
COMPUTING PRACTICES

Edgar H. Sibley
Panel Editor

Mean response time and availability as optimization criteria for checkpoint
placement are better replaced by workable formulas that calculate the ratio
between the marginal gain accrued to users who experience system failure
and the (presumably slight) loss suffered on average by all users.

OPTIMIZATION CRITERIA FOR
CHECKPOINT PLACEMENT

C. M. KRISHNA, KANG G. SHIN, and YANN-HANG LEE

Checkpointing is becoming increasingly popular in
real-time and database systems as a means of mitigating
the consequences of failure. Checkpointing involves
storing authenticated process state information that can
then be used in the event of failure to restart the af-
fected computation from the latest checkpoint, instead
of from the beginning. There are a number of articles in
the literature dealing with the optimal number and
placement of checkpoints [1-6, 9, 10]. Our purpose here
is to address an important point that has been over-
looked; that is, although the analyses presented are of-
ten ingenious and elegant, their practical validity is
thrown into doubt by an inappropriate choice of opti-
mization criteria. We propose alternative criteria that
we believe to be of greater practical relevance.

In every published analysis of optimal checkpointing
that we have seen, the only optimization criteria used
are mean response time and/or availability. No explicit
justification for this is ever given. A carelessness in
choosing optimization criteria can result in inadequate
and misleading performance analyses, for, in a real
sense, optimization criteria are relative, not absolute.
The simple act of choosing a particular criterion im-
poses a bias on the results that follow. By definition,

This work has been supported in part by NASA under Grant NAG 1-296. Any
opinions here expressed are those of the authors and do not necessarily
represent the views of NASA. All correspondence regarding this paper should
he sent to Kang G. Shin.

©1984ACM0001-0782/84/lOO0-1008 75¢

optimization criteria specify the commodity that is of
importance and therefore to be optimized. Optimization
criteria have a very subtle influence on the way sys-
tems are viewed. In a sense, they are languages through
which we seek to convey system performance. We
know from experience with natural languages that
these affect not only the way in which ideas are ex-
pressed but also the very ideas themselves. Optimiza-
tion criteria are no exception. They manipulate our
view of system behavior, contorting it to fit a prefabri-
cated mold. For this reason, the choice of optimization
criteria determines the practical usefulness of the re-
sults that are then derived.

Optimization criteria are performance measures. To
choose them correctly, it is important to determine
what it is we wish to express. In this case, where we
wish to measure the advantages that accrue from
checkpointing, it is best to trade the benefits derived
from them against the overhead they impose: in other
words, to carry out a value analysis. First, we shall show
why mean response time and availability do not do so
effectively and are therefore inadequate performance
measures for checkpoints.

Mean response time has long been a favorite measure
of computer performance among queuing analysts. It is
much easier to compute than the higher moments of
response time. That is, it is sometimes easy to obtain
the mean response time even when the response time
distribution is very difficult or impossible to calculate.

1008 Communications of the ACM October 1984 Volume 27 Number 10

Computing Practices

Also, in many cases, the data that are supposed to be
representative of the arrival or service time distribu-
tions are not known to a sufficient degree of accuracy
to warrant obtaining the higher moments of the re-
sponse time distribution. Again, the mean response
time is often quite adequate for most day-to-day pur-
poses.

Availability, which is defined as the percentage of
time for which the system is operational, is another
well-known measure. It is also basically a first-moment
measure.

Our argument is that neither measure is suitable for
checkpointing models. Although checkpoints are useful
auxiliary means to enhance reliability, it must be as-
sumed that the reliability of the system is already con-
siderable without them. If the Mean Time Between Fail-
ures (MTBF} for a system were to be much less than,
say, 50-100 hours, checkpointing would be only a mi-
nor concern; the designers would have much more
pressing woes.

Nonetheless, when checkpointing models are studied
using mean response time or availability as criteria,
developers are frequently driven to the extremes of
considering MTBF values of between 2 and 10 hours in
their numerical examples. For systems that fail much
less frequently than that (e.g., the systems that one
comes across in practice), the improvements in both
mean response time and availability due to checkpoints
are too small to be numerically significant: Indeed, in
many cases, checkpointing actually increases mean re-
sponse time.

The reason for this is that both mean response time
and availability express performance from the system
point of view, and are therefore insensitive when it
comes to probing the consequences of failure. Their
chief use lies in characterizing the vast majority of
tasks or transactions that do not experience system fail-
ure. They would be entirely appropriate for check-
points if they were only devices to enhance normal (i.e.,
failure-free) operation. However, since checkpoints are
meant only to improve the handling of failure, and in-
deed add overhead to the execution time of nonfailing
transactions or tasks, we need to seek out more appro-
priate performance measures. In so doing, we assume
that the failure rate is very low: less than 10 -3 per
hour. In order to be practically useful, any performance
measures for checkpointing should have the following
two basic features: They should express the resulting
improvement in handling failures, and they should
consider the impact on transactions or tasks that suffer
no failure. Yet, at the same time, they should also not
make unrealistic demands on system data. We shall
consider the application of these principles first to
special-purpose (i.e., real-time) systems and then to
general-purpose systems.

REAL-TIME APPLICATIONS
Computers used in the control of critical systems whose
malfunction may endanger life, public safety, or prop-
erty have stringent reliability requirements. The chief

distinction between the requirements for control com-
puters as opposed to general-purpose computers is that,
in the former, an outage of more than a very short
duration may have catastrophic consequences. This is
because real-time computers have hard deadlines, which
when missed cause the controlled system to fail.

The function of checkpoints in real-time applications
is to increase the probability of the system's recovering
from failure quickly enough to meet hard deadlines.
The overhead they impose is a slight increase in the
response time of processes that do not suffer failure.
This increase can degrade the quality of control pro-
vided to the controlled system and decrease system effi-
ciency. The extent of this decline in efficiency can be
used as a measure of the overhead imposed by the
introduction of the checkpoints. In terms of a value
analysis, the benefit that accrues from checkpoints is a
reduction in the probability of missing hard deadlines
(in [7] we call this the probability of dynamic failure),
whereas the price that has to be paid is the decline of
efficiency of the controlled system. (The decline in effi-
ciency is expressed through a cost function [7] whose
domain is the computer response time and whose range
is the performance index--in units of energy, time,
etc.--of the controlled system.) In connection with this
decline in efficiency, we define mean cost as follows: Let
f(t} be the density function of the response time distri-
bution for a given control task, and g(t) the cost func-
tion associated with a response time of t for that task.
Then, the mean cost accrued for every execution of the
given task is equal to

MC = f(t)g(t) dt

Both the probability of missing a hard deadline and
the overhead due to increased response time as re-
flected in the performance of the controlled system are
of direct physical relevance insofar as they link the
behavior of the controlling computer with that of the
controlled system. By using these quantities, we are
explicitly carrying out an analysis of the impact of the
computer on the application. This was not the case with
mean response time or availability, where the impact
on the application is not made evident. ~ For this reason,
the proposed measures have much greater physical
meaning than do mean response time and availability.

Our value analysis is therefore a trade-off between
the decline in the probability of missing a hard dead-
line and the possible increase in the average overhead
incurred by the controlled system due to the added
delay owing to checkpointing. We illustrate this by the
following example.

Numerical Example
Let us examine the benefits that might accrue when
checkpointing is used in the controlling computer of a
computer-controlled aircraft in the final stages of de-
scent just prior to landing. (Such aircraft are expected
t In a n y case, mean response time and availability are very poor yardsticks in
the real-time domain.

October 1984 Volume 27 Number 10 Communications of the ACM " 1000

Computing Practices

to be operational early in the next century.) A mathe-
matical analysis can be found in [8]; here, we restrict
ourselves to a concise description.

The computer task to be considered is the deflection
control of the aircraft's elevator. The four state vari-
ables of interest are the altitude, descent rate, pitch
angle, and pitch angle rate of the aircraft. Constraints
are prescribed for the value of each of these quantities
at touchdown. The region over which touchdown is to
occur is also specified, and the optimal trajectory is
given for all four state variables. The task of the con-
trolling computer is to estimate the value of the state
variables periodically (every 60 milliseconds} and to
compute the optimal deflection of the elevator. Owing
to the nonzero response time of the computer, the con-
trol provided is only suboptimal. The performance in-
dex that is appropriate in this case is a weighted sum of
the squares of the deviation of each of the state vari-
ables from the optimal trajectory. The greater the re-
sponse time of the computer, the greater the deviation
of the state variables from the optimal trajectory and,
therefore, the greater the overhead imposed by the
computer on the controlled aircraft. The hard deadline
over the final part of the descent is found in [8] to be 60
milliseconds. The cost function {i.e., the weighted sum
of the squares of the deviations of the state variables as
a function of the controller response time} was also
derived in [8] and is reproduced here as Figure 1. Our
goal here is to use these data in computing the optimal
number of checkpoints.

Let the MTBF be 10,000 hours; let the occurrence of
error be a Poisson process with rate X = 1/MTBF; and
let to, t~, and tov be the time needed to set up rollback,
restart, and one checkpoint. Let us assume also that the

O3

0

Od

0

0

0

0 q
0

0.00
,I I ' 1 I ' 1 " I

10.00 20.00 30.00 40.00 50.00 60.00
Delay (ms)

FIGURE 1. The Cost Function for a Real-Time System

saved state may be contaminated with probability ps,
which means the system can be recovered using roll-
back with probability pb = 1 - ps and has to restart
with probability ps. Clearly, pb = 0 when the number of
checkpoints, n, is zero. Let the nominal execution time
be denoted by ~. Then, the total execution time ~t is
given by

~t = ~ + ntov +trec

where n is the number of checkpoints inserted and t,ec
is the time overhead used in recovery, trec is a random
variable that depends on the probability of failure, pb,
and p~:

0 if no error occurs
tb + tron if error occurs and

the version is recovered
trec= by rollback

ts + tstart if error occurs and
the task has to restart

where troll and tstart are the computation undone be-
cause of rollback and restart, respectively. Since the
ratio of the execution time of any single task to the
MTBF is of the order of 107, we may assume that the
probability of a second failure occurring to the same
task is negligible. Let the checkpoints be placed at equi-
distant intervals and let tiny = ~ / (n + 1) be the interval
between successive checkpoints. The density function
of trol~ and t~tart is given by froH(t) = Xe-Xt/(1 -- e -xt"v) for
t e [0, ti,v] and f~tort(t} = ~e-X'/(1 - e -x~} for t ~ [0, ~],
respectively. The density function of the total response
time ~t can be easily obtained from the above equa-
tions. Three cases are considered for the nominal exe-
cution time of the deflection task: 20 ms, 30 ms, and 40
ms. For each, the probability of dynamic failure and the
mean cost that ensues with checkpoints is computed.
To express the marginal benefit accrued (in terms of
the reduction probability of dynamic failure pay,}
against the price paid (in terms of the increased mean
cost MC, i.e., operating overhead}, we use the following
trade-off ratio:

pd~. wi th (n - 1) checkpoints
- Par. w i th n checkpoints

Trade-off ratio(n) =

M C wi th n checkpoints
- M C wi th (n - 1) checkpoints

The results are presented in Table I. When the nominal
execution time is 20 milliseconds, all the checkpoints
do is increase the overhead, that is, the mean cost. No
discernible drop is noticed in the probability of dy-
namic failure when checkpoints are added. The mar-
ginal gain in reliability on adding checkpoints is there-
fore zero.

However, as nominal execution time increases,
checkpointing begins to cause a noticeable decrease in
the probability of dynamic failure. This is expressed
through a positive trade-off ratio: n = 1 for a nominal
execution time of 30 ms; n = 1, 2 for 40 ms; and n --- 1,
2, 3, 4, 5 for 50 ms. These ratios show that a tangible

1010 Communications of the ACM October 1984 Volume 27 Number 10

Computing Practices

TABLE I. Checkpoints in Real-Time Applications
(Pb = 0.9, MTBF = 104 hours, t=, = 0.1 ms, tb = 2.0 ms, ts = 2.0 ms.)

0 0.12848 0.3086E-15
1 0.12909 0.3086E-15 0.0
2 0.12971 0.3086E-15 0.0
3 0.13033 0.3086E-15 0.0
4 0.13095 0.3086E-15 0.0
5 0.13157 0.3086E-15 0.0

(a) Nominalexecu,ontime:2Oms.

Mean ~ . ! i ! (rra~ff~tio) X lO!i
0 0.26156 0.37037E-07
1 0.26431 0.37037E-08 121.5
2 0.26709 0.37037E-08 0.0
3 0.26991 0.37037E-08 0.0
4 0.27272 0.37037E-08 0.0
5 0.27567 0.37037E-08 0.0

(b) Nominal execution time: 30 ms.

0 0.55352 0.30555E-06
1 0.55472 0.43055E-07
2 0.55586 0.30555E-07
3 0.55694 0.30555E-07
4 0.55795 0.30555E-07
5 0.55891 0.30555E-07

2177.0
109.8

0.0
0.0
0.0

(c) Nominal execution time: 40 ms.

0 0.89694 0.46666E-06
1 0.90848 0.35666E-06 95.6
2 0.92025 0.26166E-06 80.6
3 0.93231 0.16666E-06 78.7
4 0.94466 0.71666E-07 76.9
5 0.95730 0.46666E-07 19.8

(d) Nominal execution time: 50 ms.

gain in reliabili ty has been made for the indicated
number of checkpoints (i.e., the probabili ty of dynamic
failure is reduced by a factor of 10 in each case). Of
course, this has been achieved at the price of a certain
increase in the mean cost, which is also reflected in the
trade-off ratio.

Had mean response time and availabili ty been used
for the MTBF indicated, the results would have led to
the recommendat ion that there be no checkpoints at
all. The gain in reliabil i ty indicated above would have
been masked by the high proportion of jobs that do not
suffer failure. Mean response time is therefore a blunt
instrument when it comes to probing the consequences
of failure. A similar argument can be made for availa-
bility as a criterion.

GENERAL-PURPOSE SYSTEMS
The schema described above can be extended to en-
compass systems that do not have hard deadlines asso-

ciated with executing tasks. The basic idea is to con-
sider separately the impact of checkpoints on processes
that do not experience failure and processes that do. If
we are willing to countenance a performance vector in
place of a scalar, the following might suffice:

[M~o]
p -- L M L]

where MTo = mean execution time for processes not
experiencing failure, and MTj = mean execution time
for processes experiencing failures. This would be a
much finer measure than uncondit ioned mean execu-
tion time or availability, while retaining all the advan-
tages of only requiring the computation of the first mo-
ment of response time distribution. Of course, to com-
pare two performance vectors, one would need a metric
such as the following trade-off ratio:

MTf with (n - 1) checkpoints
- MT! with n checkpoints

Trade-off ratio(n) = MTo with n checkpoints

- MTo with (n - 1) checkpoints

The trade-off ratio computes the ratio of the marginal
gain made to the mean execution time of jobs that
experience failure to the marginal loss made to the mean
execution time of jobs that are flee from failure. Unlike
the measure of mean response time, this measure allows
for the fact that the execution of failure-free jobs may
actually be degraded by the introduction of checkpoints.

The above trade-off ratio is used when we are inter-
ested in the role of checkpoints in reducing the execution
time for those processes that undergo one or more fail-
ures, and not in what happens to processes that suffer n
failures for some n. In other words, we average in the
above trade-off ratio all fail-and-recover tasks regardless
of the number of failures; the number of failures is
generally no more than one. If, for some reason, one
wished to consider separately the handling of processes
according to the number of failures they suffered, an
expanded performance vector P = [MTo, MT1]T re-
suits, and it is not obvious what the metric for P would
be. 2

A second useful measure is the effect of checkpoints
on various percentiles of execution time. This is analo-
gous to the pdy,, computation for real-t ime systems that
we referred to earlier.

We now come to the second condition, namely, that
the performance measures should not make unrealistic
demands on the data that go into calculating them. In
computing response time distribution, which would nor-
mally be arduous and sometimes impossible, the as-
sumption of low failure rate comes to our rescue. Since
the failure rate is assumed to be small, the distribution
of failure between two adjacent checkpoints can quite
accurately be taken to be uniform.

To convince the reader that these measures are indeed
computationally feasible and practical, a numerical ex-
ample is presented below.

2 We need a metric for comparing two vectors.

October 1984 Volume 27 Number 10 Communications of the ACM 1011

Computing Practices

N u m e r i c a l Resul ts
Some n u m e r i c a l resul t s for gene r a l - pu r pos e sys tems are
p r e s e n t e d in Table II. We see tha t a l t h o u g h u n c o n d i -
t ioned m e a n e x e c u t i o n t ime inc reases in all cases, the
m e a n e x e c u t i o n t ime t a k e n over all jobs t ha t exper i -
ence fa i lure is r e d u c e d w i t h the i n t r o d u c t i o n of check-
poin ts un t i l more t h a n six c h e c k p o i n t s h a v e b e e n in t ro-
duced in the first case (with n o m i n a l e x e c u t i o n t ime 70
ms) and more t h a n e ight c h e c k p o i n t s in the s econd
(with n o m i n a l e x e c u t i o n t ime 90 ms). T he r ea son w h y
more c h e c k p o i n t s y ie ld a benef i t in the s econd (Table
IIb) is tha t the g rea te r n o m i n a l e x e c u t i o n t ime inc reases
the pena l ty i n c u r r e d on a restar t . Here again, if m e a n
e x e c u t i o n t ime had b e e n c h o s e n as a c r i te r ion , the opti-
mal n u m b e r of c h e c k p o i n t s r e c o m m e n d e d w o u l d h a v e
b e e n zero. Of course, a d d i n g c h e c k p o i n t s i nc reases the
m e a n e x e c u t i o n t ime t a k e n over all jobs in the sys tem
but , at t he s ame t ime, m a r k e d l y r educes the e x e c u t i o n
t ime for jobs tha t suffer some failure. M e a n response
t ime fails en t i r e ly to i nd i ca t e w h a t the t rade-of f ra t io
does; t ha t is, it fails to show expl ic i t ly w h a t is ga ined as
opposed to w h a t is lost.

As in the r ea l - t ime case, m e a n response t ime w o u l d
have m a s k e d the r e d u c t i o n in r e sponse t ime for jobs
tha t suffer fai lure, Again, th i s p a r t i c u l a r l im i t a t i on of
m e a n response t ime can be ca r r i ed ove r to avai labi l i ty .

TABLE II. Checkpoints in General-Purpose Systems
Checkpoint establishment overhead = 0.5 ms;
MTBF -- 104 hours and no hard deadline.

Number of
MTf MTo Trade.off Ratio Checkpoints

0 105.8 70.0
1 92.3 70.5 26.99
2 88.1 71.0 8.33
3 86.3 71.5 3.67
4 85.4 72.0 1.80
5 84.9 72.5 0.86
6 84.8 73.0 0.33
7 84.8 73.5 -0.01
8 84.9 74.0 -0.22
9 85.1 74.5 -0.37

10 85.3 75.0 -0.49

(a) Nominal execution time: 70 ms.

Number of MT~ MTo Trade.off Ratio
Checkpoints

0 135.8 90.0
1 118.3 90.5 34.99
2 112.8 91.0 11.00
3 110.3 91.5 5.00
4 108.9 92.0 2.60
5 108.3 92.5 1.40
6 107.9 93.0 0.71
7 107.8 93.5 0.28
8 107.8 94.0 0.00
9 107.9 94.5 -0 .20

10 108.1 95.0 -0.35

(b) Nominal execution time: 90 ms.

S U M M A R Y
Our object in th is paper has b e e n to show tha t the
m e a s u r e s of m e a n response t ime a n d ava i lab i l i ty t ha t
have c o n v e n t i o n a l l y b e e n used to ind ica te the benef i t s
tha t acc rue f rom c h e c k p o i n t i n g are i n a d e q u a t e in t ha t
they are not suf f ic ien t ly sensi t ive . To r e m e d y th i s prob-
lem, we h a v e p roposed w o r k a b l e t rade-of f ra t io fo rmu-
las t ha t ca lcu la te the pr ice pa id for c h e c k p o i n t i n g in
t e r m s of the dec l ine in ef f ic iency of the sys tem as a
whole . Our p e r f o r m a n c e m e a s u r e ha s b e e n re la t ive ly
simple: the rat io b e t w e e n the m a r g i n a l ga in a c c r u e d to
users w h o suffer sys tem fa i lure a n d t he (p r e s u m a b l y
slight) loss suf fe red on ave rage by all users .

In th is paper , no effort has b e e n m a d e to add res s t he
issue of user pe rcep t ion . At th i s stage, t h e r e is on ly a
i n tu i t i ve l ink b e t w e e n the above p e r f o r m a n c e m e a s u r e
rat io and the response t ime as p e r c e i v e d by the user .
More r e sea rch r e m a i n s to be done in to the n a t u r e of
u s e r - p e r c e i v e d delays,

REFERENCES
1. Baccelli, F, Analysis of a service facility with periodic checkpoint-

ing. Acta Inf. 15, 1 (1981), 67-81.
2. Brodetskiy, G.L. Periodic dumping of intermediate results in systems

with storage-destructive failures. Eng. Cybern. 15, 5 (Sept.-Oct. 1979),
685-689.

3. Chandy. K.M.. Browne. J.C., Dissly. C.W., and Uhrig, W.R. Analytic
models for rollback and recovery strategies in data base systems.
IEEE Trans. Softw. Eng, SE-1.1 (Mar. 1975), 100-110.

4. Chandy, K.M., and Ramamoorthy. C.V. Rollback ~ihd recovery strat-
egies for computer programs. IEEE Trans. Comput. C-21, 6 (June
1972), 546-556.

5. Gelenbe, E. On the optimum checkpoint interval. J. ACM 26, 2 (Apr.
1979), 259-270.

6. Gelenbe, E., and Derochette, D. Performance of rollback recovery
systems under intermittent failures. Commun. ACM 21, 6 (June
1978), 493-499.

7. Krishna, C.M., and Shin. K.G. Performance measures for real-time
controllers. In Performance 83, A, Agrawala and S.K. Trlpathi, Eds.
North-Holland, Amsterdam, 1983, pp. 229-250.

8. Shin, K.G., Krishna, C.M.. and Lee, Y.-H. Unified methods for evalu-
ating real-time controllers: A case study. Computing Research Labo-
ratory Rep. CRL-TR-23, The Univ. of Michigan, Ann Arbor, June
1983.

9. Tantawi, A.N., and Ruschitzka. M. Performance analysis of check-
pointing strategies. In Proceedings of the ACM SIGMETRICS Confer-
ence on Measurement and Modeling of Computer Systems (Minneapolis,
Minn., Aug. 29-31). ACM, New York, 1983, p. 129.

10. Young, J,W. A first order approximation to the optimum checkpoint
interval. Commun. ACM 17, 9 (Sept. 1974), 530-531.

CR Categories and Subject Descriptors: D.4.5 [Operating Systems]:
Reliability--checkpoint~restart, fault-tolerance; C.3 [Special-Purpose and
Applications-Based Systems]: real-time systems; C.4 [Performance of
Systems]: performance attributes; reliability, availability, and serviceability

General Terms: Performance, Reliability

Received 8/83: revised 12/83: accepted 3/84

Authors' Present Address: C.M. Krishna, Kang G. Shin, and Yann-Hang
Lee, Computer Research Laboratory, Dept. of Electrical Engineering and
Computer Science, The University of Michigan. Ann Arbor, MI 48109.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

1012 Communications of the ACM October 1984 Volume 27 Number 10

