
A Story of Logic 
 
These brief notes on the history of logic are meant to be an easily understood basis for 
studying the great ideas in logic. Appreciating how the basic concepts were discovered 
and why they were needed is an accessible basis for a technical understanding of these 
concepts  For many former students, this is a route by which they have come to deeply 
understand and appreciate logic. Logic is one of the oldest continuously studied academic 
subjects, and while investigating its central questions, Alan M. Turing gave birth to 
computer science in 1936 as you will see toward the end of these notes.  He and his thesis 
advisor, Alonzo Church, laid theoretical foundations for computer science that continue 
to frame some of the deepest questions and provide the conceptual tools for important 
applications. Indeed, their ideas underlie one of the most enduring contributions of 
computer science to intellectual history, the discovery that we can program computers to 
assist us in solving conceptual problems that we could not solve without them.  It is no 
longer in doubt that computers can be programmed to perform high level mental 
operations that were once regarded as the pinnacle of human mental activity. 
 
Let us start as far back as is historically sensible as far as we know. 
 
Epimenides of Crete circa 500 BCE  
 
Epimenides is reputed to have posed a version of the Liar’s Paradox, “All Cretans are 
liars” said a known Cretan. This paradox is mentioned in the Bible (Paul’s epistle to 
Titus).  A more modern related paradox asks about the truth or falsity of the statement:  
 
                                                   This sentence is false. 
 
Clearly this apparently declarative sentence cannot have a truth value as normally 
understood, i.e. to be either true or false. To this day logicians do not have a definitive 
accounting of the meaning of this paradoxical statement and others like it. In the precise 
logical languages we study in this course, no such sentence is allowed to be “well 
formed.”  This suggests that natural language cannot be treated as a precise logical 
language. 
 
Aristotle  
 
Aristotle wrote one of the most influential books on logic, called by his followers the 
Organon, circa 330 BCE (the date is my approximation of the date when it might have 
been written, probably at the Lyceum academy in Athens during the time of Ptolemy I). 
Up until the time of Kant it was understood to be a definitive treatment of logic – for 
about two thousand one hundred years (2,100 years). 
 
Aristotle said: “Deduction is speech (logos) in which certain things having been 
supposed, something different from these supposed results follows of necessity from their 
being so.” (Prior Analytics I.2, 24b 18-20.)  
See http://plato.stanford.edu/entries/aristotle-logic/ 

http://plato.stanford.edu/entries/aristotle-logic/


 
Speech consists of sentences, each has the form of a subject and a predicate. We continue 
to this day to discuss grammar in these terms. When we say Socrates is mortal, the 
subject is Socrates and the predicate is is-mortal.  For Aristotle, subjects and predicates 
are terms in his logic, either individual terms like Socrates or universal terms such as is 
mortal. 
 
 
Aristotle’s logic is about deduction from premises to conclusion. The notion that the 
conclusion “follows of necessity” is the modern idea of logical consequence which we 
study in this course. His deductions are presented in a very specific form called a 
syllogism. Here is a famous example. 
 
                            All Men are Mortal        premise one 
                            Socrates is a Man           premise two 
                            _______________ 
                             Socrates is Mortal         conclusion 
 
Aristotle worked out a detailed account of syllogisms including rules for creating an 
argument from a sequence of them. There are good examples in a systematic modern 
notation available on-line, as in  http://plato.stanford.edu/entries/aristotle-logic/  There is 
something very modern in his approach in that he proves properties of his logical system 
using a more informal style. We call such a study of a logical system, metalogic. 
 
Aristotle used his logic for deducing scientific results, and he famously said that 

1. Whatever is scientifically known must be demonstrated. 
2. The premises of a demonstration must be scientifically known. 

 
This account allowed “agnostics” to argue that scientific knowledge is impossible 
because the premises must be demonstrated as well, so there is an infinite regress in 
trying to find even one statement which is scientifically known. Aristotle claimed that the 
demonstration process ends when we reach certain premises which we accept based on a 
state of mind called nous (intuition, insight, intelligence). He claimed that the human 
mind was capable of certain intuitions needed for science. We will see this idea emerge 
with great force in the philosophy of mathematics and to have a significant impact on the 
practice of computer science. 
 
Euclid 
 
Euclid’s Elements (circa 306 BC) are not always considered in the history of logic, but 
they are critical in understanding the use of logic in mathematics and computer science. I 
trust that readers will be familiar with Euclidean geometry as presented in secondary 
school. As with Euclid, school accounts begin with definitions of the objects such as 
points, lines, line segments, straight lines, figures, circles, plane angles, and so forth for 
23 definitions in the Elements. We can think of these definitions as also establishing 
types or classes, e.g. the type of Points, the type of Figures, Circles (a subtype of 
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Figures), and so forth. Programmers use such types or classes when they write geometric 
algorithms. 
 
Euclid stated five basic axioms (postulates) about geometry, but the first three don’t look 
like the subject predicate declarative sentences of Aristotle. Here are simple versions of 
the first four axioms. 
 

1. To draw a straight line from any point to any point. 
2. To extend a line to a straight line. 
3. To draw a circle with given center and radius. 
4. All right angles are equal. 

 
The first three axioms are statements about what can be constructed. Euclid is saying that 
it is possible to perform certain basic constructions, and to understand the axioms is to 
know how to perform the constructions. 
 
Euclid’s famous fifth axiom is paraphrased this way. 
 

5.  If a straight line falling on two straight lines makes interior angles on the same 
side less than two right angles, then the two straight lines meet at a point on the 
side where the angles are less than right angles. 
 

                                               
 
                                          
 
 
                                         

 
 

                             
Ever since Descartes introduced analytic geometry and translated geometric questions 
into analysis, mathematicians have realized that there are other rigorous ways to study 
geometry beyond Euclid's. Nevertheless Euclidean geometry has been the subject of 
sustained axiomatic and logical analysis right up to the present. New proofs 
in the style of Euclid are being published even now such as the Steiner-Lehmus theorem 
that if two angle bisectors of a triangle are equal in length, then the triangles must be 
isosceles see [GM63]. Two of the most cited works are Hilbert's book Foundations of 
Geometry and Tarski's decision procedure for geometry based on the first-order theory of 
real closed fields, see [TG99] and von Plato's axiomatization in type theory [von95]. 
 
                                                                 
                                                             
 
Steiner-Lehmus theorem:                                     If angle bisectors are equal, then 
                                                                              the triangle is isosceles. 



 
Leibniz 
 
The mathematician Leibniz co-invented the calculus with Newton, and he also introduced 
a conceptual advance in our understanding of the scope and potential of logic, a 
conception going beyond that of Aristotle in some important ways. He believed that logic 
was a science that contained concepts essential to all other sciences.  
 
Leibniz also is a major node in the genealogical tree of mathematicians and logicians. 
Many logicians since the 1660’s can trace their academic ancestry back to Leibniz, 
including me. 
 
Here is a quotation by Leibniz from his De Arte Combinatoria, 1666. It is taken from an 
article by J. Bates, T. Knoblock and me entitled Writing Programs that Construct Proofs,  
Journal of Automated Reasoning, vol. 1, no. 3, pp. 285-326, 1984.  
 

 
 

 
Boole 
 
Boole wrote The Laws of Thought in 1854. On page 27 of the Dover 1958 reprinting we 
see the propositional calculus similar to how it is taught today but using the symbols from 
algebra, +, -, x, and =.  The sign + corresponds to what we now call exclusive or. In this 
major advance over Aristotle, Boole studies formulas built out of logical operators whose 
meaning is defined in terms of the truth values, say 0 and 1 for false and true. Boole’s 
presentation is inspired by the laws of algebra, and he hopes to present methods for 
solving logical equations. The propositional calculus is also called Boolean algebra when 
presented in Boole’s original style. The laws of this algebra are especially important in 



analyzing binary computer circuits (with values 0 and 1). In honor of Boole we also call 
the truth values Booleans and denote them by B. 
 
Frege 
 
The most significant achievement in logic after Aristotle is Frege’s publication in 1879 of 
his Begriffsschrift (concept-script, concept-writing, idea-writing, ideography). It is a 
booklet of 88 pages that changed logic forever. http://plato.stanford.edu/entries/frege/ 
 
In this work he invented what we now call first-order logic, a major topic of this course. 
He started by making a case for advancing Leibniz’s conception of logic and arguing that 
the Aristotelian conception was too narrowly tied to natural language. He said: “These 
derivations (in notation) from what is traditional find their justification in the fact that 
logic has hitherto always followed ordinary language and grammar too closely. In 
particular, I believe that the replacement of the concepts subject and predicate by 
argument and function, respectively, will stand the test of time.” 
 
Frege was attempting to understand the notion of a sequence very precisely.  The gradual 
arithmetization of analysis  and the calculus (see below), had reduced the idea of a real 
number to the notion of sequences of rational numbers, and rational numbers could be 
reduced to pairs of integers, and integers could be reduced to natural numbers. This 
reduction focused attention on defining natural numbers and the notion of a sequence. 
There were questions about how to prove properties of sequences. 
 
“The most reliable way of carrying out a proof, obviously, is to follow pure logic, a way 
that, disregarding the particular characteristics of objects, depends solely on those laws 
upon which all knowledge rests.”  He goes on to say how hard it is to do this using 
ordinary language. “To prevent anything intuitive from penetrating here unnoticed, I had 
to bend every effort to keep the chain of inferences free of gaps. In attempting to comply 
with this requirement in the strictest possible way I found the inadequacy of language to 
be an obstacle. … This deficiency led me to the idea of the present ideography.” 
 
Here is how he elaborates on Leibniz: “Leibniz, too, recognized – and perhaps overrated 
– the advantages of an adequate system of notation. His idea of a universal 
characteristic, of a calculus philosophicus or ratiocinator, was go gigantic that the 
attempt to realize it could not go beyond the bare preliminaries.  The enthusiasm that 
seized its originator when he contemplated the immense increase in the intellectual 
power of mankind that a system of notation directly appropriate to objects themselves 
would bring about led him to underestimate the difficulties that stand in the way of such 
an enterprise.  But, even if this worthy goal cannot be reached in one leap, we need not 
despair of a slow, step-by-step approximation.  When a problem appears to be unsolvable 
in its full generality, one should temporarily restrict it; perhaps in can then be conquered 
by a gradual advance.” 
 
Below are two pages showing the unusual notation in Begriffsschrift along with Frege’s 
explanation of the problem he was formalizing. This notation is no longer used, but it has 



distinct advantages in seeing the binding structure of formulas, a topic we will discuss at 
length in this course. 
 

 
 
One of the important innovations in Begriffsschrift is the notion of judgements. Frege 
distinguished between judging that a formula is true and indicating that it has content and 



could be judged. The content indicator is written – A for a purported formula A and the 
truth judgement is written with the turnstile |- to claim that A is true or at least worth 
trying to prove. We see |- A in the above document (we sometimes write ─A and ├A 
respectively for A having propositional content and A being judged for truth, thus 
wanting proof). 

 
 
 
 

 The Nineteenth Century “Crisis” in Analysis       
 
During the 1800’s analysis (“very advanced calculus”) rapidly developed, despite the fact 
that many of the basic concepts such as function, sequence, set, continuity, convergence, 
infinite series, infinitesimal, etc. were not clear.  For example, Cauchy believed that every 
continuous function was differentiable and that the infinite sum of a sequence of 
continuous functions was continuous –both of which are false; and yet he was the person 
who gave a precise definition of continuity and was one of the leading figures in analysis. 
Many mathematicians believed that an infinite series made sense as an object even if it 
did not converge, but they were not sure what they meant. Even Euler believed that every 
infinite series was the result of expanding a unique finite formula. Gradually these 
concepts were clarified by many gifted mathematicians such as Abel, Bolzano, Borel, 
Bernoulli, Dedekind, Dirichlet, Fourier, Heine, Jordan, Lebesgue, Poincare, Riemann, 
Weierstrass, and others for whom many of the theorems of analysis are named. 
 
The Arithmetization of Analysis   
 
During this period there were significant advances in understanding the concept of a real 
number, the very foundation of analysis. One approach to real numbers since Descartes 
was to ground them in geometry and consider real numbers as points on the line. But with 
the discovery of non-Euclidean geometries, people began to think that geometric “truths” 
were not absolute and perhaps not a secure basis for understanding the reals. Gauss 
expressed the opinion that only the natural numbers were a source of absolute 
mathematical truth. 
 
Cauchy was able to reduce the concept of a real number to that of a sequence of rational 
numbers that converged, so called Cauchy sequences.   Thus he reduced the idea of real 
number to the idea of functions and rational numbers. Rational numbers could be 
understood as pairs of integers, and integers could be explained as natural numbers. So 
the ultimate foundation for mathematics depended on understanding functions and 
natural numbers.   
 
 
 
 
    
 



 
 
  
Peano 
 
In 1889 Peano published his small book The Principles of Arithmetic in which he showed 
how to use symbolic logic to axiomatize a theory of natural numbers, now known as 
Peano Arithmetic. He used Boole’s ideas for propositional logic and Schröder’s notation 
for quantifiers such as “for all” and “there exists.” 
 
 
 
 
Cantor 
 
By 1899 Cantor knew there was a paradox in his conception of set theory under the 
assumption that there is a set M of all sets (Menge is the German word for set). Cantor 
had defined the cardinality of any set A, denoted |A|. He proved his famous theorem that 
the cardinality of the set of all subsets of any set A, call it Pow(A), has a larger 
cardinality than A, that is |Pow(A)| > |A|. But if M is the set of all sets, then Pow(M) is a 
subset of M, so |Pow(M)| < |M|, which contradicts his theorem. His conclusion is that 
there can’t be a set M of all sets, such a set is in some ways “too big.” This is Cantor’s 
Paradox. 
 
 
Russell 
 
In 1902, Russell discovered a paradox along similar lines as Cantor’s, but much simpler 
to explain. He considered the set of all sets that do not contain themselves, call it R and 
define it as R = {x | not(x ε x)}. Now Russell asks whether R ε R. We can see 
immediately that if R ε R, then by definition of R, we know not(R ε R). If not(R ε R), 
then by definition of R, R ε R. Since according to classical logic either R belongs to R or 
it does not, and since each possibility leads to a contradiction, we have a contradiction in 
classical mathematics if we assume there is such a set as R. This is known as Russell’s 
Paradox. 
 
In trying to sort out the reasons behind this paradox, Russell was led to formulate his 
famous Theory of Types in the 1908 book Mathematical Logic Based on a Theory of 
Types. Then in the period from 1910 to 1925 Whitehead and Russell wrote and published 
a three volume book based on this type theory and designed to be a secure logical 
foundation for all of mathematics entitled Principia Mathematica (PM). We will 
examine aspects of this type theory during the course, and we will use type theory from 
the beginning in our informal mathematics because the notion of type is now central in 
computer science, owing largely to early research in Britain, France, Sweden and the US 
as well as to the increasing role of type systems in the design of programming languages. 
 



 
 
 
Zermelo 
 
Meanwhile in 1908 the German mathematician Zermelo published an influential paper 
Investigations in the foundations of set theory in which he organized a set theory, now 
called Z, around a collection of methods for forming sets that he thought were safe from 
the paradoxes of Cantor, Russell and others. He did not allow the set of all sets to be a 
set, and he restricted the methods of building sets starting from a single infinite set used 
to build the natural numbers (axiom of infinity). Other sets could be built using the 
separation axiom: if S is a set and P a definite property on sets, then {x:S | P(x)} is a set. 
In 1922 this notion of “definite property” was made more precise by the logicians 
Fraenkel and Skolem, and by Weyl. It is now standard practice to require that P be a 
formula of first- order logic using the primitive concept of set membership normally 
denoted by epsilon, ε.  Fraenkel and Skolem also suggested a powerful new axiom 
deemed by many to be safe, called the axiom of replacement. This set theory is now 
called ZF set theory and is considered by many mathematicians to be the “standard 
foundation” for modern mathematics; however, it is not able to express ideas from 
category theory and type theory without extension. 
 
 
 
Knonecker 
 
Kronecker was a distinguished German mathematician known for his work in algebraic 
and analytic number theory. He is also known for being opposed to using the concept of a 
completed infinite set in mathematical reasoning as Cantor and others were starting to do. 
He agreed with Gauss that the idea of an infinite set was just a manner of speaking about 
collections such as the natural numbers, 0,1,2,3, … which can be continued without end 
because given any number n, we can construct a larger number by adding one to it. He 
was in particular opposed to Cantor’s work on set theory, but he also disagreed with 
methods of proof that did not produce concrete answers. He strongly favored 
computational methods and explicit constructions. 
 
Kronecker is mentioned in Bell’s Men of Mathematics as being “viciously opposed” to 
Cantor and others who proved results about infinite sets as if they were completed 
totalities, but this appears to be a considerable exaggeration. What is true is that in 1886 
he made an after dinner speech in which he said “God made the integers, all else is the 
work of man” as a way of expressing his interest in constructions. Here is the German for 
what he said: 
 
"Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk". 
 
We will look next at a mathematician who did openly attack non-computational methods 
and who was in contention for being the leading mathematician of his day. 



 
 
 
 
Brouwer 
 
In his 1907 doctoral dissertation, On the Foundations of Mathematics, Brouwer provided 
a meaning for mathematical statements based on mental constructions. These 
constructions are intuitively known to be effective for basic mathematical tasks. This 
philosophical stance is known as intuitionism, and Brouwer was interested in building 
mathematics according to this philosophy. Brouwer believed that the crisis in the 
foundations of analysis was due to mathematicians not understanding the full extent of 
constructive methods.  In particular he believed that our mental constructions are the 
proper justification for logic and that they do not justify the full logic of Aristotle which 
is based on affirmation and denial of sentences.  Restating this in terms of propositional 
or Boolean logic, one of the fundamental laws that is not justified according to Brouwer 
is the law of excluded middle, P or not P, for any proposition P. For Brouwer, to assert P 
is to know how to prove it, and he could imagine propositions which we could never 
prove or disprove. 
 
Brouwer believed that logic was the study of a particular subset of abstract constructions 
but that it played no special role in the foundations of mathematics, it was simply a form 
of mathematics. 
 
Brouwer believed that our mathematical intuitions concern two basic aspects of 
mathematics, the discrete and the continuous.  Our intuitions about discreteness and 
counting discrete objects give rise to number theory, and our intuitions about time give 
rise to the notion of continuity and real numbers. He believed that mathematicians had 
not recognized the rich constructions need for understanding real numbers, including for 
computing with real numbers. He was determined to study these constructions and thus 
settle the disputed issues in analysis and the theory or real numbers. But first he decided 
he should establish himself as “the best mathematician in the world.” He proceeded to 
develop point set topology and proved his famous and widely used fixed point theorem. 
He attracted several concerts and fellow travelers, and when one of the most promising 
young mathematicians, Weyl, became a follower of Brouwer, another contender for 
“world’s best mathematician, Hilbert, entered the fray in a “frog and mouse war” with 
Brouwer. He is famous for saying that “we can know and must know” the truth or falsity 
of any mathematical statement. 
 
Heyting 
 
Brouwer was dismissive of formal logic, so he did not write down a logic that could be 
used for intuitionistic reasoning. However in 1930 Heyting wrote The formal rules of 
intuitionistic logic. This was the creation of another branch of logical systems that 
respected intuitionistic principles. Heyting also formalized a theory of arithmetic similar 
to Peano Arithmetic (PA) but using intuitionistic logic; it is called Heyting Arithmetic 



(HA). We will study these logics in this course and relate them. In 1925 Kolmogorov 
wrote a precursor work entitled On the principle of excluded middle, in which he 
axiomatized a fragment of intuitionistic logic. 
 
A key feature of these new accounts of logic is that the notion of truth is replaced by the 
notion of knowledge. The logic is centered on explaining how we can know propositions. 
This semantics is known as BHK semantics and we will study it in depth. It leads to the 
major new principle of logic called the propositions-as-types principle which we will 
also study in depth. 
 
 
 
Hilbert 
 
Hilbert had been thinking about the foundations of mathematics since 1899 when he 
wrote The Foundations of Geometry. In 1904 he began thinking more broadly about the 
foundations of logic and arithmetic, but it was not until 1925 that he began serious work 
on these topics, sketched in his article On the Infinite. He responded to Principia 
Mathematica by showing how to create a completely formal logical theory. Nowadays 
we mean by this a theory that can be implemented in software, but Hilbert captured this 
concept before we knew about computers. He treated a formal theory as the basis for a 
meaningless game played according to strict rules; the goal of the game was to prove 
theorems. The important property of the game was that it was consistent; that is, it would 
not be possible to prove a theorem P and also prove not P. 
 
Hilbert was willing to admit that the idea of actual infinity might be meaningless, merely 
a convenient way of thinking, an idealization. He imagined that by his method of 
formalizing theories and analyzing them in a constructive metatheory, he could justify the 
most free-ranging imagination, the creation of ideal worlds in which there were actual 
infinities. He called such a world a paradise and said that people like Brouwer could not 
“drive us out of this paradise” because we could use strict methods of proof, constructive 
methods, to show that the game of set theory or the game of type theory was consistent. 
He even believed that the game could settle all questions; it could be complete in the 
sense that all true theorems of the theory could be proved. Hilbert’s program for saving 
mathematics was bold and inspiring. His program was also a way to save mathematics as 
it was being practiced. He saw himself as a savior of mathematics from critics like 
Kronecker, Brouwer, and his brilliant former student Weyl. 
 
In the period from 1925 until 1940 mathematics was at a tipping point. It could go with 
Brouwer and his many followers and become constructive mathematics or it could remain 
the classical mathematics that Hilbert treasured and advocated, open to very non-
constructive methods of the kind Hilbert had used in his ascendancy into the group of the 
very best mathematicians of his day, a group that included at least Brouwer and Poincare 
as well. 
 
 



 
 
 
 
 
Gödel 
 
In 1931 Gödel published his article On formally undecidable propositions of Principia 
Mathematica and related systems. He proved that Principia Mathematica (PM) could not 
be complete if it was consistent; that is, unless PM could prove everything, there was a 
true sentence of that theory which was not provable. This surprising discovery seemed to 
put an end to Hilbert’s program for saving mathematics. It was a stunning result. It also 
showed that perhaps Brouwer was right and there would be statements in mathematics 
that we could never prove even though they might be true in some sense, say in the sense 
that we could never disprove them either. 
 
Church 
 
By 1940 Gödel had moved from Austria to the Institute for Advanced Study in Princeton. 
Alonzo Church was a professor of mathematics at Princeton University where for the 
year 1937 Alan Turing had also come to study logic with Church. In 1936 Church 
published An unsolvable problem of elementary number theory and the short note A note 
on the Entscheidungsproblem. The Entscheidungsproblem, or decision problem, was one 
of the famous open problems that Hilbert had posed in 1928. Turing had also solved this 
problem as we will discuss below. http://en.wikipedia.org/wiki/Hilbert%27s_problems 
 
Church’s solution was in terms of his lambda calculus, a formalism later shown to be 
equivalent to Turing machines and all other known formalisms for expressing the 
computable functions.  In a sense the lambda calculus was the first programming 
language, and indeed it led John McCarthy and his students to create the programming 
language Lisp circa 1960. 
 
Church was the doctoral thesis advisor for a very large number of logicians. According to 
the Mathematics Genealogy Project http://genealogy.math.ndsu.nodak.edu/ Church has 
produced 2,697 descendants, a number that keeps growing. Among them are some of the 
most famous logicians in the world such as Alan Turing (1938), Dana Scott (1958), a 
Turing Award winner, Michael Rabin (1957) a Turing Award winner, Simon Kochen 
(1959), Stephen Kleene (1934), J. B. Rosser (1934), Martin Davis (1950), and Raymond 
Smullyan (1959), the author of our textbook. 
 
Church is also known for developing the Simple Theory of Types which is the logical 
system implemented in the HOL theorem prover and widely used in computer science 
applications, starting with hardware verification. 
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Turing 
 
In 1936 Turing published his ground breaking paper On computable numbers with an 
application to the Entscheidungsproblem. He discovered this result before he came to 
Princeton to work with Church. In this paper he defines computable real numbers using 
what has become known as Turing Machines. Turing’s model of computation is still 
widely taught, and his unsolvable problem is taught to computer science freshmen around 
the world, the halting problem. Turing showed that no Turing Machine can solve the 
problem of whether a given such machine will halt on a given input or “on blank tape.” 
This model of computation is very natural and convincing as a general model of how 
people and machines compute in principle. Gödel was extremely impressed by this 
model, even though he imagined a competing idea, the so called Herbrand-Gödel 
equations for general recursive functions. He said that Turing’s model showed that the 
idea of computability was absolute, that is independent of any particular logic. At the 
same time, Gödel did not appreciate Church’s lambda calculus which also defined the 
class of all computable functions. Indeed the famous Church-Turing Thesis is the claim 
that these formalisms define what mathematicians mean by effectively computable 
functions. The difference is that Turing machines are a simple machine model and the 
lambda calculus is a very high-level functional programming language.  Church put to 
Turing the task of proving that the lambda calculus could be translated into Turing 
Machines.  Thus Turing was assigned the task of building the first compiler for a high 
level language. Perhaps from that moment on he became a computer scientist. In any 
case, he went on to contribute broadly to what we now consider to be computer science. 
 
During World War II, Turing worked at Bletchley Park in England as a code breaker. His 
role during the war was secret until the 1970’s. Since then much has been written about 
his heroic role. One of the most accessible books is The Man Who Knew Too Much by 
David Leavitt. 
 
Bishop 
 
In 1967 Bishop published his extremely influential book on constructive mathematics 
called Foundations of Constructive Analysis. In this book he showed that it is possible to 
develop most of modern analysis without adopting ideas from Brouwer’s intuitionism 
that contradict classical mathematics. For example, for in Brouwer’s analysis, all 
functions from the reals to the reals are continuous. Bishop’s analysis is entirely 
consistent with classical analysis, yet all the functions are computable and all the results 
are proved constructively.  This remarkable achievement seems to me a good example of 
American ingenuity. Bishop enjoys all the positive benefits of intuitionism without 
attacking classical mathematics. It is a philosophy of co-existence. 
 



 
 
 
 
 
 
Martin-Löf 
 
We now turn to the work of a living logician, Per Martin-Löf who created Intuitionistic 
Type Theory (ITT) in 1972 and wrote about its connection to computer science in the 
1982 paper Constructive Mathematics and Computer Programming. Per is a colleague 
who has influenced my work, so I might be biased in my assessment. I will talk about his 
theory ITT in this course and its impact on Computational Type Theory (CTT) which was 
developed at Cornell as an extension of ITT more suitable as a foundation for computing. 
The goal of Per’s work was to provide a firm logical foundation to Bishop’s analysis. 
Later as he came to know more computer scientist, he broadened his goals to providing a 
semantics for programming languages and logics.  
Hoare 
 
Another living figure who contributed to the logic of programming was the computer 
scientist Tony Hoare who in 1969 published his paper An Axiomatic Basis for Computer 
Programming. This paper created what is now called Hoare Logic, a logic for reasoning 
about standard programming constructs such as assignment statements, while loops, and 
recursive procedures. He also wrote a seminal paper on data types that could be 
considered the first applied piece of type theory and help promote the idea that types are a 
major organizing concept in programming languages and programming methodology. 
Hoare had to face the fact that types in programming languages do not mean quite the 
same thing as they do in mathematics.  The functions of type nat to nat in a programming 
language are partial functions; they may not terminate.  In mathematics the functions 
from N to N all terminate. 
 
Milner 
 
Last year at this time, September 2009, Robin Milner was also alive and was one of my 
close colleagues. He is the inventor of the ML programming language and its type 
inference algorithm. He published the very influential book Edinburgh LCF: A 
Mechanized Logic of Computation with his colleagues Michael Gordon and Christopher 
Wadsworth. The theory LCF is a formalization of Dana Scott’s logic of partial functions.  
A long lasting contribution of this book is that most of the major interactive theorem 
provers in use today (Coq, HOL, HOL-Light, Isabelle, Nuprl, and MetaPRL) all use the 
LCF architecture and Milner’s idea of tactics. 
 
 
 
 
 



Cornell PRL Group 
 
Since 1984 this Cornell research group has been a leader in the subject of Computational 
Type Theory and its automation. In 1986 we published the book Implementing 
Mathematics with the Nuprl Proof Development System which we will mention in the 
course.  The Nuprl prover described in that book (Nuprl-3) is still actively used in 
program verification and in formal methods research (Nuprl-5), especially software 
security and protocol verification. In its current form it validates Brouwer’s notion 
that the space of constructions (computations) is extraordinarily rich and extends 
beyond the normal computable functions to include concurrent processes and other 
forms of interaction. It even seems likely that we can justify Brouwer’s idea of free 
choice sequences in applications. 
http://www.scholarpedia.org/article/Computational_type_theory 
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