Objects and Arrays

CS 99 — Summer 2000
Michael Clarkson

Administration

* Read clarified grading policies
* Lab 6 due tomorrow

— Submit .java files in a folder named Lab6
e Lab7

— Posted today

— Upson Lab closed (today?, tomorrow,
Wednesday?) — class cancelled on Tuesday

— Michael will hold office hours during lab time

7117/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 6

Lecture 6
Agenda
* Objects
* Arrays
7/17/00 CS 99 » Summer 2000 * Michael Clarkson * Lecture 6

Objects

What is a class?

What is an object?

Object reference variables
Invoking methods on objects

7117/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 6

What is a Class?

» Java represents data as either primitive types
(i nt,doubl e, bool ean, char) or user-
defined types

* A type is a set of values and operations that
can be performed on those values

 Acclass is a user-defined type in Java

— Defines methods (i.e., operations) that can be
performed on objects of that class

7117/00 CS 99 + Summer 2000 + Michael Clarkson = Lecture 6

What is an Object?

* An object is an instance of a class
— instance: a case or occurrence
» Consider cars:
— There many 2000 Chevrolet Cavaliers
— Each was made from a specification for the car
— The specification is the class
— Each of the cars is an object of that class

7117/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 6

Objects have Methods

« Can invoke methods on objects, e.g.:
— Systemout.printin(“Hello, world!");
— println() isamethod of the Syst em out object
— Syst em out isan instance of the class Pri nt St r eam

« Printing is an operation performed on the Syst em out
object

« Or, printing is a service performed for us by the
Syst em out object

« So calling a method is like sending a message to the object,
telling it to do something for us

7117/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 6 7

Objects Methods

» Randomis another class we’'ve used

» We created an instance of it called
gener at or

» We used a method of gener at or to get it
to generate random numbers for us

» We've also used the equal s and char At
methods of the St r i ng class

7117/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 6 8

Object Methods [2]
» What about a car? What methods (operations
on it, services it performs) can we identify?

class Car {

1 ??

}

7117/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 6 9

Objects have Fields

Fields are data contained by objects

For example, the Syst em out object has to keep
track of where it is printing on the screen

Objects of the Randomclass have to know what
the last number they generated was in order to
generate the next number

Fields are not usually available to the users of the
object

717100 CS 99 » Summer 2000 + Michael Clarkson = Lecture 6 10

Object Fields

» What fields would a Car have?
class Car {

1 ??

717100 CS 99 » Summer 2000 + Michael Clarkson = Lecture 6 "

Object Reference
Variables

» We name objects by declaring object reference
variables

— All variables that hold objects, instead of
primitive types, are reference variables

— Reference means the variable refers to an object,
but is not the object itself — more on that later

717100 CS 99 » Summer 2000 Michael Clarkson » Lecture 6 12

Declaring References

» We declare references in an identical manner to
declaring primitive variables:

type nane;
* Default value is the keyword nul |

e.g.
Random gener at or ;
Car nyCar;
String firstNane;
7/17/00 CS 99 * Summer 2000 * Michael Clarkson = Lecture 6 13

Creating Objects

» Not the same thing as declaring a reference!

* Objects are created (constructed) with the
new operator

o Examples:
new Randon() /1 note these
new Car () /1 1ook Iike
new String() /1 nmethod calls
7/17/00 CS 99 * Summer 2000 * Michael Clarkson = Lecture 6 14

Creating Objects [2]

« Declaring a primitive reserves memory and
gives it a name

« Declaring a reference gives it a name but
reserves no memory for an object

« Creating an object reserves memory but gives
it no name

» S0 we have to declare and create objects

717100 CS 99 » Summer 2000 Michael Clarkson = Lecture 6 15

Creating Objects [3]

 The usual way to declare and create objects is
therefore to declare the reference and
initialize it to an object.

Random gener at or = new Randon();
Car nyCar = new Car();
String firstName = new String();

717100 CS 99 » Summer 2000 + Michael Clarkson = Lecture 6 16

Strings

» Why haven’t we ever written something like:
String firstName = new String();

« Java treats String literals as an implicit object
creation, so

“Hel | 0”
is essentially replaced by
new String(“Hello”)

717100 CS 99 » Summer 2000 + Michael Clarkson = Lecture 6 17

Invoking Methods

 To invoke a method on an object, we write:
obj ect Ref er ence. met hodNarre(. . .)
« Examples:
—Systemout. printin();
—gener at or . next Bool ean() ;
—nyCar . honkHor n() ;

717100 CS 99 » Summer 2000 Michael Clarkson » Lecture 6 18

Arrays

» What is an array?

* Array indexing

Declaring and instantiating arrays
Array initializers

« Using arrays

7117100 CS 99 » Summer 2000 Michael Clarkson = Lecture 6 19

Lists of Data

« List of 5 integers (say, test scores)
— 45,66, 78, 82, 95
— How would we represent these in a program?
« Declared 5 variables with distinct names, say: a, b, c,
d, e
« Would have input values from the user
— This produces 5 named locations in memory:

a b c d e

7117/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 6 20

Lists of Data [2]

» But what if we had 100, or 1000 scores?

* There’s a better way of working with lists of

data: arrays
scores

45
66
78
92
95

717100 CS 99 » Summer 2000 Michael Clarkson = Lecture 6 21

What is an Array?

» Anarray is a sized list of values

« Each value in the array is at a specific,
numbered location
— The number is called an index or subscript
— Indexing starts at 0 in Java

(0] [1] [2] [3] [4]
scores [45 | 66 [78 | 82 [95 |

717100 CS 99 » Summer 2000 + Michael Clarkson = Lecture 6 22

Array Elements

» Each location in an array is called an element

* Every element can be treated exactly like a
regular variable

» We refer to an element with the name of the
array and the element’s index:

scores[0] = 45;

717100 CS 99 » Summer 2000 + Michael Clarkson = Lecture 6 23

Array Indexing

 [] is the index operator in Java

* It returns the value at a particular location in
an array

* Arrays are indexed from 0 to N-1, where N is
the size of an array

« Itis a run-time error to index past the end of
an array (Arr ayl ndexQut Of Bounds)

— Bounds checking

717100 CS 99 » Summer 2000 Michael Clarkson » Lecture 6 24

Declaring Arrays

« InJava, arrays are objects
— Remember, all non-primitive types are objects
« So we have to declare a reference to the array, and create the
array object itself
« An array reference is declared just like a non-array variable of
the same type, with the addition of brackets:

int a int[] a;
String b; String[] b;
Random c; Randon{] c;
7/17/00 CS 99 * Summer 2000 * Michael Clarkson = Lecture 6 25

Creating Arrays

« Since arrays are objects, they are created with
the new operator:

new i nt[5]
new String[50]
new Car [1000]

» The number in brackets is the size of the array
— Number of elements in it

7117/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 6 26

Initializing Arrays

* Typically the reference declaration and array
creation occur in the same statement:
int[] scores = new int[50];
String[] names = new String[50];
Car[] carLot = new Car[300];

* Also possible to initialize arrays to specified values:
int[] scores = {45, 66, 78, 82, 95};
« If there is no initializer, what do the elements equal?

717100 CS 99 » Summer 2000 Michael Clarkson = Lecture 6 27

Array Sizes
* It is best — if you know how large of an array

you need — to use a constant for declaring the
size of an array, e.g.:

final int CAR LOT_SIZE = 1000;

Car[] carLot = new Car[CAR _LOT_SI ZF] ;

717100 CS 99 » Summer 2000 + Michael Clarkson = Lecture 6 28

Using Array Elements

» Assign the 61 element of the array scor es
the value 100

* Assign the variable x the 1%t element of
enpl oyees

« Take the square root of element i of
pri ces and assign it to p

« Assign two times element j of a to element
k ofb

717100 CS 99 » Summer 2000 + Michael Clarkson = Lecture 6 29

Using Array Elements [2]

e scores[5] = 100;
» x=enpl oyees[0] ;
ep = Math.sqgrt(prices[i]);
blk] =2 * a[j];

717100 CS 99 » Summer 2000 Michael Clarkson » Lecture 6 30

Using Loops with Arrays

« Loops for input, calculation, and output over
arrays are very common
— Input a list of values into an array

— Calculate based on values in array (sum, average,
etc.)

— Output part or whole of array
» What sort of loop would be best to use?

7117100 CS 99 » Summer 2000 Michael Clarkson = Lecture 6 31

Input Loop

* Use a for loop to input n values into an array
named | i st:

for (int j =0; j <n; j++) {
list[j] = getVal ueFronser();
}

* We use “0” and “< n” to keep the loop index
in bounds

7117/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 6 32

Calculation Loop
» Add up all the values inthe | i st array

int sum= 0;
for (int k =0; k <list.length; k++) {
sum += list[k];

}

» The | engt h field of an array is always equal
to the declared size of the array

717100 CS 99 » Summer 2000 Michael Clarkson = Lecture 6 33

Output Loop

* Print out every elementin | i st that is
positive

for (int i =0; i <list.length; i++) {
if (list[i] > 0) {
Systemout.printin(list[i]);

}

717100 CS 99 » Summer 2000 + Michael Clarkson = Lecture 6 34

Arrays as Arguments

« Arrays can be passed as arguments to
methods

 To pass an array, just write its name:
doubl e[] scores = new doubl e[NUM SCORES] ;
doubl e average = averageArray(scores);

» To declare an array as a parameter, include its
type in the method header:

static doubl e averageArray(doubl e[] arrayToAverage)

717100 CS 99 » Summer 2000 + Michael Clarkson = Lecture 6 35

Array Sizes, Revisited

» What if, when you declare the array, you
don’t know how big it needs to be?

« Solutions:

— Pick a size
» Must be big enough to hold anticipated data
» Must not be too big and waste memory
—Java is nice in that we can input from the user
how big to make the array, and then declare it

717100 CS 99 » Summer 2000 Michael Clarkson » Lecture 6 36

Parting Thoughts

« Standard array operations
— Sorting (LL 6.3)
— Searching

» Multidimensional arrays

— The elements of an array can themselves be arrays, with
arrays as their elements, with arrays as their elements, ad
inifinitum

— Two-dimensional arrays are common, the rest less so

« tables of data (LL 6.4)
7/17/00

CS 99 + Summer 2000 Michael Clarkson = Lecture 6 37

