
0

Trade-Offs in Implementing Causal Message Logging Protocols

Lorenzo Alvisi* Keith Marzullot

Abstract

Casual message logging protocols [3] have several at-

tractive properties: they introduce no blocking, send

no additional messages over those sent by the appli-

cation, and can never cause orphans to be created by

crashes. Causal message logging, however, does require

additional data to be piggybacked on application mes-

sages. The amount of such piggybacked data can be-
come large.

In this paper, we present five different implementa-

tions of casual message logging. All of the corresponding

protocols are parameterized by ~, the maximum number

of processes that can fail concurrently. We also explore

how the application’s communication structure can be

exploited to limit the amount of piggybacked data.

1 Introduction

Message logging is a common technique used to build

systems that can tolerate process crash failures. These

protocols require that each process periodically record

its local state and log the messages it received after hav-

ing recorded that state. When a process crashes, a new

process is created in its place: the new process is given

*Department of Computer Sciences, University of Texas at
Austin. This material is based on work SUDDOrted in Dart bv

the Office of Naval Research under contrac~ fiOOO14-91:J-121~,

the National Science Foundation under Grant No. CCR-9003440,

DARPA/NSF Grant No. CCR-9014363, NASA/DARPA grant

NAG-2-893, and AFOSR grant F49620-94- 1-0198. Any opinions,

findings, and conclusions or recommendations expressed in this

publication are those of the author and do not reflect the views

of these agencies.

t Department of Computer Science and Engineering, University

of California at San Diego. This author was supported by the

Defense Advanced Research Projects Agency (DoD) under NASA

Ames grant number NAG 2–593, Contract NO0140-87-C-8904 and
by AFOSR grant number F49620-93- 1-0242. The views, opinions,

and findings contained in this report are those of the authors

and should not be construed as an official Department of Defense

position, policy, or decision.

Permission to make digitallhard copies of all or part of tida material for
peraoml or claee~m usa ia granted without fee ~mvided that the copies
are not made or distributed for profit or commem.d advantage, the copy-
right notice, the title of the publkmtion and its date appa=, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to repubtish, to poet on servers or to rwdiatribute to lists, requires specific
permiaaion and/or fee.
PODC’96, Phhdelphm PA, USA
~ 1996 ACM &89791 +()@2/96/()5. .$3.5t3

the appropriate recorded local state, and then it is sent

the logged messages in the order they were originally re-

ceived. Thus, message logging protocols implement an

abstraction of a resilient process in which the crash of a

process is translated into intermittent unavailability of

that process.

All message logging protocols require that the state

of a recovered process be consistent with the states of

the other processes. This consistency requirement is

usually expressed in terms of orphan processes, which

are surviving processes whose state is inconsistent with

the recovered state of a crashed process. Thus, in the

terminology of message logging, message logging proto-

cols must guarantee that there are no orphan processes,

either through careful logging or through a somewhat

complex recovery protocol.

The two main approaches to message logging are op-

timistic (for example, [18, 17, 11, 20]) and pessimistic

(for example, [7, 15, 10, 19]). We have recently de-

fined a third approach that we call causai [3]. There are

two published causal message logging protocols: Family

Based Logging (FBL) [4] and Manetho [9].

In the same paper we defined a message logging pro-

tocol to be optimal if it is causal and does not send any

additional messages over those needed to mask tran-

sient link failures. Optimal message protocols do exact

a price, however: they piggyback additional information

on the application’s messages.

One parameter of message logging protocols is the

number of crash failures ~ that can occur before one

of the processes successfully recovers. The two existing

optimal message logging protocols are at opposite ends

of the spectrum: FBL can tolerate only one crash at a

time while Manetho can tolerate all processes crashing.

On the other hand, FBL is a much simpler protocol than

Manetho and on average it piggybacks significantly less

information than Manetho does. If one can safely as-

sume (by examining the architecture of the system) that

the probability is extremely small that a second pro-

cess will crash before a previously crashed process com-

pletes recovery, then the FBL strategy of piggybacking

information would be a better choice than the Manetho

strategy.

In this paper, we show how FBL can be extended to

derive a continuum of optimal message logging proto-

cols for values of $ ranging from 1 up to the number

58

of processes n. Protocols with a lower value of ~ piggy-

back information to fewer processes than protocols with

larger values of$, and so both the average size ofmes-

sages and the amount of information logged in volatile

memory will be less for smaller values of j.

We also present five different techniques for determin-

ing whether information should be piggybacked or not.

These technique differ in their accuracy in determining

whether or not a piece of information needs to be piggy-

backed or not. The more accurate techniques increase

the size of some messages, but the additional size may

be offset by piggybacking less information on average.

On the other hand, we show that for some (very reason-

able) applications, the least accurate technique is the

most efficient even when f = n.

Due to lack of space, we do not present the protocol

that is run when a craahed process recovers. All five

protocols that we develop in this paper can use the same

recovery protocol. A discussion on recovery as well as

the actual recovery protocol can be found in [1].

2 System Model

We assume a system N of n processes that can com-

municate only by exchanging messages. The system

is asynchronous: there exists no bound on the relative

speeds of processes, no bound on message transmission

delays, and no global time source.

The execution of the system is represented by a

run, which is an irreflexive partial ordering of the send

events, receive events and local events ordered by po-

tential causality [12]. Delivery events are local events

that represent the delivery of a received message to the

application or applications running in that process. For

any message m from process p to process q, q delivers

m only if it has received m, and q delivers m no more

than once.

At any point in time, the state of a process is a map-

ping of program variables and implicit variables (such

M program counters) to their current values. We ~-

sume that the state of the process does not include the

state of the underlying communication system, such as

the queue of messages that have been received but not

yet delivered to the process. Given the states SP and s~

of two processes p and q, p # q respectively, we say that

Sp and Sq (or, more simply, p and q) are mutually CO~-

sistent if all of the messages from q that p has delivered

during its execution up to SP were sent by q during its

execution UP t,o Sq, and vice versa. A collection of states,

one from each process, is a consistent global state if all

pairs of states are mutually consistent [8]; otherwise it

is inc[,nsistent.

Wc assume that processes are piecewise determinis-

t [19] in that the only nondeterminism in a process

arises from the nondeterministic order in which mes-

sages are delivered. It is therefore natural to think of

the execution of a process as being partitioned into in-

tervals, with the beginning of each interval being de-

fined by the initial state of the process or the delivery

of a message. Such an interval is called a state interval.

Thus, given the first state of a state interval and the

message whose delivery defines the beginning of the in-

terval, the rest of the states in the interval are uniquely

determined by the process.

For any message m delivered by process p, the receive

sequence number of m, denoted m.rsn, represents the

order in which m was delivered: m. rsn = f if m is the

I?h message delivered by p [18]. The state interval that

initiates with the delivery of m is denoted p[l] where 1,

the index of p[l], is equal to m. rsn. The state interval

p[O] is defined to be the interval of states of p from its

initial state to the state immediately before the delivery

of the first message.

We further assume that:

●

●

●

3

Processes fail independently according to the fail-

stop model [16];

There exists common knowledge on the identity of

the fixed set of processes that belong to the system;

Channels are point-to-point, FIFO, and fail by in-

termittently losing messages.

Specification

With the assumption that processes are piecewise deter-

ministic, the only non-deterministic choices made dur-

ing an execution concern the order in which each mes-

sage is delivered to each process. Hence, we need to

represent the nondeterministic choice made by each de-

livery event.

For each message m delivered during a given run, let

m.source and m.ssn denote, respectively, the identity

of the sender process and a unique identifier assigned

to m by the sender. The latter may, for example, be

a sequence number. Let deziver~.de.t (m) denote the

event that corresponds to the delivery of message m

by process m.dest. The tuple (m.source, m.ssn, m.rsn)

unequivocally determines m and the order in which m

was delivered by m. dest. We refer to this tuple as the

determinant of the event deliverm &$~ (m) and we denote

it as #m.

Let Depend(m) denote the set of processes whose

state reflects the delivery of message m. Formally,

Depend(m)~f{j E N I

((j = m.dest) n j has delivered m) v

(3 an event ej of non-crashed process j:

(delver; ~ ej))}

59

where -+ denotes the happens-before relationship [12].

Let Log(m) denote the set of processes that maintain a

copy of #m in their address space: in particular, process

m .dest is a member of Log(m) once it delivers m. In [3],

we showed that the following property ensures that no

set of ~ or less crashed processes can lead to the creation

of orphans:

Vm : ~(lLog(m)l s f ~ Depend(m) ~ Log(m)) (1)

(0 is the temporal “always” operator) [14].

We say that the determinant of a delivery event

deliverm (m. dest) is stabte when #m cannot become lost

due to process crashes, i.e. when I_Log(m) I > ~. Prop-

ert y 1 allows Log(m) to grow arbitrarily larger than

Depend(m) and allows for protocols that disseminate

a large number of unnecessary copies of #m. As the

number of delivery events performed during a run in-

creases, these extra copies may end up wasting a signifi-

cant portion of the address spaces of the processes in the

system. In order to address this problem, we consider

protocols that implement the following strengthening of

Property 1:

((

(lLog(m)l < .f) +

V171 : c1 A (Depend(m) ~ Log(m))

))

(2)

A O(Depend(m) = Log(m))

(O is the temporal “eventually” operator) [14]. This

characterization strongly couples logging with causal de-

pendency on deliver events. It requires that:

●

b

We

All processes that delivered an application message

sent causally after the delivery of m must have

stored a copy of m’s determinant.

Eventually, the states of all the processes that have

stored a copy of m‘s determinant will deliver an

application message sent causally after the delivery

of m.

call the protocols that implement Property (2)

causal message-logging protocols. In [3] we define op~

timal message logging protocols to be those protocols

that (1) do not create orphans, (2) introduce no block-

ing, and (3) do not send any additional messages over

those needed to mask transient link failures. Notice that

the first two conditions require the protocol to be causal.

4 Family Based Logging

Family Based Logging (FBL) is a logging technique used

by a class of optimal protocols that implement Prop-

erty 2 as follows:

1. Before delivering m, process p logs #m in its

volatile memory. By causality, when p sends a sub-

sequent message m’ to some process q, q will be-

come a member of Depend(m) when it delivers m’.

60

2.

3

4.

Hence, if p has not determined that lLog(m) \ > ~

when it sends ml, itpiggybacks #m on m). When

it receives m’, q logs #m and #m’ in its volatile

memory before delivering m’.

Suppose a process p receives a set of determinants

piggybacked on a message m. Process p writes

these determinants and the determinant #m to its

log in volatile memory atomically with respect to

another process q requesting those determinants

(Process q would make such a request while exe-

cuting the recovery procedure).

When p sends a subsequent message m’ to another

process r, p examines all determinants #m it has

received through piggybacking. If p does not know

that [Log(m) I > j V r c Log(m), then p piggybacks

#m on m’.

During normal operation, a process does not send

determinants except by piggybacking. Hence, a

process does not receive a determinant of m un-

less it is to deliver a message sent causally after the

delivery of m.

Conceptually, in this protocol each process p main-

tains a set DSP that contains the determinants of all

the delivery events reflected in p’s state and that p does

not know to be stable. This set is a subset of all of the

determinants that p has logged in its volatile storage.

Whenever p sends a message m’ to some process q, pro-

cess p piggybacks onto mr all the determinants in DsP

that p does not know that process q has seen. Hence, a

fundamental issue of implementing FBL is how a pro-

cess p determines Log(m) for any determinant #m that

p has received. In general, however, p may not know the

exact values of Log(m) and ILog(m) 1, and so it must es-

timate these values. We denote p’s estimated values for

Log(m) and lLog(m) I as Log(m)P and lLog(m) 1Prespec-

tively.

4. I Estimating Log(n) and /Log(rn)[

In order for the protocol to satisfy Property 2, p must

never overestimate Log(m) or lLog(m) [. However, if p

underestimates ILog(m) 1, it may needlessly piggyback

determinants that are already stable, making the mes-

sages on average significantly larger. Process p com-

putes its estimates through additional information that

is piggybacked to it by other processes. Thus, by ex-

changing more information, the processes can improve

the accuracy of their estimates, and thereby avoid pig-

gybacking useless data; yet, maintaining more accurate

estimates requires the processes to piggyback more in-

formation which can in turn make the messages signifi-

cantly larger.

The most basic piece of information about [Log(m) I

is gained when a process q delivers a message m. Once

q delivers m, q knows that q c Log(m). Further pieces

of information about [Log(m) I are piggybacked on mes-

sages. Three natural pieces of information are:

#m: When q receives #m from p, process q can safely

infer that Log (m) cent ains at least process p, pro-

cess m. dest (the original destination of message m)

and process q itself.

lLog(m) lP: Process p can send to q this piece of infor-

mation either in addition to #m, if #m E DSP (q)

or without #m if #m @ DSP (q). Upon receipt of

lLog(m)lP, q can always safely infer that lLog(m)l

is no smaller than ILog(m) 1P. When q receives #m

for the first time, q can further safely infer that

lLog(m)l must be at least equal to \Log(m)lP + 1,

since q itself could not be counted in lLog(m) 1P.

Note that this scheme allows q to safely infer a

value for ILog(m) I without knowing the identity of

the processes in Log(m).

Log(m)P: Process p can send to q this piece of infor-

mation either in addition to #m, if #m E VSP (q)

~r without #m if #m @ DSP (q). Upon receipt of

Log(m)P, process q can safely infer that Log(m)g

must be at least equal to the union of the current

set l,og(m)~ and Log(m)P, and update lLog(m) Iq

accordingly. Using this scheme, when process p
sends its estimate of Log(m) to process q, itis pro-

viding q with the union of all the estimates rela-

tive to Log(m) computed by the processes along the

causal path that connects process m. dest to process

P.

Let VSP (q) denote the subset of 2DSP that contains

the determinants #m such that q @ Log(m)P. One can

define five protocols from these different information-

exchange schemes.

1.

2.

3.

4.

~Det: Process p piggybacks only the determinants

in DSP (q).

lll~ogl: For each determinant #m in DSP (q), pro-

cess p piggybacks both #m and lLog(m) 1P.

I-I;og, : Process p piggybacks the determinants in

DSP (q). In addition, p piggybacks the value of

lLog(m) 1P for all messages m in its determinant

log. Note that with 11+,~Ogl process p piggybacks

I,he value of ILog(m) 1P even if m is not a member

of VSP(q) or of DSP.

I-I ~Og: For each determinant #m in DSP (q), pro-

cess p piggybacks both #m and Log(m).

5. IItoq : Process p piggybacks the determinants in

D&”(q). In addition, p piggybacks the set Log(m)P

for all messages m in its determinant log. Note

that with 11+1Logl Process P piggybacks the value of

Log(m)P even if m is not a member of DSP (q).

4.2 Comparison of the Protocols

The five protocols piggyback different amounts of infor-

mation and estimate Log (m) and lLog(m) 1 differently.

We examine these differences below.

4.2.1 Accuracy of Log(m)P and ILog(m) 1P

The execution shown in Figure 1 illustrates the differ-

ences between IIDet, IIILOgl and HLOg with respect to

how accurately they estimate Log(m) and lLog(m) 1. For

each deliver event executed by process pi and for each of

the three protocols, we show Log(m)P, and lLog(m) lP,.

Through the receipt of message m~, the three proto-

cols yield the same estimates of Log(m) and lLog(m) 1.

Once p3 receives m4, however, different estimates of

Log(m) and lLog(m) I are computed by the three pro-

tocols:

~Det: Upon receipt of the copy of #m piggybacked on

message m4, process p3 concludes that, in addi-

tion to itself, Log(m) must include at least pro-

cess pl = m4 source and process pz = m. dest.

Process p3 thus sets Log(m)P, = {pl, pz, p3}, and

lLog(m) lP, =3.

II~Qgl: As in the previous case, process p3 sets Log(m)P,

to {pl, p2, p3}. However, since this is the first time

that p3 receives #m, p3 was not in Log(m) when

P1 sent mq. Since lLog(m) lP, = 3, P3 can infer that

lLog(m)l must be at least 4.

HLOg: Process p3 receives Log(m)Pl in addition to #m.

It then concludes that Log(m) must include at least

P1, P2, P3, and P4 and that lLog(m)l ~ 4.

Although HLOg provides a more accurate assessment

of Log(m), both IIILOgl and ll~og allow process P3 to con-

clude that lLog(m) I z 4. The benefits of the extra in-

formation exchanged by protocol ll~.g become evident

when process p5 receives message m5, at which point

~@ has the most accurate determination of lLog(m) 1.

Protocols II~Ogl and II~Og are similar to 111~Ogl and

HLo~, but can provide better estimates of Log(m) and
lLog(m) 1. An example illustrating the difference be-

tween H@ and II~Og is given in Figure 2. Assume

~ = 3. Determinant #m becomes stable when p5 re-

ceives ms. With Protocol HL.~, when p5 subsequently

sends m4 to p3, #m is not piggy bxked, and therefore

message md does not carry Log(m)P~. With Protocol

61

P2
+ \ E

~Det, ‘lLogl> ‘~0~ :
~Det : {PI, pz, ps, p5},4

{P2}>1 m4
m3

B,Log, {pl,p,,p3,p5},4

~L09 : {pi, p2, P3, p4, p5}, ij

P3 f >

m2
~Det : {PI, P2, P3}, S ,’

ml %wl : {PI, P2>P3},4 , ‘
~@ : {PI, pz, p3, p4}, 4

P4
/,

*

~llet, ~11.ql, ~L.g : {P2, P4}, z
7735

,,

\
,,

“ m.6/ \

P5 + / + w
~Det, ~l,bg[, ~Log : {P2, P5}, z ~D,~ : {pz, p7j, p5},3

~lLogl : {P2, P3, P5}, 4

~Log : {Pi, P2)P3, P4, P5}, 5

Figure 1: Log(m)p, and \Log(rn) lP, for IIDe~, II!LOgl and lILOg.

II~Og instead, p5 piggybacks Log(m)P5 even if #m is al-

read y stable. Hence, using protocol IIL~g a subsequent

message sent by p3 will contain a piggybacked value of

#m, while using Protocol II~Og it will not. A similar

scenario can be constructed with Protocols III ~Ogl and

H~Ogl. Note that II&gl and II~Og can provide better

estimates of II ILOgl and IILOg even when .f = n. This is

somewhat surprising, since when f = n the DS set of

a process contains all the determinants in that process

determinant log, and IIILOgl and IILOg would appear to

become identical to II~Ogl and II~Og, respectively. To

see why the differ, consider &gand II~Og. A process

p using ll~og piggybacks Log (m)P on a message to a

process q only if #m is also piggybacked on the same

message. Since channels are FIFO, p does not piggyback

#m to q more than once, and therefore does not pig-

gyback Log(m)P to q more than once. If p instead uses

II~Og, then, once #m is in p’s determinant log, Log(m)p

is piggybacked on every message p sends to q, and q can

use Log (m)P repeatedly to update its own estimate of

Log(m).

Consider again the execution shown in Figure 1. As

long as a process estimates that lLog(m) [is less than

three, the three protocols produce identical estimates.

This is true in general: the estimates given by any FBL

protocol will be identical aa long as for all messages

7n, a sender’s estimate of ILog(m) I is less than three.

The reason why this holds is that whenever a process q

receives #m from process p, it can always conclude that

{m.dest, p, q} s Log(m). Hence, whenever ~ <3 the

most efficient FBL protocol is the one that piggybacks

on each message the minimum amount of data needed

to satisfy Property 2. We can therefore formulate the

following general guideline:

If f <3, then use Protocol ~D.~,

There are applications, however, for which ll~et per-

forms as Well as HLOg even fOr large values of f. For

example, Figure 3 shows an application for which ~De~

does as well as II~Og when $ = n [5]. The application is a

parallel solution to the Synthetic Aperture Radar prob-

lem (SAR) in which radar echoes, collected by aircraft

or spacecraft, are used to construct terrain cent ours.

The steps necessary for producing high-quality images

from SAR data consist of the following sequence of

comput at ions: t we-dimensional discrete Fourier t rans-

form, binary convolution, two-dimensional inverse dis-

crete Fourier transform, and intensity level normaliza-

tion for visualization. For our purposes, however, the

important property to note is that data flows in a par-

ticular manner.

To characterize a set of applications for which ~D.~

performs as well as Ii~Og, we represent an application’s

pattern of communication with a channel graph. For

a given application, its associated channel graph is a

directed graph. Nodes are used to represent processes aa

well aa sources of application messages received form the

environment and destinations of application messages

sent to the environment, and edges are used to represent

the direction application messages are sent.

Definition 1 A channel graph is tree-like ij for all

pairs of nodes i and j, all paths from i to j have the

same length.

62

\
4

P2
~Log, ~;og:

>

{P2}, 1
ml

~Log: {P2, P3}, Z

@Ofl: {P2, P3, P4, P5},4
P3

~Log , @og :

E

{Pz, P3}>Z m2

m4

P4
~Log, @og:

F

{P2, P3,P4)>3

m3

P5 b

~Log,~}og: {P2, P3, P4>P5),4

m is stable

Figure 2: Comparison of IILOg and II~Og for $ = 3.

Note that the channel graph of Figure 3 is tree-like.

The following theorem, proved in [1], characterizes one

set of applications for which ll~et performs as well as

ll~og when ~ = n.

Theorem 1 Let f = n. Given a tree-like channel

graph, for any run p, Protocol ~Det piggybacks on each

message the same determinants as Protocol II&.

There exist channel graphs for which ~D.t sends the

same determinants as II~Og even when ~ < n. The

following theorem (also proved in [1]) specifies one such

kind of graph.

Theorem 2 Let f ~ n. Given a channel graph that

is a tree (as opposed to a tree-like channel graph), for

any run p Protocol ~Det piggybacks on each message the

same determinants as Protocol ll~og.

4.2.2 Piggyback Overheads

Even though it is only for f <3 that ll~e~ provably pig-

gybacks the least amount of data of any FBL protocol,

we expect that in practice ll~.t will piggyback overall

fewer determinants that the other four protocols when

f is small. This is important, since it indicates that

applications that must tolerate only a small number of

concurrent failures can use effectively the cheapest of all

FBL protocols.

If f is large, however, then protocols like IID,t that

exchange less information may dramatically underesti-

mate Log(m) and lLog(rn) 1, and this can lead to exces-

sive piggybacking of #m. Hence, there is a trade-off

between the amount of information carried in each mes-

sage versus the number of unnecessary piggybacks.

As we have seen, how this trade-off works in practice

for a particular application is largely a function of the

application’s pattern of communication and of the net-

work’s responsiveness in delivering acknowledgments.

In order to understand the parameters of this trade-

off, however, it is instructive to compare the amount of

data that each protocol piggybacks on a message carry-

ing a fixed number of determinants. For simplicity, in

our calculations we don’t consider optimizations achiev-

able by applying compression techniques such as those

described in [4, 1].

Consider a message m from process p to process q.

Suppose that, when p sends m, DSP (q) contains D de-

terminants and p’s determinant log contains N deter-

minants. Let w denote the number of words needed

to encode a determinant, and assume that the iden-

tity of a process and the number of processes that have

logged a determinant can each be encoded in one word.

A straightforward implementation of the five protocols

piggybacks the following amount of words on m:

1. HDe~: Dw words.

2. IIILOgl: D(w + 1) words, or D words more than

~De~.

3. ll~og, : Dw+N words, or N words more than HDe~.

4. IILOg: Up to D(w + f) words, or Df words more

than ll~.t.

5. ll~og: Up to Dd + Nf words, or Nf words more

than HDe~.

In the worst case, D and N can only be bound by

the total number of delivery events d that causally pre-

cede the sending of m. Thus, the extra information
+sent by ~l~.gl, ~lLo~l >IIL.~ and I&g does not worsen

the theoretical asymptotically worst case behavior of

FBL protocols. In practice, however, when D is large,

63

adding an extra piggyback proportional to D, as ~lLogl

and 111~g do, can result in significant extra overhead.

Furthermore, even when D is small, N is most likely

large, making II&gl and 11~09 appear even less practi-

cal. Hence, it could be advantageous to represent the
+extra information carried by ~lr,~gl, ~lLOgl, IIL09 and

II~Og using a data structure whose size is independent
of D or N.

Protocol IIILOgl can be easily modified to achieve this

goal by sorting the determinants #m’ piggybacked on m

according to ILog (m’) [. The resulting version of II! ~Ogl

piggybacks no more than $ additional words than 11~~~,

an amount which is independent of D. A drawback of

this approach, however, is that determinants sorted in

this manner are not suitable for some of the compres-

sion techniques described in [4, 1], which can dramati-

cally reduce the size of the piggyback. Furthermore, this

approach can not be applied to II&gl, HLog or II~Og.

In the next section we introduce a data structure,

called a dependency matrix, that will allow us to imple-

ment versions of II LOgl, ~~Ogl, IILOg and II~OQ with a

cost independent of D or N.

4.3 The Dependency Matrix

We exploit the relationship that exists in Property 2 be-

tween Log (m) and Depend(m). The following definition

of Log(m) satisfies Property 2:

Log(m) =
{

Depend(m) if [Depend(m)\ < f

any set S : ISI > .f otherwise

With this approach, a process can use lDepend(m) I

to evaluate lLog(m) 1, and take advantage of techniques

that have been developed to detect dependencies in

asynchronous distributed systems. One such technique

is based on vector clocks [13].

Strom and Yemini [18] were the first to use vector

clocks with message logging when they introduced the

notion of dependency vector. A dependency vector is

a vector clock that is specialized to determine causal

dependencies between delivery events occurring at dif-

ferent processes. Since in the piecewise deterministic

model there is a one-to-one correspondence between de-

livery events and state intervals, dependency vectors can

upon, as well as the highest receive sequence num-

ber of any message delivered by process q that pro-

cess p depends upon.

Furthermore, the vector clock update rules ensure

that, given event deliverP (m) of process p and event

deliverq (m’) of process q, the following property holds:

dehverP(m) ~ deliver s

D~ (deiiver,(m))~] s DV,(deliverq(m’))~] (3)

Dependency vectors are designed to track arbitrary

dependencies between delivery events. In the context of

FBL, we are interested in determining which processes

depend on event deliverP (m) only when lDepend(m) I ~

f. We therefore introduce weak dependency vectors that

satisfy the following weaker version of Property 3:

deliver~(m) ~ deliver A Ilkpend(m) I ~ f ~

W’DVP (deZiverP(m))~] ~ WDVq (deliverg(m’))~] (4a)

WDt$(deliverP (m))~] < WDVq(deherq(m’))~] +

deliver -+ deliver (4.b)

where WDVP and WDVq are the weak dependency vec-

tors of process p and q respectively.

Notice that from Properties 4a, 4.b and from the def-

inition of Depend(m) itfollows that, for any given mes-
sage m for which IDepend(m) I s f, the membership of

a generic process p in Depend(m) can be determined at

any point in time by reading process p’s current weak

dependency vector. In particular, the following condi-

tions hold:

p E Depend(m) A lDepend(m) I < f%-

WDVP[m. dest] z m.rsn (5a)

WDVP[m.dest] ~ m.rsn ~ p E Depend(m) (5.b)

The approach we adopt in our implementation of FBL

in order to evaluate IDepend(m) I derives directly from

the above observation. We require each process p to

maintain an n x n dependency matrix DP, defined as

follows:

. DP ~, x] is the weak dependency vector of process p

be used to determine dependencies among state inter- . DP [q, x] is process p’s estimate of the weak depen-
vals of different processes.

Let deliver. (m) denote the delivery of message m at
dency vector of process q

process p, and let’ DVP (deliverP (m)) be the correspond- where q is a generic process distinct from p and DP [z’, *]

ing value of the dependency vector of process p: denotes the i-th row of matrix DP.

DVP (deliverP (m)) ~] is the index of the state inter-
Note that the estimate of the weak dependency vector

val initiated in p by event deZiverP (m), as well as
of a generic process q maintained by process pin DP [q, *]

the receive sequence number of message m
will not in general be able to satisfy Condition 5. a, since

the distributed and asynchronous nature of our system

DVP (deliverP (m)) [q] is the highest index of any will not in general allow process p’s estimate to be per-

state interval of process q that process p depends fectly accurate.

64

FF’T2d Convolution FFT;d Normalization Display
~~~ l—, ,~

image
/

,/ P3

data ,--”

“0’ “\p,satelhte ~
\

\ !
P8

p?

?%

P5

- p12 + p16

#r

p20 . P24

- Pll - P15 P19

/

+ P1O- p14 A p18

-p9-P13 iz!!i P17

Figure 3: A parallel solution to the Synthetic Aperture Radar problem.

However, it is straightforward to design update rules

that will ensure that condition 5.b holds. This provides

process p with a simple method to estimate [Depend(m)/

and therefore [Log(m) [, for a particular message m: pro-

cess p can just check how many entries of DP [*, rn.dest],

the column corresponding to process m. dest, are greater

than, or equal to, m. rsn. In particular, process p will

consider #m to be stable if more than f entries of

DP [*, m.dest] are greater than, or equal to, m. rsn.

Because the order of events executed by a processor

is in fact a total order, it is also straightforward to con-

struct a dependency matrix that has size np x np where

np is the number of processors in the system [1]. When,

in the following, we discuss the cost of the protocols, we

sssume that this smaller representation of the depen-

dency matrix is used.

4.4 Piggybacking the Dependency Ma-

trix

Since the dependency matrix of process p can be used

to compute Log (m)P for all the messages for which p is

a member of Depend(m), when p sends a message to q it

can simply piggyback on it its dependency matrix. Prc-

cess q can then use the piggybacked dependency matrix,

the piggybacked determinants, and its own dependency

matrix to compute new values of Log(m)q and lLog(m) 1~

for all messages m whose determinants are logged in q’s

address space. This protocol is another implementation

of IIjOg that piggybacks np 2 additional data over IID~t,

independent of the number of determinants D.

Similarly, an implementation of l_I~Ogl that is analo-

gous to IIIL~gl and that piggybacks f np additional data

can be derived by extracting the following data struc-

ture from the dependency matrix.

Stability Matrix: SiWatP is a (j + 1) x n matrix of

integers. For all processes q in N, SMatP [i, q] con-

tains the highest receive sequence number of any

message m delivered by q for which I.Log(m) 1P= i.

The entries of SMatP are initialized to O. No-

tice that SMatP [1,:] is equal to W’DVP, and that

Si14atP [~ + 1,:] is equal to StableP.

Thus, lLog(m)lP = i when SMatP[i + 1, m.dest] <

m. rsn < SMatP [i, m. dest]. Protocol II~Ogl then has pro-

cess p piggyback its stability matrix instead of the de-

pendency matrix. A process q that receives this stability

matrix can use it with the piggybacked determinants,

its own stability matrix and its own dependency matrix

to compute the new values for its stability matrix and

dependency matrix.

Full descriptions of protocols II~Ogl and II~Ogcan be

found in [1].

5 Manetho and FBL Protocols

Manetho is an optimal message logging protocol de-

signed for f = n. In Manetho, each process maintains

an antecedence graph A G that records the causal rela-

tionship between all the message delivery events of an

execution. 1 The nodes of the antecedence graph repre-

sent the state intervals started by each delivery event,

and contain the determinants of the corresponding de-

livery events. In particular, if process p is executing in

state interval p[i], then the antecedence graph of p con-

tains the determinant of the non-deterministic event e

that started p[i], plus the determinants of all the non-

deterministic events that are in e’s causal past. Concep-

tually, when process p sends a message m to process q,

p piggybacks on m the current value of its antecedence

graph. In practice, optimizations are used to limit the

amount of piggybacked data.

1The ~aper~ on Manetho also mention I’eCOI’Chg determinants

for nondeterministic internal events. FBL could be extended in a
similar way but would need, like Manetho, to be executed on an
operating system that allowed for the deterministic re-execution
of nondeterministic internal event.

65



Since the antecedence graph records the causal rela-

tionship between the delivery events of an execution,

it can be used to compute both Ilmg(m)[ and Log(m)

for any message m. Hence, Manetho can be thought

of as providing a different representation of the same

information piggybacked ~&g. Since every node in an

antecedent graph can have no more than two edges into

it, Manetho piggybacksno morethan D(d+2) words, or

2.Dmorewords thanIIO(n). This isbetter than Protocol

IIza (n), which piggybacks up to npll more than II. (n),

and is better than Protocol 112a(n) when D > nP2/2.

However, the information carried by IIza (n) and 112~(n)

can be compressed, while we are not aware of techniques

for compressing the determinants carried by Manetho.

The effects of compression can be very large [4], and

so we expect in practice that Protocols 112.(n) and

Hzb(n) will often piggyback much less information than

Manetho.

One major difference between Manetho and the FBL

protocols is that Manetho assumes ~ = n. Applica-

tions for which a smaller value of j would suffice must

nonetheless pay the full cost of ensuring resiliency from

total failure. This cost is not only found in message

traffic, but also in the logging of determinants in volatile

storage: processes using FBL for ~ < n fill their volatile

logs more slowly, and therefore need to take checkpoints

less frequently.

Another difference between Manetho and FBL is that

simpler approximations of Log(m) and lLog(m) I can be

used with FBL. Protocols 111~Ogl and IILOg both pig-

gyback O(D) less information than Manetho. As de-

scribed in Section 4.2.1, when $ is small the simpler

approximations work very well. In addition, some ap-

plications are very amenable to the simpler approxima-

t ions; for example, when ~ = n and communication is

tree-like, then the simplest protocol IIDet is the most

efficient.

A third difference has to do with recovery and garbage

collection. Manetho maintains dependency relations in

the arkecedence graph. The antecedence graph is a pow-

erful data structure, but is relatively difficult to recon-

stitute during recovery. In particular, after a failure

the antecedence graph of the recovering process must

be reconstituted through a non-trivial merging of the

antecedence graphs of the surviving processes. In addi-

tion, garbage collection is recognized to be complex and

expensive [9]. We suspect that part of the cost may arise

because determinants must be logged in a way that pre-

serves the antecedence graph structure which may not

lend itself easily to garbage collection. In FBL, the de-

pendency relation is not represented by maintaining ex-

plicit relation between determinants, but rather through

the dependency matrix discussed in Section 4.3. De-

coupling the representation of the dependency relation

from the determinants allows FBL to easily structure

the logs to allow for efficient garbage collection. Fur-

thermore, the dependency matrix can be reconstituted

easily from the matrices of the surviving processes, and

recovery is a straightforward procedure.

6 Conclusions

In this paper, we presented five families of optimal mes-

sage logging protocols. The simplest, Protocol ll~.t

piggybacks the least amount of information and is the

best choice for ~ < 3. It is also the best choice when

communication is acyclic and ~ = n. Protocols 111~Ogl

and 11+I~Ogl piggyback more information but are more

efficient on average than IIDet for certain applications

and values of j’. Protocols IILOg and II~Og piggyback

even more information but again are the most efficient

protocols in certain situations.

All optimal protocols must piggyback determinants

and so, ignoring the effects of compression, a message

carrying D determinants must carry Dd words where

d is the size of a determinant. Protocol ll~et piggy-

backs exactly this amount. Protocols IIILOgl and IILOg

carry additional data whose amount (D and up to Df
respectively) scale with D. Since for some applications

D can become quite large, Protocols ll/&l and II~Og

may be more appropriate than HILOgl and IILOg because

the amount of additional data that they carry over what

protocol ~De~ carries is independent of D (proportional

to (j+ l)np and npz respectively).

We compared FBL with Manetho, which is the only

other optimal protocol that we are aware of. Manetho

provides the same information as II~Og, and so the argu-

ments for using a protocol simpler than II& apply to

using a protocol simpler than Manetho as well. Manetho

uses a more compact representation than HLOg (with a

cost of D(d + 2) rather than ll(d + f) words). II~Ogl is

more data efficient than Manetho if D > np 2/2. How-

ever, the FBL protocols are all well-suited for efficient

compression of the D determinants [4]. We do not know

if Manetho is equally well-suited for compression.

The only FBL protocol that has been completely im-

plemented is DD~t [4]. We are currently implementing

the complete FBL family in order to understand better

under what circumstances the simpler protocols are the

more efficient ones. We have also extended the message

logging specification to distributed shared memory ar-

chitectures [2] and have designed optimal FBL protocols

for the entry consistency memory coherency model [6].

Acknowledgments We would like to thank Bruce

Hoppe and Fred Schneider for their help in refining our

ideas and Wanda Chiu for her detailed comments on our

work. We would also like to thank Mootaz Elnozahy for

66



his comments on an earlier draft of this paper and for

helping us understanding Manetho.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

L. Alvisi. Understanding the Message Logging

Paradigm for Masking Process Crashes. PhD the-

sis, Cornell University Department of Computer

Science, January 1996.

L. Alvisi and K. Marzullo. Deriving optimal check-

pointing protocols for distributed shared memory

architectures. In Selected Papers, International

Workshop in Theory and Practice in Distributed

Systems, pages 111-120. Springer-Verlag, 1995.

L. Alvisi and K. Marzullo. Message logging: Pes-

simistic, optimistic, and causal. In Proceedings of

the 15th International Conference on Distributed

Computing Systems, pages 229-236. IEEE Com-

puter Society, May 1995.

Lorenzo Alvisi, Bruce Hoppe, and Keith Marzullo.

Nonblocking and orphan-free message logging pro-

tocols. In Proceedings of the .2%-d Fault-Tolerant

C‘omputing Symposium, pages 145-154, June 1993.

0. Babaoglu, L. Alvisi, et al. Paralex: An envi-

ronment for parallel programming in distributed

systems. In Proceedings of the 6th ACM Interna-

tional Conference on Supercomputing, pages 178-

187, July 1992.

B. N. Bershad, M. J. Zekauskas, and W. A. Saw-

don. The midway distributed shared memory sys-

tem. In Proceedings of the 93 COMPCON Confer-

ence, pages 528–537. IEEE, February 1993.

Anita Borg, J. Baumbach, and S. Glazer. A mes-

sage system supporting fault tolerance. In Pro-

~eedings of the Symposium on Operating Systems

Principles, pages 90–99. ACM SIGOPS, October

1983.

K. M. Chandy and L. Lamport. Distributed snap-

shots: determining global states of distributed sys-

tems. ACM Transactions on Computer Systems,

3(1):63-75, February 1985.

E. N. Elnozahy and W. Zwaenepoel. Manetho:

Transparent rollback-recovery with low overhead,

limited rollback and fast output commit. IEEE

Transactions on Computers, 41(5):526-531, May

1992.

D.B. Johnson and W. Zwaenepoel. Sender-based

message logging. In Digest of Papers: 17 Annual

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

International Symposium on Fault-Tolerant Com-

puting, pages 14–19. IEEE Computer Society, June

1987.

D.B. Johnson and W. Zwaenepoel. Recovery in dis-

tributed systems using optimistic message logging

and checkpointing. Journal of Algorithms, 11 :462–

491, 1990.

Leslie Lamport. Time, clocks, and the ordering of

events in a distributed system. Communications of

the ACM, 21(7):558-565, July 1978.

Friedmann Mattern. Virtual time and global states

of distributed syst ems. In M. Cosnard et. al.,

editor, Parallel and Distributed Algorithms, pages

215-226. Elsevir Science Publishers B. V., 1989.

Amir Pnueli. The temporal logic of programs. In

Proceedings of the Eighteenth Annual Symposium

on Foundations of Computer Science, pages 46–57,

November 1977.

M.L. Powell and D.L. Presotto. Publishing: A

reliable broadcast communication mechanism. In

Proceedings of the Ninth Symposium on Operating

System Principles, pages 100-109. ACM SIGOPS,

October 1983.

Fred B. Schneider. Byzantine generals in action:

Implementing fail-stop processors. ACM Trans-

actions on Computer Systems, 2(2): 145–154, May

1984.

A.P. Sistla and J.L. Welch. Efficient dis-

tributed recovery using message logging. In Pro-

ceedings of the Eighth Symposium on Principles

of Distributed Computing, pages 223–238. ACM

SIGACT/SIGOPS, August 1989.

R. B. Strom and S. Yemeni. Optimistic recovery in

distributed systems. ACM Transactions on Com-

puter Systems, 3(3) :204-226, April 1985.

R. E. Strom, D. F. Bacon, and S. A. Yemini.

Volatile logging in n-fault-tolerant distributed sys-

tems. In Proceedings of the Eighteenth Annual In-

ternational Symposium on Fault-Tolerant Comput-

ing, pages 44–49, 1988.

S. Venkatesan and T.Y. Juang. Efficient algorithms

for optimistic crash recovery. Distributed Comput-

ing, 8(2):105–114, June 1994.

67


