
1

Exceptions

CS 99 – Summer 2000
Michael Clarkson

Lecture 11

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 2

Administration

• Lab 10 due tomorrow
• No lab tomorrow

– Work on final projects
• Remaining office hours

– Rick: today 2-3
– Michael: Thursday 10-noon, Monday 10-noon

• Final projects due Tuesday by noon via FTP
• You will receive your final grade from Cornell, not 

me

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 3

Agenda

• “Leftovers”
• Exceptions
• Course evaluations

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 4

“Leftovers”

• Topics we didn’t get to cover:
– Multi-dimensional arrays
– Advanced String operations
– Packages
– Using the debugger
– Files

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 5

When Things Go Wrong

• In the real world:
– Input isn’t nicely formatted
– Hardware devices fail
– Memory is limited
– Code you rely on is buggy

• What to do?
– Give up and abort the program
– Return codes
– Exceptions

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 6

Handling Errors

• Abort:
– Calculator program, given division by 0
– Poor choice, should at least:

• Return to safe state and enable user to execute other commands, 
or:

• Allow user to save work and terminate program gracefully

• Data validation:
– Most any lab since we learned loops

• What if you can’t reinput a value, though?
– Example: user calls a method with illegal parameters



2

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 7

Return Codes

• Return code: value returned from a method indicating 
success or failure

• Usually a boolean or integer
– If integer, constants often defined

• Example: Time class
– Needed to setTime, but parameters could be invalid
– Our solution: use default values
– Another solution: use return codes

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 8

Return Codes [2]
boolean setTime(int h, int m, int s) {

boolean success;

if (isValidHour(h) && isValidMin(m) && isValidSec(s)) {

hour = h;

min = m;

sec = s;

success = true;

} else {

success = false;

}

return success;

}

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 9

Return Codes [3]

// input h, m, s from user

boolean ret = t.setTime(h, m, s);

if (ret) {

// continue with program

} else {

// reinput h, m, s and try again

}

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 10

Return Codes [4]

• Problems:
– What if we also want to return something in 

addition to the return code?
– Users of the method can ignore return code.
– Can’t use for constructors
– Doesn’t fit OOP model to return 

numbers/booleans when we’re really trying to 
indicate an error

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 11

Exceptions

• Used to handle exceptional situations in code
• Instead of returning normally, a method can throw an 

object containing information about the situation 
(error)

• That object is an exception
• Method exits immediately after throwing an 

exception
– Does not return normally (return any value)
– Does not return to where method was called

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 12

Example Exception

class DivBy0 {

public static void main(String[] args) {

int num = 10, den = 0;

System.out.println(num / den);

System.out.println(“Will never get here”);

}

}

Exception in thread “main”
java.lang.ArithmeticException: / by zero

at Zero.main(Zero.java:4)



3

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 13

Exception Output

• Type of exception
– java.lang.ArithmeticException

• Descriptive message
– / by 0

• Stack trace
– List of methods that had been called to get to that point 

in the program where the exception occured
– Zero.main(Zero.java:4)

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 14

Handling Exceptions

• Users would rather see a nice error message, not 
exception output

• Can prevent output of exception by using a try-
catch block:

try {

// code that could throw an exception

} catch (ExceptionType objectName) {

// code to execute if exception occurs

}

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 15

Exception Example, 
revisited

class DivBy0 {

public static void main(String[] args) {

int num = 10, den = 0;

try {

System.out.println(num / den);

} catch (ArithmeticException e) {

System.out.println(“You can’t divide by”

+ “zero!”);

}

System.out.println(“Will always get here”);

}

}

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 16

There’s always a catch

• Every try block must have at least one catch
• Can be multiple catch clauses:

try {
...

} catch (...) {

...
} catch (...) {

...

} ...

• Each clause must catch a different type of exception
• The try block must be able to throw each type of exception

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 17

finally...

• After all the catch clauses can be a single 
finally clause:
try {

...

} catch (...) {

...

} finally {

...

}

• finally code is executed after everything else

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 18

Flow of Control

• Exception doesn’t occur:
– Entire try clause is executed
– No catch clause is executed
– Finally clause is executed
– After try block, execution proceeds with first statement 

after catch/finally clauses
• Exception occurs:

– As soon as it occurs, control jumps to the single 
appropriate catch clause (exception handler)

– After clause is executed, execution proceeds with finally, 
then the first statement after catch/finally clauses



4

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 19

Causes of Exceptions

1. Calling a method that can throw an 
exception

2. Detecting an error and throwing an 
exception yourself

3. Making a programming error, such as 
a[-1]=0

4. An internal error occurs in Java

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 20

Partial Exception Hierarchy
Object

Throwable

ErrorException

RuntimeException

ArithmeticException

IndexOutOfBoundsException

IOException

TooManyListenersException

VirtualMachineError

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 21

Checked vs. Unchecked

• A checked exception is checked by the 
compiler to make sure you catch it
– All subclasses of Exception other than 
RuntimeException

• An unchecked exception is not checked by the 
compiler – you don’t have to catch it
– All subclasses of Error and 
RuntimeException

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 22

Advertising Exceptions

• Every method must declare the checked exceptions 
it can throw:
void myMethod() throws IOException, ... {

...

}

• Doesn’t have to declare:
– Unchecked exceptions
– Exceptions it catches itself
– main: any exceptions

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 23

Exception Propagation

• Exceptions propagate up the call stack until 
they are caught
– So if one method doesn’t catch an exception, 

Java checks the method that called it for a 
handler, all the way up to main

– If no handler can be found, the default error 
message is printed and the program aborts

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 24

Propagation Example

• Exception generated by 
ExceptionProp.level3()

– No handler in level3
– No handler in level2
– Handler in level1

• What is the output?



5

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 25

Propagation Example [2]

Program beginning.

Level 1 beginning.

Level 2 beginning.

Level 3 beginning.

Arithmetic exception occurred.

Level 1 ending.

Program ending.

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 26

Throwing Exceptions

• You can throw exceptions yourself using the 
throw statement:

throw exceptionReference;

• You can get a reference to an exception by 
creating one:

ArithmeticException e

= new ArithmeticException(“message”);

throw e;

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 27

setTime, revisited

• Instead of default values or return code, 
throw an exception

• IllegalArgumentException is a 
RuntimeException used to indicate 
illegal values were passed to a method

• Since unchecked, responsibility is on 
programmer to make sure illegal values not 
passed to constructor or setTime

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 28

setTime, revisited [2]

public Time(int h, int m, int s) {

setTime(h, m, s);

}

public void setTime(int h, int m, int s) {

if (isValidHour(h) && isValidMin(m) && isValidSec(s)) {

hour = h;

min = m;

sec = s;

} else {

throw new IllegalArgumentException(“Hour, ”

+ “ minute, or second was illegal”);

}

}

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 29

Creating Exceptions

• Can create your own types of exceptions by 
declaring classes that extend Exception

• Extremely useful for handling errors in large 
programs

• Add {fields, methods} to exception to {store 
data, take action} on errors

8/2/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 11 30

Course Evaluations


