1 NP Problems

Sat is the first of hundreds of combinatorial problems shown to be solvable in
Nondeterministic Polynomial time (NP). Recall that for us Sat is the subset
of Formulas that are satisfiable, symbolically:

Sat = {X : Form|Ja : Var(X) — B.Bval(X,a) =t in B}.

Recall also that Bval is the recursive function we defined in Lecture 7 which
takes X as its first argument. We will use the convention that if we supply X
and write Bval(X), the result is a function from Var(X) — B into B. This
is the Boolean valuation that we use in practice. Our definition in Lecture 7
is:

Bval(X,v) = case X is var(y) — v(y); neg(U) — bnot(Bval(U,v));
op(U,V) — bop(Bval(U,v),Bval(V,v)) end

Consider a problem to be a set S of elements from a discrete type U. S
belongs to the class of NP problems if and only if there is a polynomial time
algorithm R on U and on another discrete set T and a polynomial p such that

xin S iff 3t : T.(|t] < p(Jz|)&R(z, 1))

and the running time of R(x, t) is bounded by ¢ x (|t| + |z|)¢ where |z| and
|t| are the length of x and t (think of x and t as strings of symbols), and ¢
and d are positive integers. We call t a certificate for x.

To see that Sat belongs to NP, let U be the set of propositional formulas,
Form.

Xin Sat iff Ja : Var(X) — B.Bval(X,a) =t in B.

So the certificate is the assignment a. We have analyzed the recursive
computation of Bval(X,a) in class and observed that the number of steps
taken is a constant times the length of the formula X, so |X] is len(X). The
assignment (or interpretation) a is bounded by twice the number of variables
in X.

The problem often referenced in the literature as SAT is the Sat problem



for formulas in Conjunctive Normal Form, CNF. Sometimes this is called

CNF-Sat.

2 NP Complete Problems

Some problems in NP are special because they are the hardest problems
in the class in the sense that if they can be solved by a polynomial time
algorithm, then so can any other NP problem. To make this idea precise, we
say that a problem S is reducible in P-time to a problem Sj, symbolically
S1 <p Sp, iff there is an algorithm fs, solving membership in S; which runs
in P-time using a membership algorithm for Sy, call it fg, at essentially “no
cost”, that is when we count the number of steps used in the computation,
we count the cost of any application of fg, as one step. The cost of producing
the input to this function is part of the cost of the computation, but the cost
of producing the Boolean output is one step. So we think of fg, as an oracle
for Sy or a “black box” that produces the answer about whether a value Z
belongs to Sy in one step, and we don’t necessarily see the computation of
fs,(z) for any z. Here are some basic facts we proved in the lecture and
visited again in Lecture 10.

1. Sat <p SAT, that is, the general satisfiability problem is reducible to
CNF-Sat. In the lecture notes from 2009, we explained this reduction in

terms of non-deterministic Turing machines. You can read our account
in CS4860 Spring 2009, Efficient SAT Solving, Lecture 4.

2. SAT <p 3SAT where 3SAT are the CNF formulas with exactly three
literals per clause. Recall that a literal is a variable or its negation, say
p; or p;; we also write p; as p;.

3. SAT <p Clique where clique is the question of whether a graph G has
a clique of size k, which is a set of k vertices that are all connected by
edges. We sketched this reduction in lecture, and it is found in most
textbooks that treat the topic of NP completeness.

4. SAT <p k — colorablegraph where k-colorable means that the vertices
can be assigned k colors such that no two adjacent vertices have the
same color. We looked at this problem in studying compactness and
discussed the 3-coloring of planar graphs.



3 Exercise

Translate the following expressions into English.

Let P equal Prop, the type of propositions. Let P : Form — P be the
propositional functions on Formulas. Recall that SAT(S) for an infinite set
of formulas S means that they are all simultaneously satisfiable using an as-
signment (valuation) of Var.

1. VX : Form. Yv : Var(X) — B. Boolean(Bval(X), SubForm(X)).

2. VX : Form. (TAUT(X) = 3T : Tableau(FX).
(Completed(T') & Closed(T)) ).

3. Ve:N — Form. Vn :N. SAT({e(1),...,e(n)}) = Fv:Var — B.
Vi : N. bval(e(i),v) =t in B.

4. VP : Form — P. (VX : Form.
( (VY : SubForm(X). P(Y)) ) = P(X)) = VX : Form. P(X).

5. VX : Form. PROV(X) < ( 3T : Tableau(FX).Closed(T)).

6. 3Decide : Form — B.VX : Form.(Decide(X) =tinB) < PROV(X).



