|
Syllabus
- 08/26: Introduction [slides] [slides 6up]
- Examples of machine learning problems the require counterfactual reasoning.
- Overview of course.
- Administrative issues and course policies.
- 09/02: Canceled
- 09/09: Online Learning from User Interactions through Interventions [slides] [slides 6up]
- Yisong Yue, J. Broder, R. Kleinberg, T. Joachims. The K-armed Dueling Bandits Problem. In COLT, 2009. (paper) [TJ]
- P. Shivaswamy, T. Joachims. Online Structured Prediction via Coactive Learning, ICML, 2012. (paper) [TJ]
- 09/16: Counterfactual Model for Online Systems [slides] [slides 6up]
- Imbens, Rubin, Causal Inference for Statistical Social Science, 2015. Chapters 1,3,12.
- 09/23: System Evaluation via Counterfactual Estimation [slides] [slides 6up]
- L. Li, W. Chu, J. Langford, and X. Wang. Unbiased offline evaluation of contextual-bandit-based news article recommendation algorithms. In WSDM, pages 297--306, 2011. (paper) [Davis]
- L. Li, J.-Y. Kim, I. Zitouni. Toward Predicting the Outcome of an A/B Experiment for Search Relevance. In WSDM, 2015. (paper) [Moontae]
- 09/30: Causal Reasoning for Online Systems[slides] [slides 6up]
- L. Bottou, J. Peters, J. Q. Candela, D. X. Charles, M. Chickering, E. Portugaly, D. Ray, P. Y. Simard, and E. Snelson. Counterfactual reasoning and learning systems: The example of computational advertising. Journal of Machine Learning Research, 14(1):3207--3260, 2013. (paper) [Adith]
- 10/07: Batch Learning from Bandit Feedback 1 [slides] [slides 6up] [
- A. Swaminathan, T. Joachims, Batch Learning from Logged Bandit Feedback through Counterfactual Risk Minimization, JMLR Special Issue in Memory of Alexey Chervonenkis, 16(1):1731-1755, 2015. (paper) [TJ]
- A. Swaminathan and T. Joachims. The self-normalized estimator for counterfactual learning. In NIPS, pages 3213--3221, 2015. (paper) [TJ]
- 10/14: Batch Learning from Bandit Feedback 2 [slides] [slides 6up]
- A. Beygelzimer and J. Langford. The offset tree for learning with partial labels. In KDD, pages 129--138, 2009. (paper) [Michael L]
- S.~Athey and G.~Imbens. Recursive Partitioning for Heterogeneous Causal Effects. ArXiv e-prints, 2015. (paper) [Aman]
- 10/21: Online Contextual Bandits and Variance Reduction [slides] [slides 6up]
- M. Dudik, J. Langford, and L. Li. Doubly robust policy evaluation and learning. In ICML, pages 1097--1104, 2011. (paper) [Ashudeep]
- J. Langford and T. Zhang. The epoch-greedy algorithm for multi-armed bandits with side information. In NIPS, 2008. (paper) [Ziteng]
- 10/28: Observational Data[slides] [slides 6up]
- J. Langford, A. Strehl, and J. Wortman. Exploration scavenging. In ICML, pages 528--535, 2008. (paper) [Pantelis]
- Alex Strehl, John Langford, Sham Kakade, Lihong Li. Learning from Logged Implicit Exploration Data. NIPS, pages 2217--2225, 2010. (paper) (paper) [Angela]
- 11/04: Missing Data and Selection Bias [slides] [slides 6up]
- T. Schnabel, A. Swaminathan, A. Singh, N. Chandak, and T. Joachims. Recommendations as treatments: Debiasing learning and evaluation. In ICML, 2016. (paper) [Tobias]
- B. M. Marlin and R. S. Zemel. Collaborative prediction and ranking with non-random missing data. In RecSys, pages 5--12, 2009. (paper) [Wouter]
- 11/11: Click Models [slides] [slides 6up]
- A. Chuklin, I. Markov, and M. de Rijke. Click Models for Web Search. Morgan & Claypool, 2015. (paper) [Canceled]
- 11/18: ERM Learning with Behavior Propensity Model [slides] [slides 6up]
- T. Joachims, A. Swaminathan, T. Schnabel, Unbiased Learning-to-Rank with Biased Feedback, In WSDM, 2017. (paper) [TJ]
- 12/02: Wrap-up [slides] [slides 6up]
|
|
Reference Material
We will mostly read original research papers, but the following books provide entry points for the main topics of the class:
- Imbens, Rubin, "Causal Inference for Statistics, Social, and Biomedical Sciences", Cambridge University Press, 2015. (online via Cornell Library)
- Morgan, Winship "Counterfactuals and Causal Inference", Cambridge University Press, 2007.
Other sources for general background on machine learning are:
- Kevin Murphy, "Machine Learning - a Probabilistic Perspective", MIT Press, 2012. (online via Cornell Library)
- Cristianini, Shawe-Taylor, "Introduction to Support Vector Machines", Cambridge University Press, 2000. (online via Cornell Library)
- Schoelkopf, Smola, "Learning with Kernels", MIT Press, 2001. (online)
- Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
- Tom Mitchell, "Machine Learning", McGraw Hill, 1997.
- Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 2004.
- Devroye, Gyoerfi, Lugosi, "A Probabilistic Theory of Pattern Recognition", Springer, 1997.
- Duda, Hart, Stork, "Pattern Classification", Wiley, 2000.
- Hastie, Tibshirani, Friedman, "The Elements of Statistical Learning", Springer, 2001.
- Vapnik, "Statistical Learning Theory", Wiley, 1998.
Bias in Human Feedback
- Ruben Sipos, Arpita Ghosh, Thorsten Joachims. Was This Review Helpful to You? It Depends! Context and Voting Patterns in Online Content. WWW, 2014. (paper)
- O. Chapelle, T. Joachims, F. Radlinski, Yisong Yue, Large-Scale Validation and Analysis of Interleaved Search Evaluation, ACM Transactions on Information Systems (TOIS), 30(1):6.1-6.41, 2012. (paper)
- T. Joachims, L. Granka, Bing Pan, H. Hembrooke, F. Radlinski, G. Gay. Evaluating the Accuracy of Implicit Feedback from Clicks and Query Reformulations in Web Search, ACM Transactions on Information Systems (TOIS), Vol. 25, No. 2 (April), 2007. (paper)
- O. Chapelle and Y. Zhang. A dynamic Bayesian network click model for web search ranking. WWW Conference, 2009. (paper)
- A. Chuklin, I. Markov, and M. de Rijke. Click Models for Web Search. Morgan & Claypool, 2015. (paper)
- S. Wager, N. Chamandy, O. Muralidharan, A. Najmi. Feedback Detection for Live Predictors. In NIPS, 2015. (paper)
Online Learning with Interactive Control
- Yisong Yue, J. Broder, R. Kleinberg, T. Joachims. The K-armed Dueling Bandits Problem. In COLT, 2009. (paper)
- P. Shivaswamy, T. Joachims. Online Structured Prediction via Coactive Learning, ICML, 2012. (paper)
- K. Hofmann, A. Schuth, S. Whiteson, and M. de Rijke. Reusing historical interaction data for faster online learning to rank for {IR}. In WSDM, pages 183--192, 2013. (paper)
- R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne. Controlled experiments on the web: survey and practical guide. Data Mining and Knowledge Discovery, pages 140--181, 2009. (paper)
- J. Langford and T. Zhang. The epoch-greedy algorithm for multi-armed bandits with side information. In NIPS, 2008. (paper)
- F. Lattimore, T. Lattimore, M. Reid. Causal Bandits: Learning Good Interventions via Causal Inference, NIPS, 2016. (paper)
Batch Learning from Controlled Interventions
- L. Li, W. Chu, J. Langford, and X. Wang. Unbiased offline evaluation of contextual-bandit-based news article recommendation algorithms. In WSDM, pages 297--306, 2011. (paper)
- A. Beygelzimer and J. Langford. The offset tree for learning with partial labels. In KDD, pages 129--138, 2009. (paper)
- S.~Athey and G.~Imbens. Recursive Partitioning for Heterogeneous Causal Effects. ArXiv e-prints, 2015. (paper)
- A. Swaminathan and T. Joachims. Counterfactual risk minimization: Learning from logged bandit feedback. In ICML, 2015. (paper)
- A. Swaminathan, T. Joachims, Batch Learning from Logged Bandit Feedback through Counterfactual Risk Minimization, JMLR Special Issue in Memory of Alexey Chervonenkis, 16(1):1731-1755, 2015. (paper)
- A. Swaminathan and T. Joachims. The self-normalized estimator for counterfactual learning. In NIPS, pages 3213--3221, 2015. (paper)
- A. Swaminathan, A. Krishnamurthy, A. Agarwal, M. Dudik, and J. Langford. Off-policy evaluation and optimization for slate recommendation. Arxiv Preprint, 2016. (paper)
- M. Dudik, J. Langford, and L. Li. Doubly robust policy evaluation and learning. In ICML, pages 1097--1104, 2011. (paper)
- L. Bottou, J. Peters, J. Q. Candela, D. X. Charles, M. Chickering, E. Portugaly, D. Ray, P. Y. Simard, and E. Snelson. Counterfactual reasoning and learning systems: The example of computational advertising. Journal of Machine Learning Research, 14(1):3207--3260, 2013. (paper)
- C. Cortes, Y. Mansour, and M. Mohri. Learning bounds for importance weighting. In NIPS, pages 442--450, 2010. (paper)
- L. Li, S. Chen, J. Kleban, and A. Gupta. Counterfactual estimation and optimization of click metrics in search engines: {A} case study. In WWW Companion, pages 929--934, 2015. (paper)
- J. Mary, P. Preux, and O. Nicol. Improving offline evaluation of contextual bandit algorithms via bootstrapping techniques. In ICML, pages 172--180, 2014. (paper)
- J. Schulman, S. Levine, P. Moritz, M. Jordan, P. Abbeel. Trust Region Policy Optimization. In ICML, 2015. (paper)
Batch Learning from Observational Feedback
- T. Schnabel, A. Swaminathan, A. Singh, N. Chandak, and T. Joachims. Recommendations as treatments: Debiasing learning and evaluation. In ICML, 2016. (paper)
- B. M. Marlin and R. S. Zemel. Collaborative prediction and ranking with non-random missing data. In RecSys, pages 5--12, 2009. (paper)
- J. M. Hernández-Lobato, N. Houlsby, and Z. Ghahramani. Probabilistic matrix factorization with non-random missing data. In ICML, pages 1512--1520, 2014. (paper)
- T. Joachims, A. Swaminathan, T. Schnabel, Unbiased Learning-to-Rank with Biased Feedback, Arxiv Preprint, 2016. (paper)
- L. Li, J.-Y. Kim, I. Zitouni. Toward Predicting the Outcome of an A/B Experiment for Search Relevance. In WSDM, 2015. (paper)
- D. Liang, L. Charlin, J. McInerney, D. Blei. Modeling User Exposure in Recommendation. In WWW, 2016. (paper)
|