
1

Repetition Statements
(Loops)

CS 99 – Summer 2000
Michael Clarkson

Lecture 5

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 2

Administration

• Prelim 1 Review Session Tonight
– 7:30-8:30pm
– Upson 211
– Bring questions or it will be over quickly!

• Lab 4 in progress, due tomorrow
• Lab 5 posted today
• Prelim 1 on Wednesday in class, covers:

– Lectures & Labs 1-4
– assigned reading (esp. 1.2, 1.4, 1.5, 2.2, 2.4)

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 3

Agenda

• Repetition statements
• Three repetitions statements in Java:

– for

– while

– do

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 4

Repetition

• Computers are great at performing repeated
tasks

• So far, we don’t know how to repeat tasks
(conveniently) in a program

• Examples:
– Add all the integers from 1 to 100
– Calculate grades for an entire class

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 5

Repetition [2]

• The three statements for repetition in Java are:

• Most loops share these characteristics:
– a variable is assigned some value before the loop
– the variable’s value changes at some point in the loop
– repetition continues until some condition is true (e.g., the

variable reaches some predetermined value)

for(…; …; …) {

…

}

while(…) {

…

}

do {

…

} while(…);

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 6

Repetition [3]

• Pretest loop: a loop that uses a condition to control whether
or not the body of the loop is executed before going through
the loop
– condition is true, body is executed
– condition is false, body is skipped
– while, for

• Posttest loop: executes the body of the loop, then checks a
condition to decide whether to execute it again
– condition is true, body is executed again, and condition checked

again
– condition is false, move on to next executable statement
– do

2

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 7

Repetition [4]

• Variable repetition: the number of times the loop
body will execute is unknown
– e.g., adding numbers the user enters until the sum is

greater than 100
– while, do

• Fixed repetition: the number of times the loop body
will execute is predetermined (but not nec. constant)
– e.g., adding integers from 1 to 100
– for, (while, do)

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 8

Repetition [5]

• while, do, and for loops are all equivalent
in that each can be rewritten as the others
– though it may require the addition of one or

more statements
• However, each loop is more appropriate at

different times, based on whether you want
fixed or variable repetition, and pretests or
posttests

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 9

for Loops

• The for loop is:
– pretest
– fixed repetition
– A convenient structure for writing certain types

of loops more concisely than while allows

• It combines 3 statements into one

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 10

First for

// sum the integers from 1 to 100

sum = 0;

for (i = 1; i <= 100; i++) {

sum = sum + i;

}

• Execution:
– Initialize i to 1
– Check if i is less than or equal to 100

• If so, execute body
• If not, stop repeating

– Update i by incrementing it
– Repeat

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 11

Syntax of for

for (initializer; condition; update) {

...

}

• initializer and update are statements
– initializer can be a variable declaration, with scope through

the end of the block that the for statement is in

• condition is a boolean expression
• the first line is called the loop header

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 12

Control Flow of for

condition?

initializer

body

update

false

true

3

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 13

Common for loops

// count from low to high using var

for (int var = low; var <= high; var++) {

...

}

// count from high down to low using var

for (int var = high; var >= low; var--) {

...

}

These types of for loops should never change the value of var
inside of the body!

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 14

for Example #1

• Print the numbers 1-10 along with their
squares and cubes

for (int i = 1; i <= 10; i++) {

System.out.println(i + “\t” + i*i + “\t” +

i*i*i);

}

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 15

for Example #2

• Average a set of numbers entered by the user. Begin
by inputting how many numbers are in the set.

System.out.print(“Enter how many numbers there are: ”);

int size = Console.readInt();

int sum = 0;

for (int i = 1; i <= size; i++) {

System.out.print(“Enter #” + i + “: ”);

sum += Console.readInt();

}

double average = (double) sum / size;

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 16

for Example #3

• Sum the multiples of 7 between 1 and 1000

int sum = 0;

for (int num = 7; num <=1000; num += 7) {

sum += num;
}

A variable used in a loop to keep a sum of the value of some other variable
is called an accumulator.

The variable that is declared, checked, and updated is called the loop index or
loop control variable.

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 17

for Example #4

• Use a for loop to produce the following
output:

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 18

for Example #4 [2]

for (int spaces = 3; spaces >= 0; spaces--) {

for (int i = 1; i <= spaces; i++) {

System.out.print(“ ”);

}

System.out.println(“***”);

}

4

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 19

while Loops

• The while loop is:
– pretest
– variable repetition
– very similar to an if statement

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 20

First while

int num = 1, sum = 0;

while (num <= 100) {

sum = sum + num;

num++;

}

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 21

Syntax and Semantics
of while

while (boolean-expression) {

...

}

• Evaluate the expression
• If it is true, execute the body of the loop and repeat
• If it is false, transfer control to the next statement

after the loop

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 22

Flow of Control of while

condition? body

next statement

true

false

Note that the body
of the loop might
never be executed.

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 23

Rewriting for as while

sum = 0;

for (int i = 1; i <= 100; i++) {

sum = sum + i;

}

sum = 0;

int i = 1;

while (i <= 100) {

sum = sum + i;

i++;

}

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 24

while Example #1

• Determine how many powers of two are between 0
and 100 and print each of them

count = 0; // counter variable

pow2 = 1;

while (pow2 < 100) {

System.out.println(pow2);

pow2 = pow2 * 2;

count++;

}

System.out.println(“There are ” + count + “ powers of 2
less than 100.”);

5

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 25

while Example #2

• A sentinel is an input value than indicates the
end of input
– e.g., “Enter a number, -999 to quit: ”

• Average a set of numbers input from the
user, terminated by a sentinel

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 26

while Example #2 [2]

int count = 0;

int sum = 0;

System.out.print(“Enter a number, -1 to quit: ”);

int num = Console.readInt();

while (num != -1) {

count++;

sum += num;

System.out.print(“Enter a number, -1 to quit”);

int num = Console.readInt();

}

if (count > 0) {

double average = (double) sum / count;

System.out.println(“average = ” + average);

}

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 27

while Example #3

• What’s wrong with this loop?

// print powers of 3 between 1 and 100

pow3 = 1;

while (pow3 != 100) {

System.out.println(pow3);

pow3 = pow3 * 3;

}

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 28

while Example #3 [2]

• Infinite loop, should be:

// print powers of 3 between 1 and 100

pow3 = 1;

while (pow3 < 100) {

System.out.println(pow3);

pow3 = pow3 * 3;

}

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 29

while Example #4

• What’s wrong with this loop?

// print the first five powers of 3 between

// 1 and x, inclusive

pow3 = 1;

count = 1;

while (count <= 5 && pow3 <= x) {

System.out.println(pow3);

pow3 = pow3 * 3;

}

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 30

while Example #4 [2]

• Again, an infinite loop, should be:

// print the first five powers of 3 between

// 1 and x, inclusive
pow3 = 1;

count = 1;

while (count <= 5 && pow3 <= x) {
System.out.println(pow3);

pow3 = pow3 * 3;

count++;
}

6

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 31

do Loops

• Syntax:
do {

...

} while (boolean-expression);

• Semantics:
– Execute the body
– Check the condition

• If true, repeat
• If false, transfer control to the statement after the loop

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 32

Flow of control in do

condition?

body

next statement

true

false
Note that the body
of the loop is always
executed at least once.

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 33

do Example #1
• Average a set of numbers input from the user, terminated by

a sentinel
int count = 0;
int sum = 0;

do {
System.out.print(“Enter a number, -999 to quit: ”);

int num = Console.readInt();
if (num != -999) {

count++;
sum += num;

}
} while (num != -999);

if (count > 0) {
double average = (double) sum / count;

System.out.println(“average = ” + average);
}

7/10/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 5 34

do Example #2

• Data validation
• Prompt the user for a yes or no answer, and keep prompting

until the user enters either “yes” or “no”.

String response;

do {

System.out.println(“Do you wish to continue? ”

+ “(yes or no): ”);

response = Console.readString();

} while (!(response.equals(“yes”)

|| response.equals(“no”)));

