Classes

CS 99 — Summer 2000
Michael Clarkson
Lecture 7

Administration

 Lab 7 due tomorrow
— Question: “Lab 6”. equal s(“Squar eRoot ") ?

* Lab 8 posted today

* Prelim 2 in six days!
— Covers two weeks of material:
« lectures 5-7
« labs 5-8
— Review: Monday, 7:30-8:30pm, Philips 203
— Exam: Tuesday, in class
« Upson 215 (10:00)

* Upson B17 (11:30)
7/19/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 7

Agenda

* Objects Part 11
» Command Line Arguments
* Classes

7/19/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 7 3

Objects Part 11

* Object aliases
* Objects as arguments

7/19/00 CS 99 + Summer 2000 * Michael Clarkson = Lecture 7

Review: Object References

* Recall that declaring an object and creating
(instantiating) it are two separate steps

» We declare a reference, and that reference
refers to an object:

Car nyCar;

7/19/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 7 5

Object Aliases

» More than one reference can refer to the
same object, e.g.:

Car nyCar, yourCar;
myCar = new Car();
your Car = nyCar;

* This is called aliasing

7/19/00 CS 99 + Summer 2000 + Michael Clarkson = Lecture 7

Object Aliases [2]

my Car your Car

T

7/19/00 CS 99 + Summer 2000 + Michael Clarkson = Lecture 7 7

Object Aliases [3]

 Anything that happens to an alias, happens to
the real object

* So:
your Car . honkHor n() ;
Honks my car’s horn!

7/19/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 7 8

Object Equality

» References are why the == operator doesn’t
work like you might suspect on objects

» == returns whether the references are equal,
not whether the data contained by the objects
are equal

* In general, you have to use the equal s
method of an object to determine equality

7/19/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 7 9

Objects as Arguments

* Objects can be used as arguments to methods
* This is nothing new:
static void Systemout.println(String s)

« There is a difference between passing
primitive types and objects to methods

7/19/00 CS 99 » Summer 2000 Michael Clarkson = Lecture 7 10

Objects as Arguments [2]

public static void main(String[] args) {
int a=0;
vi(a);
System out. println(a);
String s = “Hello”;
v2(s);
System out. println(s);

}

static void vi(int i) { i++ }
static void v2(String s) { s="Goodbye” }

7/19/00 CS 99 » Summer 2000 * Michael Clarkson = Lecture 7 "

Calling Semantics

* Call by value:

— changes to value are not reflected outside of
method

— used for primitive types
— used for objects (i.e., references)

« reference itself is not changed, BUT....
« changes to object are reflected outside of method

7/19/00 CS 99 » Summer 2000 * Michael Clarkson = Lecture 7 12

Objects as Arguments [3]

class Car {
String color = “Blue”;

}

public static void main(String[] args) {
Car car = new Car();
repaint(car);
Systemout.println(car.color);

}

static void repaint(Car car) {
car.color = “Red”;

}

7/19/00 CS 99 + Summer 2000 + Michael Clarkson = Lecture 7 13

Command Line Arguments

» What Metrowerks is hiding from you
» More of mai n revealed

7/19/00 CS 99 » Summer 2000 * Michael Clarkson = Lecture 7 14

What Metrowerks is Hiding

» Without an IDE like Metrowerks, you
compile a Java program on the command
line:

C\> javac Hell oWwrld.java

» That produces a file named HelloWorld.class
that you then run by typing:

C.\> java Hellowrld

7/19/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 7 15

Running Java Programs

* You can also provide more information than
the name of the program:

C \> java ReverseWrds red green
der neerg
» Words after the name of the program are
called command line arguments

» Another way of getting input to a program

mal n
public static void main(String ar gs)

» Command line arguments are passed to your main
method as an array of Strings

— Each word after the name of the program becomes one
element of the array

* So given:
java ReverseWrds red green
ar gs[0] is “red”
ar gs[1] is “green”

7/19/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 7 17

7/19/00 CS 99 » Summer 2000 * Michael Clarkson * Lecture 7 16
Classes
* Class anatomy
— Fields
— Methods
— Files
e this

* Accessing fields and methods
¢ Constructors
* Instance data

» Modifiers

— publ i c,grivate,static
7/19/00 CS 99 » Summer 2000 * Michael Clarkson * Lecture 7 18

Class Anatomy

* Recall that classes have two types of members:
— Fields
- Methods

class Car {
int speed;
int nunDoors;

void accel erate(int amount) {

}
}

7/19/00 CS 99 + Summer 2000 + Michael Clarkson = Lecture 7 19

Class Anatomy [2]

* Classes are usually defined in separate .java
files

— Files have the same name as the class they
contain

« So for labs where you create classes, you'll
have several .java files to turn in

7/19/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 7 20

Scope of Fields

* Fields have scope throughout the entire class

* Can be used in any method of the class by writing
their name, e.g.:
void accel erate(int amunt) {
speed += anount;
}
* Can be used outside of the class by preceding the
field name with an object reference, e.g.:
Car nyCar;
nmyCar . speed = 55;

7/19/00 CS 99 » Summer 2000 * Michael Clarkson = Lecture 7 21

Invoking Methods

» To call a method from outside of the class, use an
object reference, e.g.:

nyCar.turnLeft();

» To call a method of a class from inside the same
class, no reference is needed, e.g.:

void turnLeft() {
accel erate(-10); // slow down

7/19/00 CS 99 » Summer 2000 Michael Clarkson = Lecture 7 22

Constructors

Constructors are special methods defined inside
aclass

A constructor is called whenever an object of
the class is created

Constructors are used to initialize an object’s
fields properly
Also used for convenience

7/19/00 CS 99 » Summer 2000 * Michael Clarkson = Lecture 7 23

Constructors [2]

« A constructor has
— the same name as the class it is in
- no return type
— whatever parameter list you want

class Point {
doubl e x, vy;
Point(int initX int initY) {
X initX
y inity;

}
}
Point p = new Point(1, 2);

7/19/00 CS 99 » Summer 2000 * Michael Clarkson = Lecture 7 24

Constructors [3]

* Very simple constructors don’t even have any
parameters — default constructor

class Rental Car {
int gasLeft;
Rent al Car () {
gasLeft = FULL_TANK;
}
}

Rental Car car = new Rental Car();

7/19/00 CS 99 » Summer 2000 * Michael Clarkson » Lecture 7 25

Constructors [4]

* You can include as many constructors as you want
inside a class

« Java picks the right one to call based on the types of
the arguments you use when constructing an object

« If you provide no constructors, Java automatically
provides a default constructor that takes no arguments
and basically does nothing

7/19/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 7 26

Instance Data

» The data contained by one particular object is
called instance data

« So for Poi nt s, the x and y coordinates are

instance data

Each object has its own separate memory

reserved for its instance data

It can be different than the data contained by

any other object of the same class

7/19/00 CS 99 » Summer 2000 * Michael Clarkson = Lecture 7 27

Instance Data [2]
* Instance data is not shared between objects

Poi nt pl = new Point (0, 0);
Poi nt p2 = new Point (-1, 4);

pl.x !'= p2.x
pl.y !=p2.y
7/19/00 CS 99 * Summer 2000 * Michael Clarkson = Lecture 7 28

Instance Data [3]

* Objects are responsible for managing their
own instance data

* Users of the object usually aren’t allowed
access to instance data, except through
methods defined by the object’s class

 Objects are self-governing

7/19/00 CS 99 » Summer 2000 * Michael Clarkson = Lecture 7 29

Visibility Modifiers

Visibility modifiers are keywords used in declaring
members
» They make members either visible or invisible from
outside the class
* public
— A public member is accessible outside of the class using
ther ef er ence. menber syntax
e private
— A private member is not accessible outside of the class
— Itis accessible from inside any method of the class

7/19/00 CS 99 » Summer 2000 * Michael Clarkson = Lecture 7 30

toString()

» One method that is common to have in many
classesist oSt ri ng()

« Itis called whenever an object of the class is
used in a concatenation operation

public String toString() {
return “(" + x +“," +y +“)";

}

System out. println(pl);

7/19/00 CS 99 » Summer 2000 * Michael Clarkson » Lecture 7 31

mal n
public static void main(String[] args)

* mai nis publ i c to make it accessible from
outside the class it is declared in

* Otherwise, Java couldn’t call your main
method

7/19/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 7 32

Publicity Guidelines

* Usually, all fields are private
» Public methods are for users of the class

* Private methods are called from public
methods to help implement them
— But aren’t meant for users of the class to call

7/19/00 CS 99 » Summer 2000 * Michael Clarkson = Lecture 7 33

static

e stati c isamodifier
* Indicates that the member is shared by all instances
of a class
* For fields:
— the data is shared by all objects
— if one object changes it, it's changed for every object
— best use is for class-wide constants (st ati c fi nal)

7/19/00 CS 99 » Summer 2000 Michael Clarkson = Lecture 7 34

st ati ¢ Methods

Static methods have no associated object
No instance data involved

Not invoked using the
ref erence. met hod() syntax

Invoked with Ol ass. met hod() syntax

7/19/00 CS 99 » Summer 2000 * Michael Clarkson = Lecture 7 35

st ati ¢ Methods [2]

» Examples:
—Math.sqrt ()
—Consol e. readl nt ()

« Since they have no associated object, not
allowed to use instance variables

7/19/00 CS 99 » Summer 2000 * Michael Clarkson = Lecture 7 36

mal n
public static void main(String[] args)
* mai nisstati c because
— it belongs to no particular object

— belongs to entire program

» We now know what every part of nai n
means!

7/19/00 CS 99 + Summer 2000 + Michael Clarkson = Lecture 7 37

System

» Syst emis a class that contains useful methods for
working with the computer system on which a
program runs

* out isastati c field of Syst emwith the type
PrintStreame.g.

cl ass System{
public static PrintStream out;

}

7/19/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 7 38

printin()

 So when we invoke the printin method, we're
saying:
— In the Syst emclass,
— Get the out object, and
— Invoke the pri nt | n() method on it

7/19/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 7 39

Next Time
» Some theory behind object-oriented

programming
 Advanced usage of classes

7/19/00 CS 99 + Summer 2000 * Michael Clarkson = Lecture 7 40

