
Applied Logic Lecture 17: Correctness and Completeness
CS 486 Spring 2005 Tuesday, April 5, 2005

Now that we have introduced a proof calculus for first-order logic we have to address the usual
questions again, that always come up when dealing with formal proof systems.

(1) Is the tableau method correct? Can we be sure that a proven formula is in fact valid.

(2) Is it complete? Can we prove every valid formula with the tableau method?

(3) Is it decidable? Does it always tell us whether a formula is valid or not?

(4) What about compactness? What does the satisfiability of finite sets of formulas tell us?

(5) Are there proof strategies for building first-order tableaux that are more successful or more
efficient than others?

17.1 Correctness of First-Order Tableaux

To prove the correctness of the tableau method, one has to show that the origin of a closed tableau
is unsatisfiable or, equivalently, that a tableau is satisfiable and cannot be closed whenever the
formula at its origin is satisfiable. The basic structure of the proof is the same as the one for
propositional logic, so we just formulate the key insights here.

Let U be an arbitrary universe and v be a first-order valuation of EU (ϕ is the identity mapping).

F1: α is true under v, if and only if α
1
and α

2
are true under v

F2: β is true under v, if and only if at least one of β
1
and β

2
is true under v

F3: γ is true under v, if and only if γ(k) is true under v for every k ∈U

F4: δ is true under v, if and only if δ(k) is true under v for at least one k ∈U

These facts follow immediately from the definition of first-order valuations on EU . As a conse-
quence of these facts we can show the following laws about the satisfiability of sets of formulas
(with parameters).

Let S be any set of formulas

G1: If S is satisfiable and α ∈S, then S∪{α
1
,α

2
} is satisfiable

G2: If S is satisfiable and β ∈S, then at least one of S∪{β
1
} and S∪{β

2
} is satisfiable

G3: If S is satisfiable and γ ∈S, then S∪{γ(a)} is satisfiable for every parameter a

G4: If S is satisfiable and δ ∈S, then S∪{δ(a)} is satisfiable for every parameter a that does not
occur in S

The first three laws are obvious but the last one is not, as it shows how to represent the semantical
“for at least one k ∈U” by a syntactical requirement “for every new parameter a”.
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Proof. Let I = (U , ϕ, ι) be an interpretation such that all A ∈S are true under I . Since δ ∈S, there
must be at least one parameter a such that δ(a) is true under I .

Let k = ϕ(a) ∈U and define I ′ = (U , ϕ′, ι) with ϕ′(b) =

{

ϕ(b) if b occurs in S

u otherwise
.

Then I ′(A) = I(A) = t for all A ∈S and I ′(δ(a′)) = I(δ(a)) = t for every parameter a′ that does not
occur in S. Hence S∪{δ(a′)} is satisfiable. ut

The remainder of the correctness proof is almost identical to the propositional case. We have to
prove that every tableau with a satisfiable origin contains at least one satisfiable path.

Theorem 1 Let T be an arbitrary tableaux whose root is satisfiable. Then there is a path θ in T
that is uniformly satisfiable.

Proof. We use structural induction on tableau trees.

base case: If T has just a single point, then let θ be the path consisting of the root of T .

step case: Assume the statement holds for some T and let T
1
be a direct extension of T and I be

a model for the root of T
1
.

Since T and T
1
have the same root there is a satisfiable path θ in T .

We consider 5 cases (the first 3 are identical to what we had before)

(1) If T
1
does not extend T at θ, then θ is a satisfiable path θ in T

1
.

(2) If T
1

extends T at θ by some α
i
, then we know that α is on θ. Thus θ

1
=θ◦α

i
is a

satisfiable path in T
1
by G1.

(3) If T
1
extends T at θ by β

1
and β

2
then β is on θ and θ

1
=θ◦β

1
or θ

1
=θ◦β

2
is a satisfiable

path in T
1
by G2.

(4) If T
1
extends T at θ by some γ(a), then γ is on θ and θ

1
=θ◦γ(a) is a satisfiable path in

T
1
by G3.

(5) If T
1

extends T at θ by some δ(a) then δ is on θ and a does not occur in any of the
formulas of θ. Thus θ

1
=θ◦δ(a) is a satisfiable path in T

1
by G4.

ut

17.2 Completeness

Proving the completeness of a first-order calculus gives us Gödel’s famous completeness result.
Gödel proved it for a slightly different proof calculus, and the proof that we will show here goes
back to Beth and Hintikka. Let us briefly resume the propositional case.

The key to the completeness proof was the use of Hintikka’s lemma, which states that every down-
ward saturated set, finite or not, is satisfiable. We then showed that every open and complete path
is in fact a Hintikka sequence. Putting these two things together we reasoned that the root of an
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open and complete tableau must be satisfiable. Thus a complete tableau for a valid formula cannot
be open which means that every tableau for a valid formula will eventually close.

We will prove the first order case along these lines, but have to keep in mind that several things
have changed.

• The definition of a valuation now includes quantifiers.

• The definition of Hintikka sets must take γ and δ formulas into account.

• The notion of a complete tableau needs to be adjusted, because there is now the possibility
of non-terminating proof attempts.

Fortunately, we can easily make the necessary adjustments and then proceed as before. First, let
us define first-order Hintikka sets. A Hintikka Set for a universe U is a set S of U -formulas such
that for all closed U-formulas A, α, β, γ, and δ the following conditions hold.

H0 : A atomic and A ∈ S 7→ Ā 6∈ S

H1 : α ∈ S 7→ α
1
∈ S ∧ α

2
∈ S

H2 : β ∈ S 7→ β
1
∈ S ∨ β

2
∈ S

H3 : γ ∈ S 7→ ∀k ∈U . γ(k) ∈ S

H4 : δ ∈ S 7→ ∃k ∈U . δ(k) ∈ S

The first axiom expresses the openness of S while the other four state that it is downward saturated.
Note that because of axiom H

3
, Hintikka sets are usually infinite, unless the universe is finite. But

the proof of Hintikka’s lemma that we discussed a few weeks ago, did not depend on the fact that
the set is finite, so it can easily be adapted to the first-order case.

Theorem 2 (Hintikka Lemma) Every Hintikka set is uniformly satisfiable

Proof. Because of axiom H
0
we can define a valuation that satisfies all the atomic formulas in S.

Define v(P (k1, ..., kn
)) =

{

f if F (P (k1, ..., kn
)) ∈ S

t otherwise

To show that v satisfies every formula Y ∈S we proceed by structural induction on formulas, keep-
ing in mind that the cases for γ and δ are straightforward generalizations of those for α and β.

base case: If Y ∈S is an atomic formula then v[Y ] = t by definition.

step case: Assume the the claim holds for all subformulas of Y .

– If Y is of type α then α
1
,α

2
∈S, hence v[α

1
] = v[α

2
] = t. By definition of first-order

valuations v[Y ] = t.

– If Y is of type β then β
1
∈S or β

2
∈S, hence v[β

1
] = t or v[β

2
] = t and thus v[Y ] = t.

– If Y is of type γ then γ(k) ∈S for all k ∈U , hence v[γ(k)] = t for all k and thus v[Y ] = t.
– If Y is of type δ then δ(k) ∈S for some k ∈U , hence v[δ(k)] = t for some k and thus

v[Y ] = t.
ut
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Now what about the completeness of a tableau? In the propositional case, this meant that the
tableau cannot be extended any further, because all formulas have been decomposed. Since the
propositional tableau method terminates after finitely many steps, this was an easy thing to define.
In the first-order case, however, we have to be a bit more careful.

We know that because of γ-formulas, proofs may have infinite branches. But that is not the main
problem, since Hintikka’s lemma also works for infinite sets. However, not every infinite branch
in a tableau is automatically a Hintikka set.

Consider for example, the formula ∃x,y.P(x,y), which is certainly not valid. Thus F(∃x,y.P(x,y))
is satisfiable and because of the correctness of the tableau method we know that every proof at-
tempt will fail. But does every failing proof attempt actually give us the Hintikka set that we need
to reason that F(∃x,y.P(x,y)) must be satisfiable?

Certainy not. Just imagine we start decomposing the main formula, which is a γ formula, over and
over again. Then we can go on and on forever without ever touching the inner γ formula and we
get an infinite branch that does not satisfy the third Hintikka axiom for this inner γ formula.

So our completeness proof cannot rely on an arbitrary attempt to find a tableau proof. After all,
completeness only says that it must be possible to prove every valid formula correct with the
tableau method but it doesn’t require that any attempt will succeed. And the fact that we weren’t
able to find a proof with a not so bright approach doesn’t mean that there is none at all.

However, we can design a more systematic approach that is guaranteed to find a tableau proof if
there is one. And then we will show that this systematic method will always find a proof if the
formula is valid.

For the systematic method we only have to worry about a treatment of γ formulas that guarantees
axiom H

3
, since the α, β, and δ rules make sure that the other Hintikka axioms satisfied.

Q: How can we make sure that all γ formulas are eventually covered completely?

Well, we have to proceed similarly to an enumeration of lists of integers. We modify the extension
procedure for tableaux in a way that each γ formula, and thus every other formula as well, will be
revisited on a regular basis.

A systematic procedure for proving a first-order formula X

Start with the signed formula F (X) and recursively extend the tableau as follows:

• If the tableau is already closed then stop. The formula is valid.

• Otherwise select a node Y in the tableau that is of minimal level wrt. the still unused nodes
and extend every open branch θ through Y as follows:

– If Y is α extend θ to θ∪{α
1
,α

2
}.

– If Y is β, extend θ to two branches θ∪{β
1
} and θ∪{β

2
}.

– If Y is γ, extend θ to θ∪{γ(a),γ}, where a is the first parameter that is not on θ.

– If Y is δ, extend θ to θ∪{δ(a)}, where a is the first parameter that does not occur in the
tableau tree.
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Thus the procedure always copies a γ formula to the end of a branch when it is being considered.
This way we make sure that it is considered over and over again, but that all the other formulas on
the branch are decomposed before that. Thus in the end all the formulas are being used, because
we have only denumerably many parameters. This method is certainly not the most efficient one,
but it works.

Using the systematic procedure we can give a new definition of complete tableau. A systematic
tableau is called finished, if it is either infinite or finite and cannot be extended any further. With
this definition we immediately get the following result.

Lemma 3 In every finished systematic tableau, every open branch is a Hintikka sequence.

A detailed proof for this lemma would have to show by structural induction that the systematic
method does in fact cover all formulas as required in the Hintikka axioms. Together with Hintikka’s
lemma we get.

Corollary 4 In every finished systematic tableau, every open branch is uniformly satisfiable.

The completeness theorem is now an immediate consequence as before.

Theorem 5 (Completeness theorem for first-order logic)

If a first-order formula X is valid, then X is provable. Furthermore the systematic tableau method
will construct a closed tableau for F (X) after finitely many steps.

The first statement follows from the above corollary by contraposition and the fact that the system-
atic tableau method always “constructs” a finished tableau. As for the second, a closed tableau can
only have finite branches, which – according to König’s lemma – means that it must be finite.

Note that correctness and completeness is preserved again if we require an atomically closed
tableau, i.e. a tableau where branches only close if there is an atomc formula and its conjugate. Cor-
rectness follows from the fact that an atomically closed tableau is certainly a closed tableau, while
the systematic tableau method makes sure that we construct a Hintikka sequence if the tableau
does not close (which is the case if it does not close atomically). Hintikka’s lemma thus implies

Corollary 6

If a first-order formula X is valid, then X the there is an atomically closed tableau for F (X).

The corollary also has a second important consequence that will be relevant for the compactness
of first-order logic.

Theorem 7 (Löwenheim theorem for first-order logic)

If a first-order formula X is satisfiable, then it is satisfiable in a denumerable domain.

The proof for this theorem is based on the observation that the systematic tableau method uses only
denumerably many parameters to build a Hintikka sequence if the tableau doesn’t close. Since a
tableau with a satisfiable formula at its root cannot close, it must contain an open branch θ with
at most denumerably many parameters. As this branch is uniformly satisfiable it satisfies X in a
denumerable domain (the subset of the domain U that represents the set of parameters on θ).
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