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•Published in two parts, July 1948 and October 1948 in the Bell
System Technical Journal

•Founding paper of Information Theory

•First person to use a probabilistic model of communication

•Developed around same time as Coding Theory

•Huge Impact:

now the mathematical theory of communication

follow on papers

idea that “all information is essentially digital”

telecommunications, CD players, computer networks

applications to biology, artificial intelligence..





Questions:

• How much information is produced by a source? (info/symbol or
info/sec)

•How quickly can information be transmitted through a channel?
(info/sec)

•What is best achievable transmission rate (source symbols/sec)?

•If channel has noise, under what conditions can the sent message
be reconstructed from the received message?



What is information?

Acquiring information = Reducing uncertainty

Amount of information = Level of “surprise”
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Channel capacity measured in bits/sec
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Allows more complicated channel structures:

• varying time per symbol

• restrictions on allowed sequences of symbols



Define information generated by source (measured in bits/symbol)

to be expected amount of information generated per symbol.

Recall,

So,

Call this quantity the “Entropy” of the source.  Use the symbol H.

Where x is a random variable representing our signal.
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Nice properties of Entropy:
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Define Conditional Entropy (uncertainty of y given value of x):
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A channel with noise:

Consider two distinct signals

x = signal input into the channel

y = signal received at the other end
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The Fundamental Theorem for a Discrete Channel with Noise:

errors. smally arbitraril
 with channel over the ed transmittbecan  source  theofoutput  that the

such  system coding a exists  thereC,  H If  d.bits/secon Hentropy 
 have source discrete a and C,capacity  have channel discrete aLet 

<

Proof:

output.given  afor  inputs probable 2

and T,duration  of messages received probable 2

T,duration  of messagesinput  probable 2

are  thereSo  ).y(Hentropy output  (x),Hentropy input  has S

close).y arbitraril(or  maximum  thisattains S encoding Suppose

R(x)maxC Recall

y)T(H

y)T(H

(x)TH

SS

encodings

S
x

S

S

=



Construct a bipartite graph, where each node is a probable input or
output message of duration T for source S.  Connect nodes A and
B by an edge if message A is an input likely to produce output B.

Let R be the source we’re interested in, with entropy < C.  Encode
R by randomly assigning messages of duration T to nodes in the
left column of the graph.  Given an output message, the probability
that it is connected to more than one R-input message is
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Extensions to Shannon’s work:

•Continuous source/channel (in 2nd part of paper)

•Consider multi-terminal case

•Consider multi-way channels (like telephone lines!)

•Consider more complicated source structures (non-ergodic!)
and different memory models for transmitters.

•Kolmogorov applied Shannon’s ideas to solve long-standing
problems in ergodic theory.

•Applications to biology:

•Entropy of DNA to identify binding sites

•Intra-organism communication



Discussion Topics:

•Any questions?

•Any Shannon anecdotes?

Required reading at NSA

Wrote good article on the mathematics of juggling

Made a maze-learning mouse out of phone-relays

Married a numerical analyst from Bell Labs

•Shannon says (p.413) that no explicit description is known of
approximations to the ideal coding for a noisy channel.  I understand
this is still the case.  Comments on what is done in practice?

•Other applications/impact of information theory?

•Any ideas about entropy of English and crossword puzzles?  (p.399)
How to go about proving such a result?


