
1

Java Basics

CS 99 – Summer 2000
Michael Clarkson

Lecture 2

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 2

Administration

• Lab 1 in progress
– Due tomorrow, at beginning of lab
– Submit on a floppy

• Lab 2 posted today
• Put a check by your name on the attendance

sheet – add your name if it isn’t there
• This is the last day to enroll in the class!
• Still need questionnaire from at least 8 people

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 3

Agenda

• Variables
• Assignment
• Expressions
• Methods

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 4

Variables

• Named storage location in memory with an
associated type

• Declaration
• Types
• Names
• Literals
• Scope

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 5

Declaring Variables

• Syntax:
type name [= init] [, name = init]…;

• Examples:
int y;

int x = y;

double pi = 3.14;

String hi = “Hi!”;

int a = 1, b, c = 2;

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 6

Types

• Every value in a program has a type
• Every variable, since it holds values, also has

a type
• Java has some built-in types call intrinsic types,

a.k.a. primitive types
• Programmers can also create their own types

using classes

2

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 7

Intrinsic Types

• Integers
– Numbers that are whole valued and signed
– e.g., 5, -1000, 42, 0
– Java types byte, short, int, long

• Floating point numbers
– Numbers that have a decimal component
– e.g., 3.14, 1.78, .9944, -1.69, 1.0, 0.0
– Java types float, double

• We’ll usually use int and double

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 8

Intrinsic Types [2]

• Characters
– The symbols in a character set, such as letters, numerals,

punctuation, etc.
– e.g., ‘a’, ‘b’, ‘c’, ‘X’, ‘Y’, ‘Z’, ‘1’, ‘%’
– Java type char

• Booleans
– Values that are either true or false
– true, false
– Java type boolean

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 9

The String type

• String is an example of a user-defined
type

• Strings are sequences of characters
• e.g., “Hello, world!”, “1 + 1 = 2”

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 10

Naming Variables

• Follow Style Guide
• First character in name must be a letter
• Remaining characters can be letters, numbers,

or the underscore “_” (e.g., cs99_2000su)
• Can be (practically) as long a name as you

want

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 11

Literals

• Variables are placeholders for values in a
program

• Literals are actual values written directly in a
program:
int x = 5;
double y = x + 2;
String s = “5 + 2 = “ + y;

• Literals above: 5, 2, “5 + 2 = ”
6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 12

Scope

• Scope is the lifetime of a variable
• Variables are live from the statement where

they are declared to the end of the block that
statement is in

• You cannot use a variable if it is not live (in
scope)

• Implication: variables must be declared before
using them

3

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 13

Assignment Statement

• Syntax:
variable = value

• Examples:
x = 5;

y = x;

z = x + y;

d = round(b) – 1;

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 14

A Special Assignment

• What does this mean:
x = x + 1

• Take the value of x+1 and store it in x
• So if x equaled 1 before executing the statement, it

would equal 2 afterwards:
// x = 1

x = x + 1

// x = 2

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 15

Default Values

• What would this output?
int x;

System.out.println(x);

• Answer: every variable is initialized to a
default value, if you don’t provide one
– Numeric types (int, double): 0
– Boolean: false
– Strings: “” (the empty string, or the null string)

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 16

Expressions

• Values combined by operators
• Has a value, and therefore a type

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 17

Operators

• Operators allow values to be combined
• Categories of operators

– Arithmetic
– Relational
– Logical
– (Bitwise)

• Unary, binary, ternary

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 18

Arithmetic Operators

Modulus%

Increment++

Decrement--

Addition assignment (also -=, *=, /=, %=)+=

Division/

Multiplication*

Subtraction-

Addition+

4

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 19

Arithmetic Operators [2]

• Operands are numeric types
• Resulting value is a numeric type
• Unary minus
• Division and Modulus
• Assignment Operators
• Increment and Decrement

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 20

Relational Operators

Less than or equal to<=

Greater than or equal to>=

Less than<

Greater than>

Not equal to!=

Equal to==

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 21

Relational Operators [2]

• For equality operators:
– Operands must be of the same type

• For ordering operators:
– Operands must be of numeric type

• For both:
– Resulting value is a boolean

• Common errors:
– Equality operators don’t work on strings
– Using the assignment operator instead of the equality

operator
6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 22

Logical Operators

AND assignment, OR assignment&=, |=
NOT!

OR||

AND&&

Operands and resulting values are boolean

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 23

Assignment Operator

• Assignment statement acts as an operator
• Resulting value is the value from the RHS of

the assignment
• e.g., value of x = 2 is 2
• So we can write:
x = y = 2;

• Final values of x and y?

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 24

Order of Operations

• Precedence
• Associativity

> >= < <=

= op=

||

&&

== !=

+ -

* / %

++ -- !

()

5

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 25

Methods

• Transfer of control
• Return types and values
• Parameters and arguments
• Walkthrough of a method call

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 26

Transfer of Control
class MethodExample {

static void method1() {

System.out.println(“1”);
}

static void method2() {
System.out.println(“2”);

method3();
}
public static void main(String[] args) {

method3();
method2();

method1();
}

static void method3() {
System.out.println(“3”);

}

}

What is the output
from this code?

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 27

return statement

• The return statement can occur anywhere in the
body of a method

• Its syntax is:
return [expression];

• Examples:
– return;
– return 5;
– return x;
– return x * y / 2;

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 28

return statement [2]

• return means “stop executing this method
and return to where it was called”

• If the method has a return type, the
expression after return is evaluated, and the
value is substituted for the method call

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 29

Return Types

• Methods can have return types and values
• So method calls can be used as values in

expressions
• void means “this method has no return

type”
• The type of the method and the type of the

return must match!

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 30

Return Type Example
public static void main(String[] args) {

int x = 1;

x = x + foo();

System.out.println(x * bar());

}

static int foo() {

return 5;

}

static int bar() {

return 4/2;

}

What is the output
from this code?

6

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 31

Parameters & Arguments

• Methods can be declared with parameters:
static double average(double n1, double n2,

double n3)

• When you write a call to such a method, you
provide arguments:
double avg;

…

avg = average(x, 10/7, Math.sqrt(2));

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 32

Matching Params. & Args.

• Parameters in a method are assigned the
values of the arguments in the method call in
the order they occur

• So in the previous slide:
– n1 = x

– n2 = 10/7

– n3 = √2

6/28/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 2 33

Walkthrough of Call

• See online slideset with walkthrough of what
happens during a method call

