
1

CS 99: Fundamentals of
Programming

Summer 2000
Michael Clarkson

Lecture 1: Programming Basics

6/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 1 2

Agenda

• Course introduction
• Programming basics
• Java programs

6/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 1 3

Course Introduction

• Syllabus
• Questionnaire
• To do by tomorrow’s lab:

– Pick up NetIDs (or by Thursday at the latest!)
– Acquire at least 4 floppy disks, or one ZIP-100

disk
– Read the assigned sections

6/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 1 4

Programming Basics

• Writing programs
• Running programs

6/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 1 5

Writing Programs

• What are programs?
• Algorithms
• Pseudocode
• Functions
• Style

6/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 1 6

Programs

• Code executed by a computer
• Code: instructions in a programming

language (e.g., Java)
• Examples: Microsoft Word, Eudora
• Writing programs is problem solving

– Primary task: break into simpler problems

2

6/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 1 7

Example Java Program
class Example {

public static void main(String[] args) {

System.out.println(“This is a simple example.”);

}

}

6/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 1 8

Algorithms

• Algorithm: “A finite set of rules that gives a
sequence of operations for solving a specific
type of problem.” – Donald Knuth

• Standard simile: like a recipe
– Has inputs (ingredients), outputs (prepared food)
– Tells you what to do, what order to do it in

• Programs are composed of algorithms

6/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 1 9

Pseudocode

• Language-independent method of expressing
algorithms

• Great for talking about how to do something
without getting caught up in the details of how to
program it

• Example: SortCards

Pick lowest card

Put in hand

Repeat

6/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 1 10

Functions

• In almost any language, programs are divided into functions
• Function: code written to perform one (small) well-defined

task
• Building blocks of programs
• Libraries of functions exist so that programmers don’t have

to keep “reinventing the wheel”
• Synonyms: procedure, method
• Java programs are divided first into classes, then into methods

6/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 1 11

Style

• Writing in a programming language requires
good style

• Just as writing in a natural language (e.g.,
English) requires good style

• Handout

6/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 1 12

Running Programs

• Computer architecture (what)
• Compiling/interpreting (how)

3

6/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 1 13

Computer Architecture

Computer

Processor Memory

Input

Output

Diagram from Computer Organization and Design by Patterson & Hennessy

6/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 1 14

Compiling

Source
code Compiler

Executable
program

LoaderProgram
in memory

Processor
runs program

6/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 1 15

Interpreter

Interpreting

(slower)

Compiling

Source
code Compiler

Executable
program

LoaderProgram
in memory

Processor
runs program

6/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 1 16

Java Programs

• Anatomy
• Compiling and executing

6/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 1 17

Anatomy of a Java
Program

In a file called Example.java:

class Example {

public static void main(String[] args) {

System.out.println(“This is a simple example.”);

}

}

Things to notice: a class called Example, a method called main, the
name of the file

6/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 1 18

Java Punctuation

• Every class and method has a body that is
enclosed in braces: { … }

• Every method is a series of statements, each
of which is terminated by a semicolon: …;

• Methods always involve parentheses: (…)

4

6/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 1 19

Compiling Java

• A Java source code file always ends with the
extension .java (e.g., Example.java)

• The Java compiler translates Java source code
into Java bytecode

• Bytecode files always have an extension of
.class (e.g., Example.class)

6/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 1 20

Executing Java

• Java bytecode can be executed in two ways:
– Interpreted by a Java Virtual Machine (JVM)
– Compiled by a Just-In Time compiler (JIT)

• Why be so complicated?
– Bytecode (.class files) is independent of real

machines
– Portability: code can be written on one platform

(e.g., Windows) and run on another (e.g., Mac)
without any changes

6/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 1 21

Executing Java [2]

• Execution always starts with the method
called main

• The main method must look exactly like:

public static void main(String[] args) {
…

}

6/26/00 CS 99 ▪ Summer 2000 ▪ Michael Clarkson ▪ Lecture 1 22

Executing Java [3]
Source
code
(.java)

Java
compiler

Bytecode
(.class) Java loader

Program
in memory

Processor runs JVM

JIT compiles
bytecode

JVM interprets
bytecode

Processor runs
compiled code

