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Abstract

Checkpointing is a simple technique for rollback

recovery: the state of an executing program is pe-

riodically saved to a disk �le from which it can

be recovered after a failure. While recent research

has developed a collection of powerful techniques

for minimizing the overhead of writing checkpoint

�les, checkpointing remains unavailable to most

application developers. In this paper we describe

libckpt, a portable checkpointing tool for Unix

that implements all applicable performance op-

timizations which are reported in the literature.

While libckpt can be used in a mode which is

almost totally transparent to the programmer, it

also supports the incorporation of user directives

into the creation of checkpoints. This user-directed

checkpointing is an innovation which is unique to

our work.

1 Introduction

Consider a programmer who has developed an

application which will take a long time to execute,

say �ve days. Two days into the computation, the

processor on which the application is running fails.

If the programmer has not planned for this event,

his only choice is to restart the program and lose

two days of work. Upon restarting the program,

he still needs �ve days of continuous failure-free

processor time to complete the job.

Libckpt is a checkpointing library designed for

such a programmer. To use libckpt, all he must

do is change one line of his source code and recom-

pile with the library libckpt.a. No other mod-

i�cations need to be made. Upon execution, the

program will periodically save its execution state

to disk (at the default interval: every 10 minutes).

Upon a processor failure, the programmer need

only restart the program with the command line


ag =recover, and the program will roll back to

the most recently checkpointed state. In the exam-

ple above, at most ten minutes of work will be lost,

and three more days of non-continuous failure-free

processor time will be needed to complete the job.

Libckpt is a tool for transparent checkpoint-

ing on uniprocessors running Unix. It imple-

ments incremental and copy-on-write checkpoint-

ing, two optimizations well-known in the litera-

ture [2, 3, 9, 10]. Libckpt is a user-level li-

brary and uses only facilities which are com-

monly available under Unix. Libckpt has been

ported to and tested on a variety of architectures

and operating systems with no kernel modi�ca-

tions. Source code for libckpt can be obtained at

no cost by anonymous FTP from cs.utk.edu:-

pub/plank/libckpt.

In this paper, we show the performance gains

available in libckpt through transparent incre-

mental and copy-on-write checkpointing. In ad-

dition, we introduce a new optimization tech-

nique, implemented in libckpt, called user-

directed checkpointing. User-directed checkpoint-

ing works under the assumption that a little infor-

mation from the user can yield large improvements

in the performance of checkpointing. We demon-

strate that this assumption is often valid.

2 Transparent Checkpointing

The goal of checkpointing is to establish a re-

covery point in the execution of a program, and to

save enough state to restore the program to this

recovery point in the event of a failure. The most

straightforward method for establishing a recovery

point under Unix is to suspend execution of the

application while the entire contents of a process's

memory and registers are written to a �le. This is

called sequential checkpointing because disk trans-



fers are not interleaved with program execution.

Recovery is e�ected by reloading the executable

from its original �le, and then reconstructing the

memory and register state from the checkpoint �le.

This is akin to creating a core �le, from which

a user may recover using the undump utility and

execve().

We say that checkpointing is transparent when

no changes need to be made to the application

program. While transparency is easy to obtain

at the kernel level, it is harder to achieve in a

user level checkpointing library. All current im-

plementations of checkpointing share this limita-

tion: They operate transparently and correctly so

long as the application is well-behaved in a sense

we will de�ne in Section 4. Libckpt and all other

user-level checkpointers can cause a correct but ill-

behaved application to fail or to produce incorrect

output upon recovery.

Checkpointing with libckpt is not completely

transparent. The name of the initial proce-

dure in C must be changed from main() to

ckpt target(). This enables libckpt to gain con-

trol of the program as it starts, check the com-

mand line for the =recover 
ag, read a �le called

.ckptrc to set checkpointing parameters, and be-

gin checkpointing. In fortran, libckpt is en-

abled by changing the main PROGRAM module to

SUBROUTINE ckpt target(). No other program

modi�cations are needed.

By default, once libckpt gets control of a pro-

gram, it generates a timer interrupt every ten min-

utes, and takes a sequential checkpoint at each in-

terrupt. This and other defaults can be changed

by placing appropriate lines in the .ckptrc �le.

In this section, we describe all options, where ap-

propriate, as they would appear in the .ckptrc

�le.

Placing the line \checkpointing<onjoff>"
in the .ckptrc �le turns checkpointing on or

o�. If off, libckpt will take no checkpoints
and will not a�ect the execution of the ap-

plication. The default is on.

dir <directory> speci�es the directory in
which checkpoint �les are created and found.

The default is the current directory.

maxtime <seconds> de�nes the interval be-

tween checkpoints. At the beginning of the
program, and after each checkpoint, libckpt

calls alarm(seconds) and takes a checkpoint

upon catching each ALRM signal. Setting the
timer interval to zero turns o� all timer-

based checkpointing. The default value of
maxtime is 600 (10 minutes).

Many optimizations to simple sequential check-

pointing have been described in the literature.

Libckpt implements all published optimizations

that are applicable to general-purpose uniproces-

sor checkpointing, as well as the new user-directed

optimization. In the remainder of this section, we

consider each of them in turn.

2.1 Incremental Checkpointing

When a checkpoint is taken, only the portion of

the checkpoint that has changed since the previ-

ous checkpoint need to be saved. The unchanged

portion can be restored from previous check-

points. Incremental checkpointing [2, 3, 18]

uses page protection hardware to identify the un-

changed portion of the checkpoint. Saving only

the changed portion reduces the size of each check-

point, and thus the overhead of checkpointing.

incremental <onjoff> turns incremental
checkpointing on or o�. The default is off.

In general, the size of a non-incremental check-

point grows very slowly over time if at all. More-

over, only the most recent checkpoint �le needs

to be retained for recovery | older ones may be

deleted. In contrast, old checkpoint �les cannot

be deleted when incremental checkpointing is em-

ployed, because the program's data state is spread

out over many checkpoint �les. The cumulative

size of incremental checkpoint �les will increase at

a steady rate over time, since many updated values

may be saved for the same page. In order to place

an upper bound on the cumulative size of incre-

mental checkpoint �les, it is necessary to coalesce

all old checkpoint �les into one new �le, and then

discard the old �les. For this purpose, libckpt in-

cludes a utility program ckpt coa, which coalesces

a collection of incremental checkpoint �les into a

single checkpoint �le.

maxfiles <n> sets the maximum number
of incremental checkpoint �les to n. After n

checkpoint �les have been created, libckpt

invokes ckpt coa to coalesce them into one
�le. If n = 1, then no incremental check-

pointing can occur. Values of n greater than

one allow the user to strike a balance be-
tween the time and space overhead of incre-

mental checkpointing. The default is n = 1.

Libckpt uses page protection to identify which

pages should be included in incremental check-

points. Speci�cally, after initialization and after

each checkpoint, the mprotect() system call is in-

voked to set the protection of all pages in the data



space to read-only. When a write occurs to a mem-

ory location in a protected page, the SEGV signal is

caught by a handler in libckpt. The faulting page

has its access protection set to read-write, and the

page is marked as dirty. When libckpt takes the

next checkpoint, only the dirty pages are included.

2.2 Forked Checkpointing

Incremental checkpointing as described in the

previous section is still sequential: Execution of

the application program is suspended while the

checkpoint �le is written out. An alternative is to

make a copy of the program's data space and to

use an asynchronously executing thread of control

to write the checkpoint �le. This is called \main-

memory checkpointing" [10], and improves check-

point overhead if there is enough physical memory

to hold the checkpoint, as the saving of the check-

point to disk is overlapped with the execution of

the application.

The Unix fork() primitive provides exactly the

mechanism needed to implement main-memory

checkpointing [7, 12]. When forked checkpointing

is speci�ed, libckpt forks a child process, which

creates and writes the checkpoint �le while the

parent process returns to executing the applica-

tion. The fork() system call provides the child

with a �xed snapshot of the parent's data space

and a separate thread of control.

fork <onjoff> in the .ckptrc �le turns

main forked checkpointing on or o�. The

default is off.

An important improvement to main-memory

checkpointing is copy-on-write checkpointing [2,

9, 10]. Here the copy of main memory is taken

using copy-on-write [4, 16]. Many implementa-

tions of fork() use a copy-on-write mechanism

to optimize the copying of the parent's address

space [15]. Thus, forked checkpointing corre-

sponds to either main-memory checkpointing or

copy-on-write checkpointing, depending on the op-

erating system's implementation of fork().

2.3 Checkpoint Compression

With checkpoint compression, a standard com-

pression algorithm like LZW [17] is used to shrink

the size of the checkpoint [8, 13]. While this

may be successful at reducing checkpoint size, it

only improves the overhead of checkpointing if the

speed of compression is faster than the speed of

disk writes, and if the checkpoint is signi�cantly

compressed. For uniprocessor checkpointing this

is not the case. Compression has only been shown

to be e�ective in parallel systems with disk con-

tention [13]. For this reason, checkpoint compres-

sion is not implemented in libckpt.

3 User-Directed Checkpointing

All the optimizations presented so far maintain

the transparency of checkpointing through tech-

niques that are not visible to the typical appli-

cation program: signal handlers, page protection,

and the creation of child processes. In this sec-

tion, we consider a di�erent approach that can

improve on the performance of these transparent

techniques and can also substitute for them when

automatic mechanisms are not available. We call

this approach \user-directed checkpointing." We

consider two ways in which user-supplied direc-

tives can improve the performance of checkpoint-

ing: memory exclusion and synchronous check-

pointing.

3.1 Memory Exclusion

There are two situations where the values of

memory locations can be excluded from a check-

point �le: when the locations are dead and when

they are clean. In the case of dead locations, the

values in memory will never be read or written,

and thus do not need to be saved. In the case of

clean locations, the values in memory exist in a

previous checkpoint and have not been changed.

Thus they need not be saved in the current check-

point. While the identi�cation of excludable areas

of memory can sometimes be automated (as in in-

cremental checkpointing), libckpt also allows the

programmer to declare them explicitly.

For example, suppose the user allocates a large

temporary array T to make a calculation. When

the lifetime of the data in array T is over, it will

never be referenced again | the next use of array

T will overwrite the old values. If a checkpoint

is taken outside of the lifetime of array T, then it

can be safely excluded from the checkpoint. Any

computation proceeding from this point will not

need to use the current values stored in array T.

The stack is a run-time mechanism that helps

the checkpointer to determine the lifetime of local

variables. This is one form of memory exclusion:

Only the live portion of the stack is saved. Un-

fortunately, this does not work for heap variables

or for variables which reside in the statically allo-

cated data segment.



The basis of incremental checkpointing is that

clean data need not be repeatedly written to

disk. In order to implement automatic incremen-

tal checkpointing, libckpt monitors page modi�-

cations using the mprotect() system call and a

handler for the SEGV signal. This approach has a

few weaknesses: It can only operate at the page

granularity; system calls can fail rather than gen-

erating a SEGV signal when asked to write to a

protected page; and on some systems mprotect()

is not reliable.

In those cases where automatic mechanisms

cannot determine all possible memory exclusions,

the performance of checkpointing can su�er. For

this reason, libckpt allows the programmer to

manage memory exclusion explicitly through two

procedure calls:

exclude bytes(char *addr, int size, int usage)

include bytes(char *addr, int size)

Exclude bytes() tells libckpt to exclude the

region of memory speci�ed from subsequent check-

points. It may be called when the user knows

that these bytes are not necessary for the correct

recovery from the program. Usage is an argu-

ment which currently may have one of two val-

ues: CKPT READONLY or CKPT DEAD. If the former,

then exclude bytes() has been called because

the speci�ed memory will not be written to un-

til the user calls include bytes() on it. Con-

sequently, libckpt includes this memory in the

next checkpoint, but excludes it from subsequent

checkpoints until the memory is included with

include bytes(). If CKPT DEAD is speci�ed, then

the memory is dead | it will not be read before it

is next written. Thus, libckpt excludes this from

the next and subsequent checkpoints, until it is is

explicitly included with include bytes().

Include bytes tells libckpt to include the

speci�ed region of memory in the next and subse-

quent checkpoints. Thus, include bytes() can-

cels the e�ect of calls to exclude bytes(), al-

though calls to include bytes() do not have to

match calls to exclude bytes(). By default,

libckpt includes all bytes in a process's active

stack and data segments that have not been ex-

plicitly excluded.

User-directed memory exclusion can dramati-

cally reduce the size of sequential and incremental

checkpoint �les, but it must be used very carefully.

If a live region of memory is mistakenly excluded

from a checkpoint, then a subsequent failure and

recovery can cause an otherwise correct applica-

tion to fail or to generate incorrect results.

3.2 Synchronous Checkpointing

In the previous section we discuss a mechanism

for optimizing asynchronous checkpointing by ex-

cluding certain areas of memory. This allows the

checkpointer to make use of data lifetime infor-

mation which would not otherwise be available to

it. However, the amount of data which can be ex-

cluded from the checkpoint is determined by the

program's state when the checkpoint is taken. If

the stack is large, or the size of excluded memory

is small, then memory exclusion will have little

e�ect.

Synchronous checkpointing is a user directive

that allows the programmer to specify points in

the program where it is most advantageous for

checkpointing to occur. These are called \syn-

chronous" checkpoints because they are not ini-

tiated by timer interrupts. Synchronous check-

points should be inserted by the programmer

at points where memory exclusion can have the

greatest e�ect.

checkpoint here() is a procedure call spec-
ifying where a synchronous checkpoint can

be taken.

Synchronous checkpoints may be placed in pro-

gram locations that are reached often. Check-

pointing too often, however, can lead to poor per-

formance, and in order to avoid this libckpt al-

lows a minimum interval between checkpoints to

be speci�ed.

mintime <seconds> speci�es the minimum
period of time that must pass between

checkpoints. The default is zero. If mintime

seconds have not passed since the previous
checkpoint, then checkpoint here() calls

are ignored.

Synchronous and asynchronous checkpointing

techniques can complement one another. If

maxtime seconds have passed and no synchronous

checkpoint has been taken since the last check-

point, then an asynchronous checkpoint is still

taken. However, the e�ect of memory exclusion

is likely not to be as bene�cial as in a synchronous

checkpoint. If both the mintime and maxtime pa-

rameters are set, then the former speci�es the min-

imum interval between synchronous checkpoints,

and the latter speci�es an interval after which an

asynchronous checkpoint will be taken. Whenever



a checkpoint is taken, both the minimumand max-

imum interval timers are reset.

If maxtime is zero, then asynchronous check-

points are disabled. In this case the speci�cation

of memory exclusion can be optimized for syn-

chronous checkpoints, because there is no danger

of asynchronous checkpoints being taken.

3.3 An Example

There are many examples where user-directed,

synchronous checkpointing can yield large perfor-

mance gains. Consider the program in Figure 1.

This is a typical driver program for many kinds of

programs that repeat calculations over numerous

points in a data set. Figure 2 shows how one can

checkpoint this program with synchronous, user-

directed checkpointing in libckpt.

main() 
{
  struct data *D;
  FILE *fi, *fo;

  D = allocate_data_set();
  fi = fopen("input", "r");
  fo = fopen("output", "w");
  while(read_data(fi, D) != -1) {
    perform_calculation(D);
    output_results(fo, D);
  }
}

Figure 1: A typical scienti�c driver program, no

checkpointing

ckpt_target() 
{
  struct data *D;
  FILE *fi, *fo;

  D = allocate_data_set();
  fi = fopen("input", "r");
  fo = fopen("output", "w");
  while(read_data(fi, D) != -1) {
    perform_calculation(D);
    output_results(fo, D);
    exclude_bytes(D, sizeof(struct data), 
         CKPT_DEAD);
    checkpoint_here();
    include_bytes(D, sizeof(struct data));
  }
}

Figure 2: A typical scienti�c driver program with

checkpointing

By specifying that the checkpoint must be taken

at the checkpoint here() call, we are able to

omit all of the variable D from the synchronous

checkpoint. This is because D is initialized anew

at each iteration of the program. If D is large,

then user-directed checkpointing will be respon-

sible for a signi�cant savings in checkpoint over-

head. Note that this will be a vast improvement

over incremental checkpointing because the mem-

ory locations in D will be dirty at the time of the

checkpoint.

Section 6 shows other successful examples of

user-directed checkpointing.

4 The Mechanics of Checkpointing

and Recovery

The motivation for checkpointing is to recon-

struct the recovery point. We therefore begin with

an overview of the recovery process before describ-

ing the details of checkpointing. Recovery has

four parts: process creation, data state restora-

tion, system state restoration, and processor state

restoration.

1. Process creation is implemented by invoking

the checkpointed programwith a special com-

mand line argument for recovery. This auto-

matically restores the text portion of the pro-

cess's state and begins execution. Libckpt

parses the command line, detects the argu-

ment for recovery, and calls the recovery rou-

tine.

2. The recovery routine performs the rest of the

recovery. Data state restoration means read-

ing the checkpoint �le to recreate the contents

of data memory: This consists of the process's

stack and data segments.

3. System state restoration means restoring as

much of the operating system state as pos-

sible to its state at the time of the check-

point. Much of the operating system state,

such as the process ID and parent process

ID, is unrestorable. However, most applica-

tions that need checkpointing are what we call

\well-behaved," and do not rely on such state.

Libckpt determines the state of the open �le

table at each checkpoint, and saves it as part

of each checkpoint. Upon recovery, libckpt

restores the system so that the state of open

�les is the same as it was at the time of the

checkpoint. No other system state is either

saved or restored by libckpt.



Application Abbreviation Language Running Maximum Checkpoint

Time Checkpoint Interval

(mm:ss) Size (Mbytes) (min)

Matrix Multiplication MAT C 15:20 4.6 2

Linear Equation Solver SOLVE fortran 13:42 4.6 2

Cellular Automata CELL C 17:39 8.4 2

Shallow Water Model WATER fortran 25:54 13.1 3

Multicommodity Flow MCNF fortran 18:38 24.3 6

Table 1: Description of application instances

4. Processor state restoration requires that

processor registers, including the program

counter and stack pointers be restored to their

values when the checkpoint was taken. In

libckpt, we use setjmp() to store the pro-

cessor state in memory. The processor state

is restored using longjmp(). Thus the recov-

ery routine never returns, and execution con-

tinues as an apparent \second return" from

the setjmp() of the checkpointing routine.

Thus the mechanics of checkpointing are

straightforward: When taking a checkpoint

libckpt saves the processor state using setjmp()

and records the state of the open �le table. Then

the data state, consisting of the program's stack

and data segments, is written to disk.

5 Experiments

In this section, we present the results of check-

pointing �ve application programs using libckpt.

The applications are long-running fortran and C

programs written by scientists to run under Unix.

All are typical of programs that can bene�t from

checkpointing for fault-tolerance.

The experiments were performed on a dedicated

Sparcstation 2 running SunOS 4.1.3, and writing

to a Hewlett Packard HP6000 disk via NFS. The

speci�c instances of the applications are described

in Table 1. We describe the applications below:

� Matrix Multiplication (MAT): This is a

straightforward matrix multiplication. Two

615 � 615 matrices are read from disk and

multiplied, and the product matrix is written

to an output �le.

� Linear Equation Solver (SOLVE): This

is a testing program from LAPACK, a high-

performance package of linear-algebra sub-

routines [1]. This program generates a system

of 750 equations with 750 unknowns, uses LU

decomposition to solve the system, and then

writes the solution to disk. It repeats this pro-

cess for seven separate systems of equations.

� Cellular Automata (CELL): This pro-

gram executes a 2048� 2048 grid of cellular

automata for �fteen generations.

� ShallowWater Model (WATER): This is

the program STSWM from the National Center

for Atmospheric Research. The program is

a shallow water model based on the spectral

transform method [5]. The instance used here

is \Zonal Flow over a Mountain" from their

test suite, modeled at 15-minute intervals for

six hours.

� Multicommodity Flow (MCNF): This

program solves the multicommodity network


ow problem using the simplex method [6].

The instance used here runs on a network of

100 vertices and 50 commodities.

Note that for the purposes of these experiments,

input values have been chosen to give running

times between thirteen and thirty minutes. Typ-

ically, the programs would be set up to run for

much longer, thus making them ideal candidates

for libckpt.

We present results pertaining to the three im-

portant metrics of checkpointing performance:

� Checkpoint time: This is the average du-

ration of a checkpoint, from start to �nish.

� Checkpoint overhead: This is amount of

time added to the running time of the ap-

plication as a result of checkpointing. Note

that in sequential checkpointing, overhead is

equal to the total checkpoint time. In main-

memory and copy-on-write checkpointing, the

overhead is smaller than the total checkpoint
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Figure 3: Checkpoint Time vs. Size for Sequential

Checkpointing

time because the disk writes are performed in

parallel with the execution of the application.

� Checkpoint size: This is the average size of

the checkpoint �le.

The prime goal of checkpoint optimization is to

minimize all three of these metrics, while still

providing adequate fault-tolerance. Minimizing

checkpoint overhead is the most important, be-

cause users would rather take the risk of fail-

ure than use a checkpointer that increases their

applications' running time signi�cantly. Keep-

ing the overhead of checkpointing under 10% of

the program's total running time is a reasonable

goal [9, 13]. Minimizing checkpoint size is also

important, as disk space rarely comes for free.

Checkpoint time is the least important of the three

metrics: When checkpointing for fault-tolerance,

the only concern is that the current checkpoint

complete before the user desires the next check-

point to begin.

6 Results

All of the experimental results are contained in

Table 2 in the appendix. All of the graphs and

data in this section are drawn directly from Ta-

ble 2.

6.1 Sequential Checkpointing

With no optimizations, checkpoint time and

overhead should be the same, and should be di-

rectly proportional to the checkpoint size. Fig-

ure 3 con�rms this prediction, showing checkpoint

overhead and time vs. size for the sequential

checkpointing runs described in Table 2.
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Figure 4: Percentage Reduction in Checkpointing

Overhead by Using fork()

6.2 Checkpointing with fork()

When checkpointing with fork(), the applica-

tion writes its checkpoints to disk asynchronously.

This enables it to run concurrently with the sav-

ing of the checkpoint, thereby reducing the over-

head of checkpointing dramatically, as shown in

Figure 4. This �gure displays the percentage re-

duction in the overhead of checkpointing by using

fork()1.

Because SunOS 4.1.3 implements fork() with

copy-on-write, Figure 4 shows that copy-on-write

improves the overhead of checkpointing by over 70

percent in almost all cases.

6.3 Incremental Checkpointing

Figure 5 is a graph showing the percentage re-

duction of checkpoint size and checkpoint over-

head when using incremental checkpointing in-

stead of simple sequential checkpointing. In three

of the applications (MAT, WATER, and MCNF),

only a fraction of the applications' address spaces

are modi�ed between checkpoints, resulting in a

signi�cant reduction in the average checkpoint

size. Correspondingly, the overhead of checkpoint-

ing is signi�cantly reduced. In the other two pro-

grams, the entire address spaces of the programs

are modi�ed between checkpoints, yielding little to

no reduction in the size of checkpoints. Therefore,

in SOLVE and CELL, the overhead of checkpoint-

ing is increased due to the fact that the cost of

handling page faults is not o�set by a savings in

the time to write the checkpoint to disk.

1Ninety percent reduction in checkpointoverheadmeans

that the overhead of checkpointing using fork() is ten per-

cent of the overhead of sequential checkpointing



M
A

T

SO
L

V
E

C
E

L
L

W
A

T
E

R

M
C

N
F

-20

0

20

40

60

80

100

P
er

ce
nt

ag
e 

re
du

ct
io

n
in

 c
he

ck
po

in
t

si
ze

-20

0

20

40

60

80

100

P
er

ce
nt

ag
e 

re
du

ct
io

n
in

 c
he

ck
po

in
t

si
ze

M
A

T

SO
L

V
E

C
E

L
L

W
A

T
E

R

M
C

N
F

-20

0

20

40

60

80

100

P
er

ce
nt

ag
e 

re
du

ct
io

n
in

 c
he

ck
po

in
t

ov
er

he
ad

-20

0

20

40

60

80

100

P
er

ce
nt

ag
e 

re
du

ct
io

n
in

 c
he

ck
po

in
t

ov
er

he
ad

Figure 5: Percentage Reduction in Checkpoint Size and Overhead Through Incremental Checkpointing
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Figure 6: Results of User-Directed Checkpointing on the SOLVE Application

6.4 User-Directed Checkpointing

In the previous three sections, the results cor-

roborate published research concerning check-

pointing optimizations [2, 3, 9, 10]. In this section,

we evaluate the the new technique: user-directed

checkpointing. In three of the applications, we an-

alyzed the application programs and inserted di-

rectives in the code. In each case, we were able to

add under ten lines of code, making checkpoints

synchronous, and excluding memory from these

checkpoints. We describe the details of each ap-

plication below.

SOLVE: Adding directives to the Linear Equa-

tion Solver was straightforward. At the end of

each iteration, all of the program's arrays are

dead: The matrix of equations will be initial-

ized anew for the next iteration, and the solu-

tion vector will be recalculated. Therefore at the

end of each iteration, we insert exclude bytes()

calls for the equation matrix and solution vec-

tor, then a checkpoint here() call, and �nally

include bytes() calls to re-include the matrix

and vector in case of an asynchronous checkpoint.

The results can be seen in Figure 6: The calls

to exclude bytes() and checkpoint here() pro-

duce checkpoint �les that are almost, reducing the

checkpoint size and overhead by over 90 percent.

This is signi�cant, because it is an application

where incremental checkpointing fails to improve

the performance of checkpointing.

CELL: At the end of each generation of the cel-

lular automaton application, the previous value of

the automaton grid becomes dead | its values are

not used for the calculation of the subsequent gen-

erations of the computation. Therefore we added

user directives to checkpoint at the end of each

generation, excluding the dead half of the grid

from each checkpoint. In order to checkpoint at

roughly the same interval as before, we also set

mintime to 100, so that every second generation

is checkpointed.

The results are in Figure 7. With our user di-

rectives, the checkpoint size is halved. Accord-

ingly, the overhead of checkpointing is also halved.

Thus, as in SOLVE, the calls to exclude bytes()

and checkpoint here() succeed in improving the

overhead of checkpointing in an application where

incremental checkpointing fails.

MAT: In the matrix multiplication the two

input matrices are read-only data. More-

over, once a product element is calculated it

too is read-only. This is why incremental

checkpointing works so well. In this applica-

tion, we inserted exclude bytes() calls (with


ag=CKPT READONLY) after reading the input ma-
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Figure 7: Results of User-Directed Checkpointing on the CELL Application
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Figure 8: Results of User-Directed Checkpointing on the MAT Application

trices and also after calculating a product row

to mark the memory as read-only. Thus, once

a checkpoint contains these values, subsequent

checkpoints omit them. The behavior of the appli-

cation with these calls should approximate stan-

dard incremental checkpointing | after data be-

comes read-only, it is omitted from subsequent

checkpoints.

The results of this experiment are shown in Fig-

ure 8. The important bars are the solid ones,

showing that the checkpoints obtained with the

user directives are approximately the same size

as those obtained with incremental checkpoint-

ing. Moreover, they show slightly lower overhead,

because they spend no extra time catching page

faults.

7 Related Work

There has been much computer science research

devoted to checkpointing. Checkpointing has been

implemented on uniprocessors [8, 11], multiproces-

sors [9, 10], transputers [14], multicomputers [13],

and and distributed systems [2, 7]. Of these imple-

mentations, only two (Condor [11] and Fail-Safe

PVM [7]) are publicly available code for Unix envi-

ronments. Both implement sequential checkpoint-

ing with forking, and neither is designed for sim-

ple uniprocessor checkpointing: Condor is a sys-

tem for batch programming using process migra-

tion, and Fail-Safe PVM requires the programmer

to have access to the PVM infrastructure. Nei-

ther package implements any optimizations be-

yond calling fork().

User-directed checkpointing bears some sim-

ilarity to checkpointers by Li and Fuchs [8],

and Silva et al [14]. The former describes

static checkpointing, which is similar to our

synchronous checkpointing. The user places

potential checkpoint here() calls into his pro-

gram, and the compiler and/or runtime system de-

cides which of those calls would be best for check-

pointing. They call for no user assistance in de-

termining the memory to exclude (they only ex-

clude the stack and unallocated heap memory),

and do not show the dramatic performance im-

provements gained by user-directed checkpointing

in the SOLVE, CELL, and MAT applications.

Silva et al implement a checkpointing package

for transputers in which the user speci�es exactly

what and where to checkpoint, but the process

state is not included in checkpoints. Thus the

user is responsible for rebuilding the call stack,

although not the data, on recovery. Our approach

di�ers because the checkpointer is responsible for

the entire process state, and not just for the in-

tegrity of the data.



8 Conclusion

We have written a general-purpose checkpoint-

ing library, libckpt, that provides fault-tolerance

for long-running programs under Unix. The

strengths of this library are its ease of use and

low overhead. Libckpt is currently available via

anonymous FTP to cs.utk.edu in the directory

pub/plank/libckpt.

Our experiments with libckpt show �rst and

foremost that it is general-purpose and easy to

use. We were able to checkpoint all �ve appli-

cations by changing one line of the applications'

source code, and relinking with libckpt. Once

enabled, these programs could save their state

to disk periodically for fault-tolerance, using the

fork() and incremental checkpointing optimiza-

tions if so desired. For all �ve applications, we

were able to dramatically lower the overhead of

checkpointing with copy-on-write, as implemented

by libckpt's fork() optimization. Moreover, in

three of the �ve applications, checkpoint size and

overhead were reduced by over 60 percent using

incremental checkpointing. Thus, libckpt is able

to take e�cient checkpoints using standard tech-

niques from the checkpointing literature.

Libckpt also implements user-directed check-

pointing, a new technique for improving the per-

formance of checkpointing based on the assump-

tion that a little user input to the checkpointer

can result in a large performance payo�. Mem-

ory exclusion and synchronous checkpointing are

the two ways in which a user can direct the check-

pointer to checkpoint more e�ciently. In our ex-

periments, directives added to three of the appli-

cations yielded performance improvements in all

three cases.

One avenue of future research is to employ com-

piler analysis to assist user-directed checkpoint-

ing. If the user places the checkpoint here()

calls, the compiler can use data dependence

analysis to make calls to exclude bytes() and

include bytes(). The bene�ts may be twofold.

First, the compiler may discover dead variables to

exclude that the user may omit. Second, the com-

piler can guarantee that its memory exclusion will

yield correct checkpoints. In other words, whereas

the user might err in excluding too much memory

from a checkpoint, resulting in a faulty recovery

state, the compiler can guarantee correctness.

It is the authors' opinion that checkpointing

primitives such as those provided by libckpt

should be implemented in the operating system.

This will improve both the performance and the

generality of checkpointing. Until such a time,

users can make use of a tool such as libckpt to

render their programs resilient to failure.
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Appendix

Appli- User Incre- Fork Running Over- % Avg Ckpt Avg Total Num

cation Direc- mental Time head Over- Time Ckpt Size of

tives (sec) (sec) head (sec) (Mbytes) Ckpts

MAT No checkpointing 920.7 - - - - -

no no no 1160.0 239.3 26.0 21.2 4.59 11
no yes no 961.3 40.7 4.4 3.6 0.57 11

no no yes 969.5 48.8 5.3 22.4 4.59 11

no yes yes 931.0 10.3 1.1 3.4 0.57 11
yes no no 963.5 42.8 4.7 3.6 0.59 11

yes yes no 970.5 49.8 5.4 3.5 0.56 11

yes no yes 930.5 9.8 1.1 5.0 0.59 11
yes yes yes 931.0 10.3 1.1 3.3 0.56 11

SOLVE No checkpointing 822.7 - - - - -
no no no 966.5 143.8 17.5 19.6 4.62 7

no yes no 1000.7 178.0 21.6 24.7 4.55 7

no no yes 857.6 34.9 4.2 19.6 4.62 7

no yes yes 864.8 42.1 5.1 24.7 4.55 7

yes no no 836.3 13.6 1.7 1.3 0.11 7

yes yes no 833.3 10.6 1.3 1.0 0.04 7
yes no yes 830.0 7.3 0.9 1.4 0.11 7

yes yes yes 829.3 6.6 0.8 1.1 0.04 7

CELL No checkpointing 1059.9 - - - - -

no no no 1389.3 329.4 31.1 45.4 8.46 7

no yes no 1455.4 395.5 37.3 53.0 8.44 7

no no yes 1130.3 70.4 6.6 43.7 8.46 7

no yes yes 1143.9 84.0 7.9 50.0 8.44 7

yes no no 1202.3 142.4 13.4 19.3 4.26 7
yes yes no 1210.3 150.4 14.2 20.3 3.63 7

yes no yes 1101.4 41.5 3.9 19.3 4.26 7

yes yes yes 1111.1 51.2 4.8 20.4 3.63 7

WATER No checkpointing 1553.9 - - - - -

no no no 2170.4 616.5 39.7 74.6 14.17 8
no yes no 1800.3 246.4 15.9 29.9 5.23 8

no no yes 1676.1 122.2 7.9 74.6 14.17 8

no yes yes 1612.3 58.4 3.8 28.5 5.15 8

MCNF No checkpointing 1118.2 - - - - -

no no no 1681.8 563.6 50.4 159.3 24.31 3
no yes no 1216.1 97.9 8.8 10.7 1.75 3

no no yes 1175.2 57.0 5.1 131.3 24.31 3

no yes yes 1125.6 7.4 0.7 10.3 1.75 3

Table 2: Results of all checkpointing experiments


