CS 99: Fundamentals of
Programming

Summer 2000
Michael Clarkson
Lecture 1. Programming Basics

Agenda

« Course introduction
» Programming basics
* Java programs

6/26/00 CS 99 + Summer 2000 + Michael Clarkson = Lecture 1

Course Introduction

« Syllabus
 Questionnaire
» To do by tomorrow’s lab:
— Pick up NetlIDs (or by Thursday at the latest!)

— Acquire at least 4 floppy disks, or one ZIP-100
disk
— Read the assigned sections

6/26/00 CS 99 + Summer 2000 + Michael Clarkson = Lecture 1

Programming Basics

* Writing programs
* Running programs

6/26/00 CS 99 + Summer 2000 + Michael Clarkson = Lecture 1

Writing Programs

What are programs?
Algorithms
Pseudocode

* Functions

* Style

6/26/00 CS 99 + Summer 2000 + Michael Clarkson = Lecture 1

Programs

 Code executed by a computer

» Code: instructions in a programming
language (e.g., Java)

» Examples: Microsoft Word, Eudora

» Writing programs is problem solving
— Primary task: break into simpler problems

6/26/00 CS 99 + Summer 2000 + Michael Clarkson = Lecture 1

Example Java Program

class Exanple {
public static void main(String[] args) {

Systemout.printIn(“This is a sinple exanple.”);

6/26/00 CS 99 + Summer 2000 + Michael Clarkson = Lecture 1 7

Algorithms

« Algorithm: “A finite set of rules that gives a
sequence of operations for solving a specific
type of problem.” — Donald Knuth

« Standard simile: like a recipe

— Has inputs (ingredients), outputs (prepared food)
— Tells you what to do, what order to do it in

 Programs are composed of algorithms

6/26/00 CS 99 + Summer 2000 + Michael Clarkson = Lecture 1 8

Pseudocode

* Language-independent method of expressing
algorithms

* Great for talking about how to do something
without getting caught up in the details of how to
program it

o Example: sortcards

Pick lowest card
Put in hand
Repeat

6/26/00 CS 99 + Summer 2000 + Michael Clarkson = Lecture 1 9

Functions

« In almost any language, programs are divided into functions

« Function: code written to perform one (small) well-defined
task

« Building blocks of programs

« Libraries of functions exist so that programmers don’t have
to keep “reinventing the wheel”

¢ Synonyms: procedure, method
« Java programs are divided first into classes, then into methods

6/26/00 CS 99 » Summer 2000 * Michael Clarkson = Lecture 1 10

Style

 Writing in a programming language requires
good style

« Just as writing in a natural language (e.g.,
English) requires good style

* Handout

6/26/00 CS 99 » Summer 2000 * Michael Clarkson = Lecture 1 "

Running Programs

» Computer architecture (what)
» Compiling/interpreting (how)

6/26/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 1 12

Computer Architecture

Computer

Input

Processor Memory

Output

Diagram from Computer Organization and Design by Patterson & Hennessy

6/26/00 CS 99 » Summer 2000 » Michael Clarkson = Lecture 1 13

Compiling

Source i ,| Executable
code Compiler program

4 7

l

Processor Program
. Loader
runs program in memory

6/26/00 CS 99 » Summer 2000 * Michael Clarkson = Lecture 1 14

Interpreting Con Iplllng
Source i Executable
code Compiler program
= I4 I
Interpreter l
Processor Program Load
runs program in memory oader
(slower)
6/26/00 CS 99 * Summer 2000 * Michael Clarkson = Lecture 1 15

Java Programs

* Anatomy
» Compiling and executing

6/26/00 CS 99 » Summer 2000 * Michael Clarkson = Lecture 1 16

Anatomy of a Java
Program

In a file called Example.java:

class Exanple {
public static void main(String[] args) {
Systemout.printin(“This is a sinple exanple.”);

Things to notice: a class called Example, a method called main, the
name of the file

6/26/00 CS 99 » Summer 2000 * Michael Clarkson = Lecture 1 17

Java Punctuation

« Every class and method has a body that is
enclosed in braces: { ... }

» Every method is a series of statements, each
of which is terminated by a semicolon: ...;

» Methods always involve parentheses: (...)

6/26/00 CS 99 + Summer 2000 Michael Clarkson = Lecture 1 18

Compiling Java

« A Java source code file always ends with the
extension .java (e.g., Example.java)

 The Java compiler translates Java source code
into Java bytecode

* Bytecode files always have an extension of
.class (e.g., Example.class)

6/26/00 CS 99 » Summer 2000 » Michael Clarkson = Lecture 1 19

Executing Java

» Java bytecode can be executed in two ways:
— Interpreted by a Java Virtual Machine (JVM)
— Compiled by a Just-In Time compiler (JIT)

» Why be so complicated?

— Bytecode (.class files) is independent of real
machines

— Portability: code can be written on one platform
(e.g., Windows) and run on another (e.g., Mac)
without any changes

6/26/00 CS 99 + Summer 2000 + Michael Clarkson = Lecture 1 20

Executing Java [2]

« Execution always starts with the method
called main

 The main method must look exactly like:

public static void main(String[] args) {

}

6/26/00 CS 99 + Summer 2000 * Michael Clarkson = Lecture 1 21

Executing Java [3]

Source
code Java Bytecode Java loader
(java) compiler (.class)

4

JVM interprets
bytecode H Processor runs JVM }‘7 Program

in memory

Processor runs
compiled code

JIT compiles
bytecode

6/26/00 CS 99 + Summer 2000 + Michael Clarkson = Lecture 1 22

