LecYoce 22 Nev (I, Qolo

ol lackoce M“«'@-“-"-(>

QYorg o™ L(\c\uc.lrtoa — see =eod

Coockion aokatbeea.

M-H\atm-{'tc-s does CL-:{‘ c:hs"-l-wsuts(x Bzi—w-eecx

Tafocomal
apoessieas (ke e and e Coacken Ly = A& T (og

$o Loweag <ho c-cf.\Jr e 2
s

c< Qu() SO
:-uc\c(-ioc\é b= - |
‘a Ma.-{-(uacu-a-(-(cq__

spasastel by Brostea b

aead % be wote S

ra&uc.e a c\.o"rd.Jﬂ.of-\ ‘Qot -‘:L-‘?—

\W. -4
(ot

,)\ - M%Q‘%LGC\. —

Goockewas

orppress e s
At N(pe- %)
add Ga'gd W4 add o) 0% add
4% Nwe.sy A= A ankily Looeton

\We ke oddec J_P(”)\(f%- S O 2y oC Aae. &%) 3
coQL C'-"Q

’}('\‘. (3D Lo ck.:zc\,o-"re e d_EBLLCa.J\'

oC eNnet
4+ s \de e ekeas

“*s acgo weat.

—Hse_ S(-U c\clcwc\. Jco

S;-qc oC g"('\ﬁ).

t’ec&uc“(’tcc\ coles Yoc Liese :z,(:(;hca-(-t.oc\.sj BE

Tl\er:e ace
cedoces to (3]1 wheh 8 .

PYCA S

L at Ltz-d-s{‘ -k--sMo e YS

\fle Lot le cwedo ke

w3 4 s xA) 33—
My e

ek g_’{ r-e.c.l.u c,-Lcc(\.

-TL\LS (s d..\Sc (o=

11/15/2010

Computability

Here is a clean way to define general recursive
functions. Consider the 3x+1 function with
natural number inputs.

f(x) = if x=0 then 1
else if even(x) then f(x/2)
else f(3x+1)
fi
fi

Using Lambda Notation
f = Mx. if x=0 then 1
else if even(x) then f(x/2)
else f{3x+1))

Here is a related term with function input f
ME Alx. if x=0then 1
else if even{x} then f{x/2)
else f{3x+1)))

The recursive function is computed using this term.

Defining Recursive Functions in CTT

fix(A{f. A{x. if x=0then 1
else if even(x) then f(x/2)
else f(3x+1)
fi
fil))

Recursion in General
f(x) = F(f,x) is a recursive definition, also
f = A(x.F(f,x})) is another expression of it, and the
CTT definition is:
fix{M{f. A{x. F{f,x)))
which reduces in one step to:

Alx. F{fix(A(F. A{x. F(f,x)}}),x}}

by substituting the fix term for f in A(x.F(f,x}) .

Recursion in General

f(x) = F(f,x} is a recursive definition, also
f = Mx.F(f.x)) is another expression of it, and a
simple definition is:

fix(Alf. A{x. F(f,x)))
which reduces in one step to:
Alx F(fix(A(f. Alx. F{f,x)})),x})

by substituting the fix term for f in A{x.F{f,x)) .

Non-terminating Computations

CTT defines all general recursive functions,
hence non-terminating ones such as this

fix(A(x.x))

which in one reduction step reduces to itself!

This system of computation in the object
language is a simple functional programming
language.

11/15/2010

Partial Functions

The concept of a partial function is an
example of how challenging it is to include all
computation in the object theory. It is also
key to including unsolvability results with a
minimum effort; the halting problem and
related concepts are fundamentally about
whether computations converge, and in type
theory this is the essence of partiality. For
example, we do not know that the 3x+1
function belongs to the type N -> N.

Partial Functions

We do however know that the 3x+1 function,
call it f in this slide, is a partial function from
numbers to numbers, thus for any n, f(n)is a
number if it converges (halts).

In CTT we say that a value a belongs to the bar
type A provided that it belongs to A if it
converges. Sof belongsto A-> AforA=N.

Unsolvable Problems

It is remarkable that we can prove that there is no
function in CTT that can solve the convergence
problem for elements of basic bar types.

We will show this for non empty type A with
element 3 that converges in A for basic types such
as Z, N, list{A), etc. We rely on the typing thatif F
maps A to A, then fix(F) is in A.

Unsolvable Problems

Suppose there is a function h that decides
halting. Define the following element of A:

d = fix{(Ax. if h{x) then 1 else 3 fi)
where 1 is a diverging element, say fix(A(x.x)).

Now we ask for the value of h{d) and find a
contradiction as follows:

Generalized Halting Problem

Suppose that h(d) = t, then d converges, but
according to its definition, the result is the
diverging computation I because by
computing the fix term for one step, we
reduce

d = fix(A(x. if h{x) then 1 else i fi))
to d=if h(d) then 4 else afi.

If hd(d) = f then we see that d converges to a.

