
1

Object-Oriented 
Programming

CS 99 – Summer 2000
Michael Clarkson

Lecture 9

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 2

Administration

• Prelim 2 graded
• Lab 8 due now
• Lab 9 posted ?

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 3

Agenda

• OOP
– Evolution
– Three principles

• Basic OOP in Java

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 4

Evolution of OOP

• Functions
• Modules
• Abstract Data Types
• Classes and Objects

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 5

Structured Analysis & 
Design

• Invented 1970s
• Coincided with elimination of GOTO
• Identify functions

– Group code for repeated tasks into one place
– One programmer can write a function that many 

programmers can use without knowing implementation 
details

• Problem: only local and global scope
– Names become a problem

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 6

Modular Programming

• Module: abstract mechanism for managing names
• Public and private namespaces

– Public is the interface provided to users
– Private is the implementation used in the module

• “Need to know” philosophy
– Users of module should know only enough to use module
– Programmers of module should know only enough to write it

• Problem: only one module (e.g., one Car) can be present in a 
program at a time



2

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 7

Abstract Data Types

• Programmer-defined data type
• Set of values and operations on those values
• Allows:

– Extension of language with new types
– Hiding of implementation details
– Creation of multiple instances of type

• Problem: still not good enough for managing 
complexity of really large programs

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 8

OOP

• Idea: a program is a collection of cooperating objects sending 
messages to one another

• Grew out of simulation techniques from the 1960s
• Adds innovations over ADTs that give it extra power:

– Message passing – emphasis on data, not function
– Polymorphism – interpretation of message can vary depending on 

what object receives it
– Relationships between objects
– Behavior and Rules

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 9

Fundamental Concept

• The Object
– Software package with:

• Attributes (data)
• Methods (code) that act on data

– Data is not accessible to users of object
– Access to data granted through methods
– Self-governing 

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 10

Principles of OOP

• Encapsulation
• Inheritance
• Polymorphism

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 11

• Object contains (encapsulates) all its own code and 
data

• Information hiding: other objects don’t know how 
an object manages its data
– Don’t have access to either the data or the code

• Objects interact through well-defined messages

Encapsulation

Data

Methods

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 12

Inheritance

• Aircraft has:
– Manufacturer, ID#, weight, cost, etc.
– Take off, land, turn, etc.

• Can refine for more specific aircraft:
– Helicopter: has propellers, can hover
– Jet fighter: has missiles, can fire them



3

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 13

Inheritance [2]

• Generalization/Specialization: is-a relationship

Aircraft

Helicopter JetFighter

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 14

Inheritance [3]

• Abstraction mechanism for sharing similarities 
among classes while preserving differences

• Superclass (parent) is refined into a subclass; 
subclass inherits from superclass

• Subclass inherits attributes and methods from 
parent

• Subclass adds its own attributes, methods, possibly 
replaces those of parent

• Allows code to be reused

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 15

Polymorphism

• Messages can be interpreted differently based on the 
receiving object

• Subclass replaces a parent’s method with its own
– e.g.: takeOff() different for Helicopter than Aircraft

• But if subclass doesn’t replace, parent’s method is 
used
– e.g. JetFighter uses Aircraft’s takeOff()

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 16

Basic OOP in Java

• Overloading
• Subclasses
• Interfaces

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 17

Method Signature

• Includes
– Name of method
– Number of parameters
– Types of parameters
– Order of parameters

• For example, main(String[]) is the 
signature for main

• Does not include return type

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 18

Overloading

• Overloaded methods are one type of 
polymorphism in Java
– Purists: not actually polymorphism

• Overloaded methods are methods with the 
same name but different signatures
– Example: multiple constructors

• Java selects which method to call based on 
the signature



4

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 19

println

• Has 10 overloaded versions:
– println()

– println(boolean)

– println(char)
– println(char[])

– println(double)
– println(float)

– println(int)

– println(long)
– println(Object)

– println(String)

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 20

println [2]

• When program is compiled, compiler 
determines types of arguments and then binds
the call to the correct version of println

• This allows one method name to exhibit 
several types of behavior, thus polymorphism

• Convenience – we only have to remember 
one method name!

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 21

Overloaded Constructors

• Again, convenience
• Allows multiple ways to create an object
• Programmer can choose the most suitable

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 22

Overloaded Operators

• Operators can also be overloaded
• Plus sign:

– int + int
– double + double
– String + String

• Java doesn’t allow programmers to overload 
operators
– Some languages do
– Complex + Complex // C++
– Complex.plus(Complex) // Java

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 23

Subclasses

• Java supports inheritance through the use of 
subclasses

• New subclasses are derived from existing 
classes (superclasses)

• Subclasses inherit the methods and attributes 
of all their parents
– Subject to visibility rules

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 24

Subclasses [2]

• Subclasses are created with the extends keyword:
class Person {

...

}

class Cook extends Person {

...

}

class PastryChef extends Cook {

...

}



5

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 25

Class Hierarchy

Person

Cook Officer Infant

PastryChef SchoolCook

General

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 26

Java Class Hierarchy

• The parent class of all classes in Java is 
Object

• All classes are subclasses of Object

Object

TimeString DecimalFormat

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 27

protected

• Another visibility modifier
• Similar to private, but subclasses can see 

the member

�Unrelated class
��Subclass

���Same class
privateprotectedpublic

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 28

Inheritance
class Box {

protected double width, height, depth;

public Box(double w, double h, double d) {
width = w; height = h; depth = d;

}
public double volume() {

return width * height * depth;

}
}

class WeightedBox extends Box {
protected double weight;

public WeightedBox(double w, double h, double d, double m){
width = w; height = h; depth = d; weight = m;

}
public getWeight() { return weight; }

}

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 29

Inheritance [2]

• WeightedBox inherited the fields and methods 
of its superclass

• Can access them as if they were its own 
members:

WeightedBox w = new WeightedBox(10, 20, 15, 34.3);

System.out.println(“Volume = ” + w.volume()); // 3000.0

System.out.println(“Weight = ” + w.getWeight()); // 34.3

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 30

Inheritance [3]

• Subclasses can override inherited methods and 
replace them with their own code 
(polymorphism)

class InsulatedBox extends Box {

public volume() {

return width * height * depth * .75;

}

}



6

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 31

Interfaces

• Abstraction of interactions with an object
• Set of public methods that describes services 

provided by an object
• Says nothing about how services are provided 

(implementation)
• Says what a class must do, but nothing about 

how it does it

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 32

Interfaces [2]

• Conceptually similar to roles that people play
• For example, I provide these interfaces:

– Grader
– Instructor
– PetOwner

• Rick also provides the Grader interface
• Objects can provide several different interfaces, and 

you won’t always know (or need to know) what all 
of them are

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 33

Java Interfaces

• Syntactically similar to classes:

public interface Calculator {
Number add(Number n1, Number n2);
Number subtract(Number n1, Number n2);
Number multiply(Number n1, Number n2);
Number divide(Number n1, Number n2);
Number sqrt(Number n);

}

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 34

Java Interfaces [2]

• Full syntax:

public interface name {

return-type method-name1(parameter-list);

return-type method-name2(parameter-list);

...

type final-varname1 = value;

type final-varname2 = value;

...

}

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 35

Java Interfaces [3]

• If an interface is declared as public:
– Methods are automatically public
– Fields are automatically public final static

• Multiple classes can implement an interface:

public interface SquareRootCalculator {

double sqrt(double num);

}

7/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 9 36

Implementing Interfaces
class NewtonRaphson implements SquareRootCalculator {

double sqrt(double num) {

// N-R method code

}

}

class EasyWay implements SquareRootCalculator {

double sqrt(double num) {

return Math.sqrt(num);

}

}


