
1

Objects and Arrays

CS 99 – Summer 2000
Michael Clarkson

Lecture 6

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 2

Administration

• Read clarified grading policies
• Lab 6 due tomorrow

– Submit .java files in a folder named Lab6
• Lab 7

– Posted today
– Upson Lab closed (today?, tomorrow,

Wednesday?) – class cancelled on Tuesday
– Michael will hold office hours during lab time

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 3

Agenda

• Objects
• Arrays

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 4

Objects

• What is a class?
• What is an object?
• Object reference variables
• Invoking methods on objects

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 5

What is a Class?

• Java represents data as either primitive types
(int, double, boolean, char) or user-
defined types

• A type is a set of values and operations that
can be performed on those values

• A class is a user-defined type in Java
– Defines methods (i.e., operations) that can be

performed on objects of that class

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 6

What is an Object?

• An object is an instance of a class
– instance: a case or occurrence

• Consider cars:
– There many 2000 Chevrolet Cavaliers
– Each was made from a specification for the car
– The specification is the class
– Each of the cars is an object of that class

2

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 7

Objects have Methods

• Can invoke methods on objects, e.g.:
– System.out.println(“Hello, world!”);

– println() is a method of the System.out object
– System.out is an instance of the class PrintStream

• Printing is an operation performed on the System.out
object

• Or, printing is a service performed for us by the
System.out object

• So calling a method is like sending a message to the object,
telling it to do something for us

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 8

Objects Methods

• Random is another class we’ve used
• We created an instance of it called
generator

• We used a method of generator to get it
to generate random numbers for us

• We’ve also used the equals and charAt
methods of the String class

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 9

Object Methods [2]

• What about a car? What methods (operations
on it, services it performs) can we identify?

class Car {

// ??

}

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 10

Objects have Fields

• Fields are data contained by objects
• For example, the System.out object has to keep

track of where it is printing on the screen
• Objects of the Random class have to know what

the last number they generated was in order to
generate the next number

• Fields are not usually available to the users of the
object

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 11

Object Fields

• What fields would a Car have?
class Car {

// ??

}

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 12

Object Reference
Variables

• We name objects by declaring object reference
variables
– All variables that hold objects, instead of

primitive types, are reference variables
– Reference means the variable refers to an object,

but is not the object itself – more on that later

3

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 13

Declaring References

• We declare references in an identical manner to
declaring primitive variables:

type name;

• Default value is the keyword null

e.g.:
Random generator;
Car myCar;

String firstName;

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 14

Creating Objects

• Not the same thing as declaring a reference!
• Objects are created (constructed) with the
new operator

• Examples:
new Random() // note these

new Car() // look like

new String() // method calls

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 15

Creating Objects [2]

• Declaring a primitive reserves memory and
gives it a name

• Declaring a reference gives it a name but
reserves no memory for an object

• Creating an object reserves memory but gives
it no name

• So we have to declare and create objects

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 16

Creating Objects [3]

• The usual way to declare and create objects is
therefore to declare the reference and
initialize it to an object.

Random generator = new Random();

Car myCar = new Car();

String firstName = new String();

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 17

Strings

• Why haven’t we ever written something like:
String firstName = new String();

• Java treats String literals as an implicit object
creation, so

“Hello”

is essentially replaced by
new String(“Hello”)

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 18

Invoking Methods

• To invoke a method on an object, we write:
objectReference.methodName(...)

• Examples:
– System.out.println();

– generator.nextBoolean();

– myCar.honkHorn();

4

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 19

Arrays

• What is an array?
• Array indexing
• Declaring and instantiating arrays
• Array initializers
• Using arrays

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 20

Lists of Data

• List of 5 integers (say, test scores)
– 45, 66, 78, 82, 95
– How would we represent these in a program?

• Declared 5 variables with distinct names, say: a, b, c,
d, e.

• Would have input values from the user

– This produces 5 named locations in memory:
45 66 78 82 95
a b c d e

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 21

Lists of Data [2]

• But what if we had 100, or 1000 scores?
• There’s a better way of working with lists of

data: arrays

95

92

78

66

45

scores

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 22

What is an Array?

• An array is a sized list of values
• Each value in the array is at a specific,

numbered location
– The number is called an index or subscript
– Indexing starts at 0 in Java

scores 9582786645

[4][3][2][1][0]

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 23

Array Elements

• Each location in an array is called an element
• Every element can be treated exactly like a

regular variable
• We refer to an element with the name of the

array and the element’s index:
scores[0] = 45;

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 24

Array Indexing

• [] is the index operator in Java
• It returns the value at a particular location in

an array
• Arrays are indexed from 0 to N-1, where N is

the size of an array
• It is a run-time error to index past the end of

an array (ArrayIndexOutOfBounds)
– Bounds checking

5

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 25

Declaring Arrays

• In Java, arrays are objects
– Remember, all non-primitive types are objects

• So we have to declare a reference to the array, and create the
array object itself

• An array reference is declared just like a non-array variable of
the same type, with the addition of brackets:

int a; int[] a;

String b; String[] b;

Random c; Random[] c;

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 26

Creating Arrays

• Since arrays are objects, they are created with
the new operator:

new int[5]

new String[50]

new Car[1000]

• The number in brackets is the size of the array
– Number of elements in it

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 27

Initializing Arrays

• Typically the reference declaration and array
creation occur in the same statement:

int[] scores = new int[50];

String[] names = new String[50];

Car[] carLot = new Car[300];

• Also possible to initialize arrays to specified values:
int[] scores = {45, 66, 78, 82, 95};

• If there is no initializer, what do the elements equal?

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 28

Array Sizes

• It is best – if you know how large of an array
you need – to use a constant for declaring the
size of an array, e.g.:

final int CAR_LOT_SIZE = 1000;

…

Car[] carLot = new Car[CAR_LOT_SIZE];

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 29

Using Array Elements

• Assign the 6th element of the array scores
the value 100

• Assign the variable x the 1st element of
employees

• Take the square root of element i of
prices and assign it to p

• Assign two times element j of a to element
k of b

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 30

Using Array Elements [2]

• scores[5] = 100;

• x=employees[0];

• p = Math.sqrt(prices[i]);

• b[k] = 2 * a[j];

6

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 31

Using Loops with Arrays

• Loops for input, calculation, and output over
arrays are very common
– Input a list of values into an array
– Calculate based on values in array (sum, average,

etc.)
– Output part or whole of array

• What sort of loop would be best to use?

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 32

Input Loop

• Use a for loop to input n values into an array
named list:

for (int j = 0; j < n; j++) {

list[j] = getValueFromUser();
}

• We use “0” and “< n” to keep the loop index
in bounds

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 33

Calculation Loop

• Add up all the values in the list array

int sum = 0;

for (int k = 0; k < list.length; k++) {

sum += list[k];

}

• The length field of an array is always equal
to the declared size of the array

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 34

Output Loop

• Print out every element in list that is
positive

for (int i = 0; i < list.length; i++) {

if (list[i] > 0) {

System.out.println(list[i]);

}

}

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 35

Arrays as Arguments

• Arrays can be passed as arguments to
methods

• To pass an array, just write its name:
double[] scores = new double[NUM_SCORES];

double average = averageArray(scores);

• To declare an array as a parameter, include its
type in the method header:

static double averageArray(double[] arrayToAverage)

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 36

Array Sizes, Revisited

• What if, when you declare the array, you
don’t know how big it needs to be?

• Solutions:
– Pick a size

• Must be big enough to hold anticipated data
• Must not be too big and waste memory

– Java is nice in that we can input from the user
how big to make the array, and then declare it

7

7/17/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 6 37

Parting Thoughts

• Standard array operations
– Sorting (LL 6.3)
– Searching

• Multidimensional arrays
– The elements of an array can themselves be arrays, with

arrays as their elements, with arrays as their elements, ad
inifinitum

– Two-dimensional arrays are common, the rest less so
• tables of data (LL 6.4)

