisimulation
relating them can be effectively constructed, by performing only simple syntactic
manipulations. In fact, we exhibit a deterministic procedure for deciding whether
or not two mixed expressions are equivalent.

In order to state our completeness theorem, we need a few definitions. We
say that two mixed expressionse1 ande2 areequal up to ACI properties, written
e1

ACI
= e2, if e1 ande2 are syntactically equal, up to the associativity, commutativity,

and idempotence of+. That is,e1 ande2 are equal up to ACI properties if the
following three rewriting rules can be applied to subexpressions ofe1 to obtaine2:

e+ (f + g) = (e+ f) + g

e+ f = f + e

e+ e = e

Given a relationR̂ between mixed expressions, we define an induced relation
R̂ACI as follows: e1R̂

ACIe2 if and only if there existse′1, e
′
2 such thate1

ACI
= e′1,

e2
ACI
= e′2, ande′1R̂e

′
2.

We define asyntactic bisimulationbetween two mixed expressionse1 ande2

having the same typeB → ∅ (for someB ⊆ B) to be a sequencêR = 〈R̂A〉A∈℘(B)

of relations such that

(1) for all mixed expressionse, e′, if eR̂Ae
′, then` e : A→ ∅ and` e′ : A→ ∅,

(2) eR̂Be
′,

(3) for all mixed expressionse, e′, if eR̂∅e′, thenε̂(e) = ε̂(e′), and for allp ∈ P,
D̂p(e)R̂

ACI
B D̂p(e

′), and

(4) for all mixed expressionse, e′, if eR̂Ae
′ (for A 6= ∅), then for alll ∈ lit(A),

D̂l(e)R̂
ACI

A\{base(l)}D̂l(e
′).

A syntactic bisimulation resembles a bisimulation, except that it is defined over
mixed expressions, rather than over mixed languages. The next theorem shows that
any two equivalent mixed expressions are related by afinitesyntactic bisimulation,
that is, a syntactic bisimulation̂R where the number of pairs in each relationR̂A is
finite.

Theorem 6.1 For all mixed expressionse1, e2, of typeA→ ∅, M(e1) = M(e2) if

13

Chen and Pucella

and only if there exists a finite syntactic bisimulation betweene1 ande2.

Proof. (⇐) It is easy to check that a syntactic bisimulationR̂ induces a bisimula-
tionR such thate1R̂Ae2 if and only ifM(e1)RAM(e2). The result then follows by
Corollary 3.7.

(⇒) We first show how to construct, for every mixed expressione with ` e :
Ae → Be, a finite-state automatonM = (〈SA〉A∈℘(B), 〈δA〉A∈℘(B)) with transition
functionsδ∅ : S∅ × P → SB and (forA 6= ∅) δA : SA × lit(A) →

⋃
A∈℘(B) SA,

satisfying the conditions (i)δA(s, l) ∈ SA\{base(l)}, (ii) the states ofSA are mixed
expressions having typeA → Be, (iii) e is a state ofSAe , (iv) if δ∅(s1, p) = s2,
thenD̂p(s1)

ACI
= s2, and (v) if δA(s1, l) = s2, thenD̂l(s1)

ACI
= s2. This automaton

can be defined by induction on the structure ofe. Roughly speaking, the states of
the automaton are the mixed expressions (equal up to ACI properties) obtainable
from e by taking one or more derivatives.

Given equivalent mixed expressionse1 ande2 of typeA → ∅, a finite syn-
tactic bisimulationR̂ can be constructed as follows. First, construct the automata
M1 andM2 corresponding toe1 and e2. Then, initializeR̂ to contain the pair
(e1, e2), and iterate the following process: for every(e, e′) in R̂, add the pairs
(δ1,B(e, x), δ2,B(e′, x)) (wheree, e′ have typeB → ∅), for all x. Perform this
iteration until no new pairs are added tôR. This must terminate, because there
are finitely many pairs of states(e, e′) with e in M1 ande′ in M2. It is straight-
forward to check that̂R is a syntactic bisimulation, under the assumption that
M(e1) = M(e2). 2

The procedure described in the proof of Theorem 6.1 in fact can be easily turned
into a procedure for deciding if two mixed expressions are equivalent. To perform
this decision, construct̂R, and verify that at all pairs of states(e, e′) in R̂, ε̂(e) =
ε̂(e′). If this verification fails, then the two mixed expressions are not equivalent,
otherwise; they are equivalent.

The bisimulation in Section 5 is indeed a bisimulation induced by a syntactic
bisimulation on the mixed expressionsα andβ.

7 Conclusions and future work

We believe that proofs of equivalence between mixed expressions such asα and
β via bisimulation are in general more easily derived than ones obtained through
a sound and complete axiomatization ofKAT. Given two equivalent mixed ex-
pressions, we can exhibit a bisimulation using the purely mechanical procedure
underlying Theorem 6.1: use the derivative operators to construct a finite bisimu-
lation in which the two expressions are paired. In contrast, equational reasoning
typically requires creativity.

The “path independence” of a mixed automaton (conditionA2) gives any mixed
automaton a certain form of redundancy. This redundancy persists in the definition
of bisimulation, and is the reason why a pseudo-bisimulation, a seemingly weaker
notion of bisimulation, gives rise to a bisimulation. An open question is to cleanly

14

Chen and Pucella

eliminate this redundancy; a particular motivation for doing this would be to make
proofs of expression equivalence as simple as possible. Along these lines, it would
be of interest to develop other weaker notions of bisimulation that give rise to bisim-
ulations; pseudo-bisimulations require a sort of “fixed variable ordering” that does
not seem absolutely necessary.

Another issue for future work would be to give a class of expressions wider
than our mixed expressions for which there are readily understandable and appli-
cable rules for computing derivatives. In particular, a methodology for computing
derivatives of theKAT expressions defined by Kozen [6] would be nice to see. In-
tuitively, there seems to be a tradeoff between the expressiveness of the regular
expression language and the simplicity of computing derivatives (in the context
of KAT). Formal tools for understanding this tradeoff could potentially be quite
useful.

Acknowledgments

The authors wish to thank Dexter Kozen for helpful comments on a draft of this
paper. The second author was supported by NSF under grant CTC-0208535, by
ONR under grants N00014-00-1-03-41 and N00014-01-10-511, and by the DoD
Multidisciplinary University Research Initiative (MURI) program administered by
the ONR under grant N00014-01-1-0795.

References

[1] Brzozowski, J. A.,Derivatives of regular expressions, Journal of the ACM11 (1964),
pp. 481–494.

[2] Conway, J. H., “Regular Algebra and Finite Machines,” Chapman and Hall, London,
UK, 1971.

[3] Hopcroft, J. E. and J. D. Ullman, “Introduction to Automata Theory, Languages, and
Computation,” Addison Wesley, 1979.

[4] Kleene, S. C.,Representation of events in nerve nets and finite automata, in: C. E.
Shannon and J. McCarthy, editors,Automata Studies, Princeton University Press,
Princeton, NJ, 1956 pp. 3–41.

[5] Kozen, D.,A completeness theorem for Kleene algebras and the algebra of regular
events, Information and Computation110(1994), pp. 366–390.

[6] Kozen, D.,Kleene algebra with tests, Transactions on Programming Languages and
Systems19 (1997), pp. 427–443.

[7] Kozen, D., Typed Kleene algebra, Technical Report 98-1669, Computer Science
Department, Cornell University (1998).

[8] Kozen, D., On Hoare logic and Kleene algebra with tests, in: Proceedings of the
Conference on Logic in Computer Science (LICS’99)(1999), pp. 167–172.

15

Chen and Pucella

[9] Kozen, D.,Automata on guarded strings and applications, Technical Report 2001-
1833, Computer Science Department, Cornell University (2001), to appear in
Matématica Contemporânea.

[10] Kozen, D., On Hoare logic, Kleene algebra, and types, in: Scope of Logic,
Methodology, and Philosophy of Science: Volume 1 of the 11th Int. Congress
Logic, Methodology and Philosophy of Science, Cracow, August 1999, Studies in
Epistemology, Logic, Methodology, and Philosophy of Science315, Kluwer, 2002
pp. 119–133.

[11] Kozen, D. and F. Smith,Kleene algebra with tests: Completeness and decidability,
in: Proceedings of the 10th Workshop on Computer Science Logic (CSL’96), Lecture
Notes in Computer Science1258(1996), pp. 244–259.

[12] Rutten, J. J. M. M.,Automata and coinduction (an exercise in coalgebra), in:
Proceedings of CONCUR’98, Lecture Notes in Computer Science1466, 1998, pp.
193–217.

[13] Rutten, J. J. M. M.,A note on coinduction and weak bisimilarity for while programs,
Theoretical Informatics and Applications (RAIRO)33 (1999), pp. 393–400.

[14] Rutten, J. J. M. M.,Universal coalgebra: a theory of systems, Theoretical Computer
Science249(2000), pp. 3–80.

[15] Salomaa, A.,Two complete axiom systems for the algebra of regular events, Journal
of the ACM13 (1966), pp. 158–169.

16

