4/28/2011

Computability in CSA

Here is how to define general recursive
functions. Consider the 3x+1 function with
natural number inputs.

f(x) = if x=0 then 1
else if even(x) then f(x/2)
else f(3x+1)
fi
fi

Using Lambda Notation
f=A(x. if x=0then 1
else if even(x) then f(x/2)
else f(3x+1))
Here is a related term with function input f
A(f. A(x. if x=0 then 1
else if even(x) then f(x/2)

else f(3x+1)))

The recursive function is computed using this term.

Defining General Recursive Functions

fix(A(f. A(x. if x=0 then 1
else if even(x) then f(x/2)
else f(3x+1)
fi
fi)))

Recursion in General
f(x) = F(f,x) is a recursive definition, also
f = A(x.F(fx)) is another expression of it, and the
CTT definition is:
fix(A(f. A(x. F(fx)))
which reduces in one step to:

A F(fix(A(f. A(x. F(f,x)))),x))

by substituting the fix term for f in A(x.F(f,x)) .

Non-terminating Computations

CTT defines all general recursive functions,
hence non-terminating ones such as this

fix(A(x.x))
which in one reduction step reduces to itself!

This system of computation is a simple
functional programming language.

Unsolvable Problems

Suppose there is a function h that decides
halting. Define the following element of N:

d = fix(A(x. if h(x) then 1 else O fi))
where 1 is a diverging term, say fix(A(x.x)).

Now we ask for the value of h(d) and find a
contradiction as follows:




Generalized Halting Problem

Suppose that h(d) = true, then according to h,
d converges, but according to its definition,
the result is the diverging term 1 because by
computing the fix term for one step, we
reduce

d = fix(A(x. if h(x) then 1 else 0 fi))
to d=ifh(d)then I else Ofi.

If h(d) = false, then d converges to 0.

4/28/2011

Incompleteness

We can add the predicate Conv(n) for any nin
N, asserting that the element n converges.

Suppose we could prove in CSA the following
Convergence Theorem (CT).

CT: All n:N. [Conv(n) v =Conv(n)].
Then we could extract a computable function
h: N --> Bool. All n:N. (h(n)=true iff Conv(n)).

Incompleteness

Thus, we cannot prove CT in CSA (because it is
not true), indeed, we just proved -CT.

But then we cannot prove --CT in CSA if CSA is
consistent. And if CSA is consistent, so is SA.

Hence we cannot prove CT in SA even though it is
true because by Godel’s result we could then
prove --CT. So there is a true sentence of SA
which is not provable if CSA is consistent.

Other Foundational Issues

There are many questions in the modern
design space for type theories, especially
those that are implemented in proof
assistants and used for programming.

Key Design Issues

In the paper for this celebration, | outline
some of the most critical design issues. They
are:

1. Predicativity, orders, universes

2. Extensional versus intensional equality (CTT
in Nuprl is one of the only extensional
theories)

3. Turing and “Brouwer” completeness of the

computation system versus subrecursive
computation systems.

Key Design Issues

4. How to develop a theory of partial
computable functions that is useful in
computing, as in the semantics of
programming languages and the theory of
unsolvability, and is consistent with classical
mathematics, e.g. would not allow us to prove
-CT.




