
1

Objects and Classes

CS 99 – Summer 2000
Michael Clarkson

Lecture 8

7/24/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 8 2

Administration

• Review session 7:30pm, Phillips 203
• Prelim tomorrow

– 10:00 in Upson 215
– 11:30 in Upson B17

• Wednesday
– Lab 8 due
– Lecture 9

• Lab 9 on Thursday

7/24/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 8 3

Agenda

• Review of objects and classes
• In-class exercise

7/24/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 8 4

Writing Classes

• Until the last lab, we were only using 
predefined classes.

• Starting with that lab, we wrote our own class 
to define new objects

7/24/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 8 5

Objects

• An object has:
– State: descriptive characteristics
– Behavior: what it can do (or can be done to it)

• For example, consider a coin that can be flipped so 
that its face shows either "heads" or "tails"

• The state of the coin is its current face (heads or 
tails)

• The behavior of the coin is that it can be flipped
• Note that the behavior of the coin might change its 

state 
7/24/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 8 6

Classes

• A class is a blueprint of an object
• It is the model or pattern from which objects are 

created
• For example, the String class is used to define 
String objects

• Each String object contains specific characters 
(its state)

• Each String object can perform services 
(behaviors) such as toUpperCase



2

7/24/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 8 7

Classes [2]

• The String class was provided for us by 
the Java standard class library

• But we can also write our own classes that 
define specific objects that we need

• For example, suppose we wanted to write a 
program that simulates the flipping of a coin

• We could write a Coin class to represent a 
coin object

7/24/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 8 8

Classes [3]

• A class contains data and method declarations:

int x, y;
char ch;

Data (field) declarations

Method declarations

7/24/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 8 9

Data Scope

• Instance data declared at the class level can 
be used by all non-static methods in that class

• Static data declared at the class level can be 
used by all methods in that class

• Data declared within a method can only be 
used in that method

• Data declared within a method is called local 
data

7/24/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 8 10

Calling Methods

myMethod();

myMethodcompute

• The called method could be within the same class, in 
which case only the method name is needed

7/24/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 8 11

Calling Methods [2]

doIt helpMe

helpMe();obj.doIt();

main

• The called method could be part of another class or object

7/24/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 8 12

The Coin Class
• In our Coin class we could define the following 

fields:
– face, an integer that represents the current face
– HEADS and TAILS, integer constants that represent the 

two possible states
• We might also define the following methods:

– a Coin constructor, to set up the object
– a flip method, to flip the coin
– a getFace method, to return the current face
– a toString method, to return a string description for 

printing



3

7/24/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 8 13

The Coin Class [2]

• Once the Coin class has been defined, we 
can use it again in other programs as needed

• A program will not necessarily use every 
service provided by an object

7/24/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 8 14

Instance Data

• The face variable in the Coin class is called instance data
because each instance (object) of the Coin class has its own

• A class declares the type of the data, but it does not reserve 
any memory space for it

• Every time a Coin object is created, a new face variable is 
created as well

• The objects of a class share the method definitions, but they 
have unique data space

• That's the only way two objects can have different states

7/24/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 8 15

Instance Data [2]
Coin coin1 = new Coin();

Coin coin2 = new Coin();

face 0

coin1

int face;

class Coin

face 1

coin2

7/24/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 8 16

Instance Data and 
Methods

• When a method is invoked on an object, or 
inside an object, that object’s fields are in 
scope

• So given:
coin1.flip();

– Control is transferred to flip()
– coin1’s fields are in scope

7/24/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 8 17

this

• Inside a method, the object that the method was invoked on 
can be referred to with the special variable this

• So instead of writing:
face = ...

we could also write
this.face = ...

• And instead of:
flip();

we could also write:
this.flip();

7/24/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 8 18

Constructors

• A constructor is a special method that is used to set up a 
newly created object

• When Java encounters an object creation:
new Coin()

It reserves memory for the object, then calls a constructor
• Remember that constructors:

– Have the same name as the class
– Do not return a value
– Have no return type, not even void
– Often set the initial values of instance variables


