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In Lecture 3 we translated Smullyan’s Chapter I section on trees into a more symbolic language 

and made the definitions and theorems explicit as well as more precise.  These notes will carry 

out this process for his section on Formulas and Boolean Valuations.  

Translating Mathematical Text in Symbolic Logic 

Learning to translate natural language into symbolic logic is an interesting skill taught in many 

logic courses. (Translating back into natural language is a research topic in natural language 

processing.)  We are learning that skill in a very realistic setting by showing how to translate 

informal mathematics into symbolic logic.  We are also showing how to expose implicit 

knowledge and make it explicit.  Rather than showing how to translate into symbolic logic 

statements made in the newspapers, which many textbooks demonstrate and which might be 

fun, is not as realistic as what we are doing because most newspaper discourse is not intended 

to be precise or intricate  -- nor to convey mathematical arguments!  On the other hand, in the 

“real world,” a trained logician is often needed to make precise what a system designer is 

writing about his or her design or to make precise the comments in a critical piece of software 

so that formal methods tools such as model checkers and theorem provers could be brought to 

bear on checking the validity of the design against specifications or verifying that assertions 

about code are true, perhaps exposing the programmers reasoning. 

Moreover, this translation and explication exercise serves a dual purpose for us because in the 

process we come to understand the informal concepts much better and to uncover implicit 

assumptions or discover other options in stating the definitions and theorems, options which 

might be more accessible to some readers than what Smullyan wrote – even though his 

explanations are exemplary in many cases. 

Let us start with Smullyan’s definition of a formula on page 7, the one he and I both strongly 

prefer over the syntactic approach that he outlines on pages 5 and 6. The definition below is 

almost word for word a translation of the sentence “Under this plan, a formula is either a 

(propositional) variable, and ordered pair (if it is a negation) or an ordered triple.” 

Definition 1  A  formula is either a (propositional) variable, or an ordered pair <~,X>  (if it is a 

negation of formula X), or an ordered triple <X,op,Y> where X and Y are formulas and op is one 

of the three binary operators, and, or, implies. 



Let Form be the type of all formulas over the type Var of propositional variables. We could 

show the dependence on Var by writing Form(Var) which would allow us to change the 

definition of the propositional variables. 

The above definition of Form is recursive because we need to say that X and Y are formulas, the 

very concept we are defining. Why does this make sense?  Why is this not a circular definition of 

the kind that worried Russell so much?  It is not circular because we have in mind a finite 

process of “unfolding” the definition until we come only to the case of variables.  But this is not 

so explicit in this definition. We can imagine carrying out the unfolding process “forever” in the 

sense that we just keep replacing the variable X and Y with other terms involving X and Y. 

The way we say that we intend the finite unrolling is to mark the definition as recursive! 

Smullyan says this on page 5: “The notion of formula is given by the following recursive rules, 

which enable us to obtain new formulas from those already constructed.” He then states his 

conditions F0 to F4, where the parentheses are part of the language. 

We can give a definition that makes the unrolling process more explicit. This is sometimes 

called an inductive definition. Let S be a collection of objects and define the operation F which 

extends it by forming the following ordered pairs and triples {<~,X>, <X,op,Y> | X, Y in S}, that is 

                                    F(S) = {<~,X>, <X,op,Y> | X, Y in S} 

 

Definition 2:  Let F(0) = Var and F(n+1) = F(F(n)), and let Form be Union F(i) for all natural 

numbers i. 

With this definition it is clear that we are building only finite formulas, and we can locate 

exactly the level of n at which one of the formulas given by Def 1 is constructed in the type 

Form. However, there is a subtle point about this definition too. Normally when we define a 

function, we know in advance the type of its domain and range, so we declare F:A → B. In this 

case, the simplest type for F is Set → Set, and we know that there are issues with taking the set 

of all sets to be a set or a type.  Later in the course I will show how this problem can be 

overcome in the case of types, and we can view F as a function on types. The key property that 

makes this definition work is that F is monotone, that is if S is a subset of S’, then F(S) is a subset 

of F(S’). 

 

We can write another version of this type if we use the labeled disjoint union of two types. Let  

l:A + r:B be the type whose elements are all pairs <l,a> for a in A and <r,b> for b in B. The labels 

are l and r for “left” and “right” members of the pair. 



Definition  Form = var:Var + neg:Form + and:Form × Form + or:Form × Form + imp:Form × Form 

We can build a case discriminator for elements of this type that assigns a value to an element 

depending on its structure. We write for X in Form 

                case X is 

                              if  var(v)      then exp1(v) 

                              if neg(U)      then  exp2(U) 

                              if and(U,V)   then exp3(U,V) 

                              if or(U,V)      then  exp4(U,V) 

                              if imp(U,V)   then  exp5(U,V) 

               end 

To save space we sometimes write 

case X  var(v) → exp(v); neg(U) → exp2(U); and(U,V) → exp3(U,V);                   

or(U,V) →exp4(U,V); imp(U,V); imp(U,V) → exp5(U,V) end 

We can simplify the case analysis further by grouping together all of the binary operators when 

we perform the same operation in each case. For example, here is how we can define the 

degree of a formula. 

        degree(X) = case X var(v) → 0; neg(U) → deg(U)+1; op(U,V) → deg(U) + deg(V) +1 end 

 

                              

 

Relationship to Trees 

Each of these variants of Smullyan’s definition of formulas has the property that the individual 

formulas have the structure of a tree. So why does he not define them as trees? 

Exercise: Find the small discrepancy in treating formulas as trees in the way Smullyan defines 

them. (Hint, when he wants to refer to them as trees, as in formation trees on page 9, he uses 

the phrase “occurrence of” as in clause (i) Each end point is (an occurrence of) a propositional 

variable. 



Induction Principles for Formulas 

Smullyan provides an induction principle on page 8 based on the degree of a formula where  

                               deg(pi) = 0, deg(<~,X>) = deg(X)+1, deg(<X,op,Y>) = deg(X)+deg(Y)+1. 

Another simple induction principle is simply on structure. Here is the form of that principle. 

To prove  All X:Form.P(X), prove the base case where X is a variable, and the induction case. In 

the induction case, assume that P(Y) hold immediate subformulas of X and prove P(X). 

Another more elegant induction principle is  

Complete Structural Induction 

To prove All X: Form. P(X), assume P(Y) holds for all subformulas of X and show that P(X) follows 

from this assumption. We can state the whole principle symbolically as follows. 

                      All X:Form.( All Y:SubForm(X).P(Y) implies P(X)) implies All X:Fom.P(X) 

 

Exercises: Prove using each of the tree induction principles the following facts about formulas. 

1. For every formula X, the type of all subformulas of X, SubForm(X), is finite. 

2. Given any formula X, if we replace every occurrence of and by or, the result remains a 

formula. 

3. Given any formulas X and Y, if we replace every variable v in X by the formula Y, the 

result is a formula. 

4. Given any formula X, if we replace every and by an or, the result is a formula. 

 

Valuations and Boolean Valuations 

We write some of Smullyan’s definitions symbolically. He says that if S is any set of formulas, 

then a valuation v is a mapping of S onto the Booleans. We can say this symbolically by 

declaring that v has the type S → B. 

He then defines the key concept of a Boolean valuation on page 10 using four conditions, B1 to 

B4.  For example, in B1 he says that not X receives the value t if X receives the value f and it 

receives the value f if X receives the value t. We can present this symbolically. First we note that 

for each of the Boolean connectives, not, and, or, imp, there is a corresponding operation on 

the Booleans which we denote by bnot, band, bor, bimp.  These are functions on Booleans, e.g. 



bnot: B → B where bnot(t) = f and bnot(f) = t. Note bimp: B × B → B has the value f exactly on 

bimp(t,f).  In general, if op is a Boolean operator, then let bop be the corresponding definition 

of the operator as given by the truth table for the Boolean operators. 

Definition  f: S → B is a Boolean evaluation, Boolean(f,S), on a set S of formulas iff for each X in 

S, f(X) = case X is var(v) → f(v); neg(U) → bnot(f(U)); and(U,V) → band(f(U),f(V));                  

or(U,V) →  bor(f(U,V)); imp(U,V) → bimp(f(U),f(V)) end 

We can simplify this using our convention on bop to get 

               case X is var(v) → f(v); neg(U) → bnot(f(U)); op(U,V) → bop(f(U) end 

We can also use the case operator to define a function on Form that tells what case a formula 

satisfies.  So for any X in Form, there are functions such as isneg(X) that has value t iff X is a 

negation. Here is the isneg function of type Form → B 

                   isneg(X) = case X is var(v) → f; neg(U) → t; bop(U,V) →f end 

In the same way we can define isvar, isand, isor, isimp from Form to B. 

 

We also define functions that decompose a compound formula. Let 

      neg:{X:Form | isneg(X)} → Form  &                                                                                

All X:Form.  isneg(X)  implies X = <~,neg(X)> 

    andl, andr: {X:Form| isand(X) → Form &                                                                       

All X. Form. isand(X) implies X = <andl(X), and, andr(X)> 

    orl,orr:{X:Form | isor(X) } → Form  &                                                                             

All X:Form. isor(X) implies X = <orl(X), or, orr(X)> 

    impl, impr:{X:Form | isimp(X)} → Form  &                                                                    

All X:Form. isimp(X) implies X = <impl(X), imp, impr(X)> 

 

 

 

At the bottom of page 10 Smullyan states the following theorem and says it is “easily verified by 

induction on the degree of X.” 



Theorem (p.10 Unique Boolean Evaluation):  A Boolean valuation of the variables of any 

formula X can be extended to at most one Boolean valuation of the subformulas of X. 

Proof: Suppose there are two Boolean valuations, v and w of the subformulas of X, and they 

agree on the variables of X, say that w extends v. For a proof by induction that                             

All X:SubForm(X). v(X) = w(X) in B, assume that v and w agree on all immediate subformulas of 

X. Now it will be clear by cases on the structure of X that they must agree on X as well. For 

example, if isneg(X), then since v(Y) = w(Y), it is clear from condition B1 (the case of neg in the 

case operator) that v(X) = w(X).  The same idea works for all cases. Qed 

 

The more interesting question is whether there is even one Boolean valuation of Form. 

Smullyan proves this next, but his proof does not lead us to the standard way of building the 

valuation which I will provide after the proof. The informal statement is simply “Every 

interpretation v of the variables Var can be extended to a Boolean valuation of Form.” 

Theorem (p. 11 existence of a Boolean Valuation) For all v:Var → B. Exists f: Form → B. 

Boolean(f,Form) & For all x:Var. f(x) = v(x) in B. 

Smullyan proves this using the following key lemma. 

Lemma: For all v:Var → B. For all X:Form. Exists f: SubForm(X) → B. Boolean(f,SubForm(X)). 

Proof:  By induction on the structure of X:  If isvar(X) then define f(X) = v(X). Otherwise, assume 

for induction that we have Boolean valuation functions f_Y defined for all Y in SubForm(X) and 

consider the structure of X.  

1. If isneg(X) then define f(X) = bnot(f_Y(Y)). 

2. If isbop(X), then let X = <Y1,op,Y2> and define f(X) = bop(f_Y1(Y1),f_Y2(Y2))) 

Since Boolean(f_Y1,SubForm(X)) and Boolean(f_Y2,SubForm(X)), and those functions f_Y1, f_Y2 

are unique, it is clear that the definition of f determines a specific function (that is f is “well 

defined”) and that Boolean(f,SubForm(X)). 

Qed 

Since we proved the lemma for all X in Form,  it is clear that the existence theorem follows 

immediately from the lemma by noting that X is a subformula of itself, that is, X belongs to 

SubForm(X). 

For any formula X, and interpretation of the variables of X can be extended to at most one 

Boolean Valuation of the subformulas of X. 



Smullyan must be pleased with his treatment of Boolean Valuations because he mentions it in 

the Preface to the book, page VII, saying “We use the term “Boolean valuation” to mean any 

assignment of truth values to all formulas which satisfies the usual truth-table conditions for 

the logical connectives. Given an assignment of truth –values to all propositional variables, the 

truth-values of all other formulas under this assignment are usually defined by an inductive 

procedure. We indicate in Chapter I how this inductive definition can be made explicit – to this 

end we find useful the notion of a formation tree (which we discuss earlier).” 

The explicit method he has in mind is the remark in square brackets on page 11: [We might 

think of the situation as first constructing a formation tree for X, then assigning truth values to 

the end points in accord with the interpretation v_0, and then working our way up the tree, 

successively assigning truth values to the junction and simple points in terms of the truth values 

already assigned to their successors, in accordance with the truth table rules.] 

Oddly enough, the standard recursive procedure can be thought of in this way. Let’s write down 

that recursive procedure. Indeed it is the recursive process we see in the Lemma. The function f 

“calls” the functions f_Y1, and f_Y2 which become part of f by its definition. So f as defined 

actually calls itself recursively.  We make this recursion explicit in the following definition. 

Definition: Recursive Boolean valuation given interpretation v of Var 

bval(v,X) = case X is var(x) → v(x); neg(U) → bnot(bval(U));                                                                   

op(U,V) →bop(bval(U),bval(V)) end 

Once we have this function in mind, we can state a stronger theorem about Boolean valuations. 

Theorem (Strong Boolean Valuation): There is a unique function f whose (two) inputs are v, an 

assignment of truth values to Var, and a formula X such that f on its first input produces a 

Boolean Valuation of Form, i.e. Boolean( f(v), Form). 

Symbolically this theorem is: 

Exists! f: (Var → B) → ((Form → B) → B).                                                                       

All v:Var → B. Boolean(f(v),Form) 

 

 

 


