
1

Classes

CS 99 – Summer 2000
Michael Clarkson

Lecture 7

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 2

Administration

• Lab 7 due tomorrow
– Question: “Lab 6”.equals(“SquareRoot”)?

• Lab 8 posted today
• Prelim 2 in six days!

– Covers two weeks of material:
• lectures 5-7
• labs 5-8

– Review: Monday, 7:30-8:30pm, Philips 203
– Exam: Tuesday, in class

• Upson 215 (10:00)
• Upson B17 (11:30)

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 3

Agenda

• Objects Part II
• Command Line Arguments
• Classes

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 4

Objects Part II

• Object aliases
• Objects as arguments

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 5

Review: Object References

• Recall that declaring an object and creating
(instantiating) it are two separate steps

• We declare a reference, and that reference
refers to an object:

Car myCar;

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 6

Object Aliases

• More than one reference can refer to the
same object, e.g.:

Car myCar, yourCar;

myCar = new Car();

yourCar = myCar;

• This is called aliasing

2

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 7

Object Aliases [2]

myCar yourCar

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 8

Object Aliases [3]

• Anything that happens to an alias, happens to
the real object

• So:
yourCar.honkHorn();

Honks my car’s horn!

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 9

Object Equality

• References are why the == operator doesn’t
work like you might suspect on objects

• == returns whether the references are equal,
not whether the data contained by the objects
are equal

• In general, you have to use the equals
method of an object to determine equality

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 10

Objects as Arguments

• Objects can be used as arguments to methods
• This is nothing new:

static void System.out.println(String s)

• There is a difference between passing
primitive types and objects to methods

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 11

Objects as Arguments [2]

public static void main(String[] args) {

int a = 0;

v1(a);

System.out.println(a);

String s = “Hello”;

v2(s);

System.out.println(s);

}

static void v1(int i) { i++; }

static void v2(String s) { s=“Goodbye” }

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 12

Calling Semantics

• Call by value:
– changes to value are not reflected outside of

method
– used for primitive types
– used for objects (i.e., references)

• reference itself is not changed, BUT…
• changes to object are reflected outside of method

3

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 13

Objects as Arguments [3]
class Car {

String color = “Blue”;

}

public static void main(String[] args) {

Car car = new Car();

repaint(car);

System.out.println(car.color);

}

static void repaint(Car car) {

car.color = “Red”;

}

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 14

Command Line Arguments

• What Metrowerks is hiding from you
• More of main revealed

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 15

What Metrowerks is Hiding

• Without an IDE like Metrowerks, you
compile a Java program on the command
line:

C:\> javac HelloWorld.java

• That produces a file named HelloWorld.class
that you then run by typing:

C:\> java HelloWorld

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 16

Running Java Programs

• You can also provide more information than
the name of the program:

C:\> java ReverseWords red green

der neerg

• Words after the name of the program are
called command line arguments

• Another way of getting input to a program

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 17

main

public static void main(String[] args)

• Command line arguments are passed to your main
method as an array of Strings
– Each word after the name of the program becomes one

element of the array
• So given:

java ReverseWords red green

args[0] is “red”
args[1] is “green”

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 18

Classes

• Class anatomy
– Fields
– Methods
– Files

• this

• Accessing fields and methods
• Constructors
• Instance data
• Modifiers

– public, private, static

4

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 19

Class Anatomy

• Recall that classes have two types of members:
– Fields
– Methods

class Car {

int speed;

int numDoors;

void accelerate(int amount) {

...

}

}

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 20

Class Anatomy [2]

• Classes are usually defined in separate .java
files
– Files have the same name as the class they

contain
• So for labs where you create classes, you’ll

have several .java files to turn in

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 21

Scope of Fields

• Fields have scope throughout the entire class
• Can be used in any method of the class by writing

their name, e.g.:
void accelerate(int amount) {

speed += amount;
}

• Can be used outside of the class by preceding the
field name with an object reference, e.g.:

Car myCar;
myCar.speed = 55;

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 22

Invoking Methods

• To call a method from outside of the class, use an
object reference, e.g.:

myCar.turnLeft();

• To call a method of a class from inside the same
class, no reference is needed, e.g.:

void turnLeft() {

accelerate(-10); // slow down

...

}

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 23

Constructors

• Constructors are special methods defined inside
a class

• A constructor is called whenever an object of
the class is created

• Constructors are used to initialize an object’s
fields properly

• Also used for convenience

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 24

Constructors [2]

• A constructor has
– the same name as the class it is in
– no return type
– whatever parameter list you want

class Point {

double x, y;

Point(int initX, int initY) {

x = initX;

y = initY;

}

}

Point p = new Point(1, 2);

5

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 25

Constructors [3]

• Very simple constructors don’t even have any
parameters – default constructor

class RentalCar {

int gasLeft;

RentalCar() {

gasLeft = FULL_TANK;

}

}

RentalCar car = new RentalCar();

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 26

Constructors [4]

• You can include as many constructors as you want
inside a class

• Java picks the right one to call based on the types of
the arguments you use when constructing an object

• If you provide no constructors, Java automatically
provides a default constructor that takes no arguments
and basically does nothing

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 27

Instance Data

• The data contained by one particular object is
called instance data

• So for Points, the x and y coordinates are
instance data

• Each object has its own separate memory
reserved for its instance data

• It can be different than the data contained by
any other object of the same class

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 28

Instance Data [2]

• Instance data is not shared between objects

Point p1 = new Point(0, 0);

Point p2 = new Point(-1, 4);

p1.x != p2.x

p1.y != p2.y

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 29

Instance Data [3]

• Objects are responsible for managing their
own instance data

• Users of the object usually aren’t allowed
access to instance data, except through
methods defined by the object’s class

• Objects are self-governing

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 30

Visibility Modifiers

• Visibility modifiers are keywords used in declaring
members

• They make members either visible or invisible from
outside the class

• public
– A public member is accessible outside of the class using

the reference.member syntax
• private

– A private member is not accessible outside of the class
– It is accessible from inside any method of the class

6

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 31

toString()

• One method that is common to have in many
classes is toString()

• It is called whenever an object of the class is
used in a concatenation operation

public String toString() {
return “(” + x + “,” + y + “)”;

}

System.out.println(p1);

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 32

main

public static void main(String[] args)

• main is public to make it accessible from
outside the class it is declared in

• Otherwise, Java couldn’t call your main
method

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 33

Publicity Guidelines

• Usually, all fields are private
• Public methods are for users of the class
• Private methods are called from public

methods to help implement them
– But aren’t meant for users of the class to call

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 34

static

• static is a modifier
• Indicates that the member is shared by all instances

of a class
• For fields:

– the data is shared by all objects
– if one object changes it, it’s changed for every object
– best use is for class-wide constants (static final)

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 35

static Methods

• Static methods have no associated object
• No instance data involved
• Not invoked using the
reference.method() syntax

• Invoked with Class.method() syntax

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 36

static Methods [2]

• Examples:
– Math.sqrt()

– Console.readInt()

• Since they have no associated object, not
allowed to use instance variables

7

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 37

main

public static void main(String[] args)

• main is static because
– it belongs to no particular object
– belongs to entire program

• We now know what every part of main
means!

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 38

System

• System is a class that contains useful methods for
working with the computer system on which a
program runs

• out is a static field of System with the type
PrintStream, e.g.:

class System {

public static PrintStream out;
...

}

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 39

println()

• So when we invoke the println method, we’re
saying:
– In the System class,
– Get the out object, and
– Invoke the println() method on it

7/19/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 7 40

Next Time

• Some theory behind object-oriented
programming

• Advanced usage of classes

