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Abstract. The development of ethical AI decision-making systems
requires considering multiple criteria, often resulting in a large spectrum
of partially ordered solutions. At the core of this challenge lies the Pareto
frontier, the set of all feasible solutions where no solution is dominated
by another. In previous work, we developed both exact and approxi-
mate algorithms for generating the Pareto frontier for tree-structured
networks. However, as the number of criteria grows, the Pareto fron-
tier increases exponentially, posing a significant challenge for decision-
makers. To address this challenge, we propose various strategies to effi-
ciently compress the Pareto frontier, including an approximation method
with optimality and polynomial runtime guarantees. We provide detailed
empirical results on the strategies’ effectiveness in the context of strategic
planning of the hydropower expansion in the Amazon basin. Our strate-
gies offer a more manageable approach for navigating Pareto frontiers.

Keywords: Multi-objective optimization · Approximation
algorithms · Hierarchical clustering

1 Introduction

In recent years, there has been a growing interest in developing AI decision-
support systems that can evaluate trade-offs based on multiple criteria, moving
away from the conventional single-objective systems. This shift is particularly
important when considering more ethical AI decision-making systems that align
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Fig. 1. (a) Existing (red) and proposed (yellow) hydropower dams in the Amazon basin
and (b) Rio Santiago, a free-flowing river in the Andean Amazon with large hydropower
dams in planning stages (Alvaro del Campo/The Field Museum). (Color figure online)

with multiple human values [24]. It is especially crucial to consider multiple crite-
ria in computational sustainability [13], where balancing economic, environmen-
tal, and societal objectives is essential for achieving the Sustainable Development
Goals (SDGs) [23].

Multi-objective optimization is computationally challenging. At the core of
this challenge lies the Pareto frontier: the set of solutions in a multi-dimensional
space representing the trade-offs among different potentially conflicting objec-
tives. In other words, when optimizing for multiple objectives, the result is often
a large spectrum of partially ordered solutions. The Pareto frontier is therefore
the set of solutions that are not dominated by any other solution. Our previous
work focused on developing both exact and approximate algorithms to compute
the Pareto frontier in tree-structured networks [1,3,12].

Our research has been motivated by the need for strategic planning of
hydropower expansion in the Amazon basin. Hydropower plays a critical role in
current and future renewable energy strategies globally. The variation in project
sizes and the diverse characteristics of river systems highlight the need for a
deeper understanding of the trade-offs between hydropower capacity and ecosys-
tem services. This understanding is key in evaluating dam portfolios across the
Amazon river network, where hydropower projects have been proposed at over
350 locations (Fig. 1). Multicriteria optimization is crucial in identifying dam
portfolios that balance social-environmental costs with energy production. How-
ever, our multiobjective optimization approaches often yield solutions consisting
of millions of portfolios. As the number of criteria increases, the Pareto fron-
tier grows exponentially, presenting a substantial challenge for decision-makers.
The disparity between our computational approaches producing a vast number
of Pareto-optimal solutions and the practical needs of decision-making in dam
expansion is a significant hurdle for policymakers striving to construct dams
with minimal environmental impact while achieving energy goals. Therefore,
innovative approaches that effectively compress the number of optimal Pareto
portfolios are critical to finding practical and realistic solutions.
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Our Contributions: To facilitate navigating the Pareto frontier, herein we
propose different approaches: (1) A representation of the Pareto frontier,
which consists of a subset of solutions from the Pareto frontier with coverage
guarantees and can be generated in time polynomial in the size of the fron-
tier; (2) An approximation of the Pareto frontier, based on a dynamic-
programming-based strategy, with optimality guarantees and polynomial run-
time guarantees; and (3) An estimation of the Pareto frontier, based
on a dynamic-programming-based strategy, with optimality guarantees, with-
out polynomial runtime guarantees, but with good empirical performance. (4)
We provide detailed empirical results analyzing the trade-offs of our different
strategies against various baselines, in the context of strategic planning
of the hydropower expansion in the Amazon basin. Our strategies offer
more manageable ways for navigating Pareto frontiers.

2 Related Works

To solve unstructured multi-objective optimization problems, genetic algorithms
have been widely used, including the family of Non-dominated Sorting Genetic
Algorithms (NSGA [22], NSGA-II [8], and NSGA-III [7]) and Multi-objective
Evolutionary Algorithm Based on Decomposition (MOEA/D) [28]. However,
when it comes to problems with an underlying structure, like the tree-structured
river network for the planning of hydropower dams, these algorithms usually
are not competitive with algorithms that take advantage of that structure [26].
Moreover, genetic algorithms rarely provide theoretical guarantees on optimality
or runtime: so far the theoretical analysis of these algorithms has been restricted
to relatively simplistic and few objectives [9–11,29].

Our work fits into a series of research that exploits the underlying tree-
structured river network to approximate the Pareto frontier for the planning of
hydropower in the Amazon basin. [26] first proposed the dynamic-programming-
based algorithm to find the exact Pareto frontier and a fully polynomial time
approximation scheme (FPTAS) to approximate the frontier. Following works
[3,14,15] further improved the methods through techniques including divide-
and-conquer, expansion, compression, and affine transformation. The methods
we propose here can be fully incorporated into the developed approaches.

Our methods employ hierarchical clustering techniques. The idea of leverag-
ing clustering in multi-objective optimization to improve algorithm performance
or to help interpret the Pareto frontier has been explored before, but mostly in
the context of genetic algorithms. In [6,19,27,30] clustering algorithms, including
hierarchical clustering, have been used to discover the population structure and
aid in parent selection and offspring retention. Clustering helps with discovering
solutions that are distributed more widely and uniformly.

Our work relates to Binary Decision Diagrams (BDDs) [4]. To solve a multi-
objective discrete optimization problem, the BDD method uses decision dia-
grams to represent exactly the feasible set of the problem and then uses a mul-
ticriteria shortest path algorithm for finding the set of non-dominated solutions
[4]. However, the size of the diagram could grow exponentially. Approximate
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decision diagrams that have a polynomial limit on the size have been developed
[2]. A crucial difference between this method and ours is that BDD assumes
linear separability in the objective functions, whereas, for our problem domain,
the objective functions are non-separable and are dependent upon all decisions.

3 Preliminaries

3.1 Multi-objective Optimization

A multi-objective optimization problem consists of optimizing several often con-
flicting objectives simultaneously. Therefore, typically there does not exist a
single solution that optimizes all the objectives at the same time. Accordingly,
we give the definitions of optimality in the multi-objective scenario.

Pareto Dominance. Without loss of generality, assume we are maximizing d
objectives at the same time. For a solution π, z(π) = (z1(π), . . . , zd(π)) is the
values of the d objectives. A solution π dominates another solution π′, written
as z(π) � z(π′), if and only if for all 1 ≤ i ≤ d, zi(π) ≥ zi(π′), and there exists
1 ≤ j ≤ d such that zj(π) > zj(π′).

Pareto Frontier. Our goal in the multi-objective optimization problem is to find
the set of non-dominated solutions, which we define to be the Pareto frontier:
let S be the set of all feasible solutions, the Pareto frontier is {π ∈ S|z(π) �≺
z(π′),∀π′ ∈ S}.

In practice, the size of the Pareto frontier may be exponential even for a fixed
number of objectives. As a result, finding or interpreting the entire frontier may
be computationally expensive. Therefore, a more realistic goal is to find a good
approximation or representation of the Pareto frontier.

ε-approximation. Given a Pareto frontier P , a set of solutions S ε-approximates
P if and only if for every π ∈ P , there exists a solution π′ ∈ S such that
zi(π′) ≥ (1 − ε)zi(π) for all 1 ≤ i ≤ d, and S is found in polynomial time.

Note that an ε-approximation is found in polynomial time. When a set with
such optimality guarantee is found in superpolynomial time, we call it an ε-
estimation.

γ-representation. Given a Pareto frontier P , a subset of the frontier P ′ ⊆ P
γ-represents P if and only if for every π ∈ P , there exists a solution π′ ∈ P ′

such that zi(π′) ≥ (1 − γ)zi(π) for all 1 ≤ i ≤ d.
Note that a crucial difference between ε-approximation/estimation and γ-

representation is that, while a solution in the ε-approximation/estimation set
is not necessarily Pareto-optimal, a solution in the γ-representation is always
Pareto-optimal since the γ-representation set is a subset of the Pareto frontier.

3.2 Strategic Planning of Hydropower in the Amazon Basin

The Problem. Construction of hydropower dams provides electricity but can
cause significant adverse environmental impacts including disruption of fish
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Fig. 2. Converting (a) a river network to (b) a directed multi-edged tree. Contiguous
sections of the river uninterrupted by dam sites become nodes in the tree. Dam sites,
both proposed and already built, are edges that connect upstream and downstream
portions of the river, with a unique edge per decision.

migration routes and greenhouse gas emissions. Planning of the hydropower dam
placements requires the balancing of energy production and ecosystem impacts.
Accordingly, given a set of proposed dam sites, a solution is a subset of the
dams to be built and our goal is to find a set of solutions that approximates
or represents the Pareto frontier with respect to the following 6 objectives: (1)
hydropower generation, (2) connectivity (the total length of the un-obstructed
stream segments that a fish can travel starting from the river mouth without
passing any dam site), (3) sediment (the amount of sediment and nutrients
transported to the river mouth every year considering the fact that each dam
traps a certain percentage of total sediment from upstream), (4) biodiversity
(the overall impact on the fish population caused by dam construction), (5)
degree of regulation (the total degree of flow regime alteration caused by dam
construction), and (6) greenhouse gas emissions (the total greenhouse gas emis-
sions caused by dam construction).

The Algorithm. Previous works [14,15,26] model the river network as a multi-
edged directed tree structure (see Fig. 2). In the multi-edged directed tree repre-
sentation, each edge represents a possible decision at a potential dam site, and its
two vertices are respectively the river regions directly upstream and downstream
of the site. Thus, each pair of parent/child nodes may have one or more edges
depending on the number of decisions relevant to a given dam location. Every
node v in the tree is associated with a non-negative node reward ri

v for each
objective i. Each edge is represented by (u, v, j) with parent and child nodes
u and v and index j to distinguish the edge from sibling edges. Additionally,
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each edge is associated with a non-negative edge reward si
uvj and a non-negative

transfer coefficient pi
uvj , for each objective i. A solution (or partial solution) is

defined as a spanning tree of the multi-edged tree (or partial spanning tree of a
sub-tree). The i-th objective value of a partial solution at a leaf node v, πv is
its corresponding reward, i.e., zi(πv) = ri

v. The i-th objective value of a partial
solution at a non-leaf node u, πu is defined recursively:

zi(πu) = ri
u +

∑

(u,v,j)∈π

si
uvj + pi

uvjz
i(πv) (1)

Based on the tree-structure formulation, [26] proposed a dynamic program-
ming algorithm that can find the exact Pareto frontier, based on the crucial
observation, proven in [26], that

Theorem 1. Let u be a node in the tree and u1, . . . , uk be its children. Any
Pareto-optimal partial solution at u can be constructed by combining one Pareto-
optimal partial solution from child ui for each i ∈ [1, . . . , k] and the choice of
edges connecting u and ui.

As a result, the algorithm recursively computes the Pareto-optimal partial solu-
tions from leaf nodes to the root. At each node u, the algorithm comes up with
the candidate solutions by combining the Pareto-optimal partial solutions at u’s
children. Then, the algorithm discards any dominated solutions to obtain the
Pareto-optimal partial solutions at u.

Given that the size of the frontier could be exponential, they also proposed
a fully polynomial-time approximation scheme (FPTAS) that approximates the
Pareto frontier within an arbitrarily small ε and runs in time polynomial in the
size of the instance and 1/ε. The FPTAS introduces a hyperparameter Ki

u = εri
u

for each node u and each objective i, and defines the rounded objective value
ẑi(πu) recursively as

ẑi(πu) = ri
u +

⌊∑
(u,v,j)∈π si

ujv + pi
uvj ẑ

i(πv)

Ki
u

⌋
Ki

u. (2)

In [26], it was proven that the Pareto frontier on tree-structured networks
can be ε-approximated, namely:

Theorem 2. Let Ps be the set of (partial) Pareto-optimal solutions for a node s
and P̂s be the set of (partial) Pareto-optimal solutions computed via the dynamic
programming algorithm using the rounded objective function 2. We must have
P̂s is an ε-approximation of Ps.

4 A Representation of the Pareto Frontier

Given a Pareto frontier P , the problem of finding the γ-representation of P is to
find a subset P ′ of P such that for every solution π ∈ P , there exists a solution
π′ ∈ P ′ such that zi(π′) ≥ (1 − ε)zi(π) for all 1 ≤ i ≤ d. To this end, we
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have designed an algorithm based on hierarchical clustering [16,20]. Hierarchical
clustering takes a set of data points and seeks to build a hierarchy of clusters
of the data points. It has been widely applied to fields including taxonomy
[21], bioinformatics [17,25], and social network analysis [18]. The agglomerative
version of the algorithm starts with each data point as a separate cluster, and
pairs of clusters are greedily merged as one moves up in the hierarchy. To decide
which clusters should be combined, a measure of distance between sets of data
points is required. Typically, this measure includes a distance metric between
single points of the data set and a linkage method that specifies the distance of
two sets as a function of the pairwise distances between the data points across
the two sets. What distance metric to use depends on the underlying application,
and some examples include the Euclidean distance and the Hamming distance.
The linkage method, on the other hand, influences the shape of the clusters. For
example, complete linkage, i.e., the distance of two sets is the maximum distance
between any two data points across the sets, tends to produce more spherical
clusters than single linkage, where the minimum distance is used. For our case,
Euclidean distance between the objective values normalized to [0, 1], and average
linkage, i.e., the distance of two sets is the average distance between the pairs of
data points across the sets, are used.

The algorithm to find γ-representation

– Input: A Pareto frontier P = {π1, . . . , πn}, and a parameter γ.
– Output: A subset of the Pareto frontier P ′ ⊆ P such that ∀π ∈ P there is a

π′ ∈ P ′ such that zi(π′) ≥ (1 − γ)zi(π) for all 1 ≤ i ≤ d.

1. Perform hierarchical clustering on P :
(a) For each objective, normalize the objective values to [0, 1].
(b) Initialize C1 = {π1}, C2 = {π2}, . . . , Cn = {πn}, and C = {C1, . . . , Cn}.
(c) Find the two clusters in C, Ci and Cj , with the smallest distance, as

defined by Euclidean distance and average linkage, among all pairs of
clusters.

(d) C|C|+1 = Ci ∪ Cj , C = C ∪ {C|C|+1} − {Ci} − {Cj}.
(e) Repeat steps 1(c) to 1(d) until C = {P}.

2. Run Algorithm 1 on the final cluster {P}.

Theorem 3. The runtime of the algorithm to find γ-representation on a Pareto
frontier P with |P | = n is O(n3) and the algorithm returns a set P ′ ⊆ P
such that for every solution π ∈ P , there exists a solution π′ ∈ P ′ such that
zi(π′) ≥ (1 − γ)zi(π) for all 1 ≤ i ≤ d.

Proof. The for loop from line 3 to line 11 of Algorithm 1 makes sure that
Coverage({P}) is indeed a γ-representation of P . The time complexity for doing
hierarchical clustering on P is O(n3). The hierarchy of clusters can be repre-
sented as a binary tree where a node u having children l and r means clusters l
and r are merged to form cluster u. The leaves of this binary tree are the indi-
vidual solutions in P . Therefore, the size of the tree is 2n − 1. In the worst case,
Coverage({P}) will traverse every cluster in the tree and look at every solution
in the clusters. Thus, Coverage({P}) runs in O(n2).
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Algorithm 1: Coverage
Data: A cluster of solutions C = Ci ∪ Cj where Ci and Cj have been

merged in the hierarchical clustering process to form C.
Result: A subset C ′ of C such that for all π ∈ C there is a π′ ∈ C ′ such

that zi(π′) ≥ (1 − γ)zi(π) for all 1 ≤ i ≤ d
1 π′ ← rand(C) ; /* rand(C) returns a random sample from C. */
2 failed ← False;
3 foreach π ∈ C do
4 for 1 ≤ i ≤ d do
5 if zi(π′) < (1 − γ)zi(π) then
6 failed ← True;
7 break;
8 end
9 end

10 if failed then break ;
11 end
12 if failed then return Coverage(Ci) ∪ Coverage(Cj) ;
13 else return {π′} ;

5 An Estimation of the Pareto Frontier

The method described in Sect. 4 works as a post-processing step after the Pareto
frontier has been discovered. Alternatively, we consider incorporating the repre-
sentation method into the dynamic programming algorithm proposed in [26] to
estimate the Pareto frontier. The algorithm models the river network as a tree
structure and recursively computes the Pareto-optimal partial solutions from
the leaf nodes to the root of the tree. At every node, candidate solutions are
formed by combining the Pareto-optimal partial solutions at the node’s children.
Dominated partial solutions are then discarded. We argue that if we apply the
γ-representation algorithm after the pruning of the dominated solutions at some
levels of nodes in the tree, then we have an estimation of the Pareto frontier,
with optimality guarantees, but not necessarily polynomial runtime guarantees.

Note that for a tree Tu rooted at node u, we call the level of node u level 1,
the level of u’s children level 2, etc. We apply the γ-representation algorithm to
L levels of the nodes in Tu, which means that to all the nodes from level L to
level 1, after the dominated partial solutions have been discarded, we run the
algorithm to find the γ-representation of the Pareto-optimal partial solutions and
use the representation set, instead of all the Pareto-optimal partial solutions, to
assemble the solutions at the node’s parent (Fig. 3b).

Theorem 4. Consider a node u in a run of the dynamic programming algorithm
proposed in [26], and the subtree rooted at u, Tu. Suppose to L levels of the nodes
in Tu we apply the γ-representation algorithm, then at node u, we obtain a set of
solutions Su such that for every Pareto-optimal partial solution at u, πu, there
is a solution π̄u ∈ Su such that zi(π̄u) ≥ (1 − γ)Lzi(πu) for all 1 ≤ i ≤ d.
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Fig. 3. Strategy for applying the γ-representation on the tree. (a) shows the underlying
tree structure, with (b) showing the representation applied to 2 levels of the nodes.
Nodes in red are nodes that have the γ-representation applied. (Color figure online)

Proof. We prove the theorem by induction. For L = 0 and L = 1, the statements
are direct results of Theorems 1 and 3 respectively. Suppose the statement is true
for L′ = L − 1 ≥ 1, and consider a Pareto-optimal partial solution πu at u. By
Theorem 1 and Eq. 1, we have that for all 1 ≤ i ≤ d,

zi(πu) = ri
u +

∑

(u,v,j)∈πu

si
uvj + pi

uvjz
i(πv)

where πv is a Pareto-optimal partial solution at node v. By the induction hypoth-
esis, the algorithm has found at v a set of partial solutions Sv that includes a
solution π′

v such that zi(π′
v) ≥ (1 − γ)(L−1)zi(πv) for all 1 ≤ i ≤ d. By substi-

tuting πv with π′
v, and combining all the π′

v with the same edges as in πu, we
obtain a partial solution π′

u such that for all 1 ≤ i ≤ d

zi(π′
u) = ri

u +
∑

(u,v,j)∈πu

si
uvj + pi

uvjz
i(π′

v) ≥ (1 − γ)(L−1)zi(πu)

When the dynamic programming algorithm prunes the solutions at node u, either
π′

u is kept as a Pareto-optimal partial solution, or π′
u is discarded because the

algorithm has found a π′′
u such that for all 1 ≤ i ≤ d, zi(π′′

u) ≥ zi(π′
u) ≥

(1 − γ)(L−1)zi(πu). Either way, after pruning at node u, we must have kept a
partial solution π̃u such that zi(π̃u) ≥ (1 − γ)(L−1)zi(πu). Then when we apply
the algorithm to find the γ-representation at node u, by Theorem 3, we will be
guaranteed to have in the representation set Su a partial solution π̄u such that
for all 1 ≤ i ≤ d, zi(π̄u) ≥ (1 − γ)zi(π̃u) ≥ (1 − γ)Lzi(πu).

Applying Theorem 4 to the root node, we obtain the following Lemma.

Lemma 1. Suppose during a run of the dynamic programming algorithm pro-
posed in [26], the algorithm to find the γ-representation is applied to L levels of
the nodes, then at the root node we obtain a set S such that for every Pareto-
optimal solution π ∈ P , there exists a solution π′ ∈ S such that for all 1 ≤ i ≤ d,
zi(π′) ≥ (1 − γ)Lzi(π).
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6 An Approximation of the Pareto Frontier

The algorithm described in Sect. 5 finds an estimation of the Pareto frontier
with optimality guarantee, but the algorithm could run in exponential time
since at each node there are a potentially exponential number of partial solu-
tions to consider. To mitigate that problem, [26] has applied a rounding tech-
nique to the exact dynamic programming algorithm and the result is an FPTAS
that ε-approximates the Pareto frontier P . We argue that if we apply the γ-
representation algorithm to some levels of the nodes in the FPTAS, we obtain a
further compressed approximation of the Pareto Frontier, with optimality and
polynomial runtime guarantees.

Theorem 5. Consider a node u in a run of the FPTAS proposed by [26] with
parameters ε and Ki

v = εrv. If for L levels of the subtree Tu rooted at u, we
apply to the nodes the γ-representation algorithm in the rounded objectives, and
the parameters L, γ, and ε satisfy that if L > 1, then (1 − γ)L−1 + ε ≤ 1,
then at u we obtain a set Su such that for every Pareto-optimal partial solution
at u, πu, there is a solution π̄u ∈ Su such that for all 1 ≤ i ≤ d, we have
zi(π̄u) ≥ (1 − γ)L(1 − ε)zi(πu).

Proof. We first prove again by induction that Theorem 4 still holds for the
rounded objectives. The base cases for L = 0 and L = 1 are direct consequences
of Theorem 2 and Theorem 3. We prove the induction step where L > 1. Consider
the root node u and its children again. Write

∑
(u,v,j)∈πu

si
uvj + pi

uvj ẑ
i(πv) as

NKi
u + R for some non-negative integer N and some non-negative real number

R < Ki
u. Then by Eq. 2 we have

ẑi(πu) = ri
u +

⌊
NKi

u + R

Ki
u

⌋
Ki

u = ri
u + NKi

u

Similarly as in the proof for Theorem 4, by substituting all the πv’s with their
γ-representations and choosing the same edges between u and v, we obtain a
partial solution at u, π′

u such that

ẑi(π′
u) ≥ ri

u +
⌊

(1 − γ)L−1(NKi
u + R)

Ki
u

⌋
Ki

u > ri
u + ((1 − γ)L−1N − 1)Ki

u

Then substituting Ki
u = εri

u, we get

ẑi(π′
u)− (1 − γ)L−1ẑi(πu)

> ri
u + (1 − γ)L−1Nεri

u − εri
u − (1 − γ)L−1ri

u − (1 − γ)L−1Nεri
u

= ri
u(1 − ε − (1 − γ)L−1) ≥ 0

i.e., ẑi(π′
u) ≥ (1−γ)L−1ẑi(πu). Similarly to the proof of Theorem 4, after discard-

ing the dominated solutions at u, we are guaranteed to be left with a π̃u such that
ẑi(π̃u) ≥ (1−γ)L−1ẑi(πu). Then after running the γ-representation algorithm at
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node u, we have in the representation set a π̄u such that ẑi(π̄u) ≥ (1−γ)Lẑi(πu).
Given that ẑi(πu) ≥ (1−ε)zi(πu), proved in [26], and zi(π̄u) ≥ ẑi(π̄u), as a result
of taking the floor operation, we have that

zi(π̄u) ≥ ẑi(π̄u) ≥ (1 − γ)Lẑi(πu) ≥ (1 − γ)L(1 − ε)zi(πu)

Lemma 2. Suppose during a run of the FPTAS proposed in [26] with param-
eters ε and Ki

v = εrv, for L levels of the tree, we apply to the nodes the γ-
representation algorithm in the rounded objectives, and the parameters L, γ,
and ε satisfy that if L > 1, then (1 − γ)L−1 + ε ≤ 1, then the algorithm in time
O((n

ε )3d) returns a set S such that for every solution π ∈ P , there is a solution
π′ ∈ S such that for all 1 ≤ i ≤ d, we have zi(π′) ≥ (1 − γ)L(1 − ε)zi(π).

Proof. Applying Theorem 5 to the root node, we obtain the optimality guar-
antee. The FPTAS with the the γ-representation algorithm incorporated still
runs in polynomial time: [26] has shown that at each node u, there are O((nu

ε )d)
partial solutions to consider, where nu is the number of nodes in Tu, so by The-
orem 3, running the γ-representation algorithm on u takes O((nu

ε )3d). [26] has
further shown that the runtime to compute all the solutions at u is O((nu

ε )2d). If
the γ-representation algorithm is run at u, then the total runtime at u becomes
O((nu

ε )3d). At the root node, the total runtime is O((n
ε )3d), where n is the num-

ber of nodes in the tree.

7 Experiments

We report experimental results on using the γ-representation algorithm to find
representations, estimations and approximations of Pareto frontiers for hydro-
power planning in the Amazon River. To accelerate the experiments, we apply
the γ-representation algorithm to independent chunks of solutions in parallel.
The parallelized algorithm preserves the theoretical guarantees but might return
representation sets bigger than using the non-parallelized version, since cluster-
ing and choice of representative points are local to each chunk. The bigger the
chunks, the slower the algorithm runs but the less the impact on the size of the
representation set. For all our experiments, we used chunks of size 50000 and
distribute them across 12 threads.

Representation - Table 1 shows the results of running the γ-representation
algorithm as described in Sect. 4 to find representation sets of exact Pareto fron-
tiers for different values of γ and different criteria on the full Amazon. The num-
ber of solutions decreases substantially as γ increases. To evaluate the quality
of the representation sets, we calculate their hypervolumes using the framework
introduced in [5] and compare them with the baseline where γ = 0, i.e., the entire
exact Pareto frontier. Specifically, we normalize each objective value zi(π) to
[0, 1] by scaling it to zi(π)∗ = |zi(π)−zi(π)worst|

|zi(π)best−zi(π)worst| , where zi(π)best and zi(π)worst

are the maximum and minimum (or minimum and maximum, if the criterion is
to be minimized) that can be achieved across the whole feasible solution space,
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i.e. building all dams or building no dam in our case. Then, we compute for
each representation set the hypervolume of the objective space dominated by
the solutions in the set, with zero vector as the reference point. In general, a
greater hypervolume indicates a better quality. As γ increases, the hypervolume
decreases, but not significantly. For example, the hypervolume decrease for the
biggest γ, i.e., γ = 0.1, ranges from 1.3% to 9.7% for the different criteria, while
the reduction in the number of solutions ranges from 946 to 1620 folds.

We also report the runtime for each experiment. We see that running the γ-
representation algorithm requires extra processing time after the Pareto frontier
has been found. The increase in runtime is polynomial, as proved in Sect. 4.

Estimation - Tables 2, and 3 contain the results of running the γ-representation
algorithm at different levels of the tree during the dynamic programming

Table 1. Representing the two-criteria Pareto frontier for the full Amazon river for
energy (E), connectivity (C), and greenhouse gas emission (G). The Pareto frontier
is found by the exact dynamic programming algorithm, so, the reported solutions,
including the representations, are guaranteed to be exactly Pareto-optimal.

Criteria γ Number of Solutions Hypervolume Runtime (s)

EC 0 33127 0.833 7.2098

0.001 4594 0.833 49.4176

0.01 311 0.832 27.5256

0.1 35 0.822 25.1264

EG 0 58762 0.807 305.5793

0.001 11090 0.803 427.3345

0.01 1007 0.802 358.49

0.1 60 0.792 349.2219

Table 2. γ-representation at different levels when optimizing for energy and connec-
tivity for the full Amazon.

γ Level Optimality Guarantee Number of Solutions Hypervolume Runtime (s)

0 N/A 1 33127 0.833 7.2098

0.001 1 1 4594 0.833 49.4176

2 0.998 1996 0.832 24.4195

3 0.997 1795 0.832 19.5634

0.01 1 1 311 0.832 27.5256

2 0.980 108 0.815 1.8864

3 0.970 102 0.815 1.3826

0.1 1 1 35 0.822 25.1264

2 0.810 11 0.702 0.8607

3 0.729 10 0.677 0.5394
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algorithm as described in Sect. 5. Running the γ-representation algorithm for
more levels of the tree shrinks the size of the solution set drastically. On the
other hand, the qualities of the estimations as measured by hypervolume when
compared with the exact Pareto frontier are 8.3% to 18.7% worse for the most
aggressive setting (γ = 0.1 and L = 3), where decreases of more than 2000 folds
in the sizes of the solution sets are observed.

Moreover, when the γ-representation algorithm is applied to level 2 and
3 nodes, the number of partial solutions at those nodes decreases too. The
decreases at the intermediate nodes help with reducing the runtime, since on
the smaller levels, fewer combinations of partial solutions need to be consid-
ered. Overall, even though the estimation algorithm is not guaranteed to run in
polynomial time, empirically we observe that it has good runtime performance.

Note that when L = 1, the process is equivalent to finding the exact Pareto
frontier and then applying the γ-representation algorithm on the exact full fron-
tier. Therefore, the resulting solutions are still all Pareto-optimal.

Approximation - Table 4 displays the results of the γ-representation algorithm
at different levels of the tree during the FPTAS as described in Sect. 6 for the

Table 3. γ-representation at different levels when optimizing for energy and greenhouse
gas emission for the full Amazon.

γ Level Optimality Guarantee Number of Solutions Hypervolume Runtime (s)

0 N/A 1 58762 0.807 305.5793

0.001 1 1 11090 0.803 427.3345

2 0.998 8114 0.807 493.4981

3 0.997 8285 0.807 518.3726

0.01 1 1 1007 0.802 358.49

2 0.980 725 0.798 33.6507

3 0.970 798 0.799 33.5599

0.1 1 1 60 0.792 349.2219

2 0.810 32 0.74 6.9024

3 0.729 25 0.74 5.9851

Table 4. γ-representation when optimizing three criteria (energy, connectivity, and
sediment) for the full Amazon. The Pareto frontiers are approximated by running the
FPTAS with ε = 0.005.

γ Level Optimality Guarantee Number of Solutions Hypervolume Runtime

0 N/A 0.995 4279265 0.535 25652

0.001 1 0.994 295516 0.535 31287

0.01 1 0.985 6202 0.506 39833

0.1 1 0.896 98 0.480 34146
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Table 5. γ-representation at different levels of the tree when optimizing six crite-
ria (energy, connectivity, sediment, degree of regulation, biodiversity, and greenhouse
gases) for the Marañón, a sub-basin of the Amazon. The Pareto frontiers are approxi-
mated by running the FPTAS with ε = 0.2.

γ Level Optimality Guarantee Number of Solutions Hypervolume Runtime (s)

0 N/A 0.8 700791 0.320 1383

0.005 1 0.796 315808 0.320 4358

2 0.792 24554 0.313 2920

3 0.788 22772 0.311 2002

0.1 1 0.72 15803 0.316 3264

2 0.648 4345 0.308 1747

3 0.583 3362 0.307 730

0.2 1 0.64 2690 0.311 2898

2 0.512 325 0.299 1891

3 0.410 205 0.298 640

full Amazon. We see that the effect of γ-representation is preserved when run
on top of the approximation using rounded objectives. Notably for optimizing
three criteria on the full Amazon, with γ = 0.1 we can decrease the number of
solutions from over 4 million to 98, while the hypervolume only decreases by
10.3%.

Figure 4 plots baselines (exact or approximated Pareto frontier) and their rep-
resentations, estimations, or approximations from applying the γ-representation
algorithm at different levels of the tree for 2 and 3 criteria for the full Amazon.
We see that the representation set is well-distributed across the Pareto frontier.
They are sparser on the ends of the frontier because there we have small values
for at least one of the objectives, making the (1 − γ) bound easier to achieve.

To analyze the γ-representation algorithm for a larger number of objectives,
we have also experimented with optimizing six objectives for the Marañón, a
sub-basin of the Amazon. The choice of the smaller basin allows us to run
more objectives, in a reasonable amount of time. The results are reported in
Table 5. For a large number of objectives, applying the γ-representation algo-
rithm also results in a significant decrease in the number of solutions. Similarly,
the decreased number of solutions at the intermediate nodes has improved the
runtime.
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Fig. 4. Top panel: Exact Pareto frontier (# solutions: 33127) and its representation
(# solutions: 35) and estimations (# solutions for level = 2: 11, # solutions for level
= 3: 10) from applying the γ-representation algorithm at different levels of the tree
for energy and connectivity for the full Amazon with ε = 0 and γ = 0.1. Bottom
panel: Approximated Pareto frontiers for energy, connectivity, and sediment for the
full Amazon with ε = 0.005, γ = 0 (# solutions: 4279265) and ε = 0.005, γ = 0.1 (#
solutions: 98)

8 Conclusion

We propose a clustering-based algorithm to find a representation set from
the Pareto frontier with a coverage guarantee, which runs in time polynomial
in the size of the frontier. We also consider two different strategies for incor-
porating the representation algorithm into a dynamic-programming-based app-
roach: an approximation strategy, with polynomial runtime and optimality
guarantee, and an estimation strategy with optimality guarantee and good
empirical runtime performance, but without polynomial runtime guarantee. The
three methods provide different ways to compress the Pareto frontier, result-
ing in solution sets significantly smaller than the full Pareto frontier, which are
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γ-representations of the exact Pareto frontier or close to the frontier. Our main
goal is to equip policymakers with streamlined approaches for effectively navi-
gating Pareto frontiers, thus facilitating a more efficient decision-making process.
Moreover, we hope our work will catalyze further research on the computation
and visualization of Pareto frontiers. Multi-objective Pareto optimization is key
to understanding trade-offs among various objectives, thus playing a pivotal role
in the development of AI decision-support systems for informed decision-making.
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