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VT,o, k. if (3j.¥n > j. For, oo if Vi < k. Fnp,, dis1)
then HFn(n.T,) o if Vi < k. HFn(n.T4) 044.

For example, the facts about Fn expressed at the end of section 3.1, pages
39-43, carry over to the use of HFn(n.Ty) when T, is a reflective hierarchy.

Another approach to using a reflective hierarchy is to unite it into a single
type system. We will not use this formulation; it is discussed only because
it is similar to the theories of [HAN| and Nuprl [Constable et al. 86]. Let
UnTn, where T, is a sequence of equality skeletons, be the skeleton such
that

A=y, 1, Biff In.A =1, B

and
a=bey,1,4 iff 3n.a =be 1, 4.

If T, is a reflective hierarchy in n then U,T, is a type system and is an
extension of T, for each n. When T, is a reflective hierarchy, the relation
Fny, 1, ¢ is equivalent to the relation HFn(n.T,) o if every type-valued
function belonging to Un T, is a type-valued function of one of the T,, that
is, if
VA.if Foy,1, A then 3n. Fny, A.

Note that it is not enough merely that each type inhabit a universe of the
hierarchy.

As a last point, the fact that a reflective hierarchy can be united to
give a type system provides us with a mechanism for producing transfinite
hierarchies, but the w-order hierarchy is sufficient to secure the use of types
as objects.

4.2 An Example: Martin-Lof’s Types

Here we shall define a type system hierarchy that is the non-type-theoretic
analog of the types defined in Martin-Lof’s paper [HAN]. A longer discussion
of this definition may be found in [Allen 87]. The theory of types presented in
[HAN] is open-ended in the sense that additional terms may be introduced
and additional type constructors may be defined beyond those explicitly
given there. In contrast, the type system to be defined here is closed, having
only those terms and type constructors already given. The computation
system is that embodied in the procedure given in [HAN] for evaluating
terms.

3To assure uniqueness of the results of evaluation we shall assume there is a designated
variable v such that the contractum of (T 2, y, z)(sup(a, b), d) is always

da, b, (Av)(T 2, y, 2)(b(v),d) /=, y, z].



1.2 An Example: Martin-Lot’s L'ypes 4Y

Before proceeding with the definition proper, we shall consider the sort
of definition that one might first attempt. One might define typehood and
member equality by mutual recursion, where extensional type equality is
simply defined by

T=SifiT,Stype & Vits.t =s€Tiff t =s€S.
The clauses for defining II-types might be

(Tz € A)B type if Atype & Vad'. Bla/z| = Bla'/z| ifa=ac 4
and

t=te(llze A)B if (Iz€ A)B type
& 3ubu'b. Au)b—t & (Au')b' '
& Vad. bla/u] = b'[a'/u'] € Bla/z|

if a =ad € A.

What is unusual about these clauses is that one of the definienda, member
equality, occurs negatively on the right hand sides. Thus, the recursive
definition does not work by presenting the usual sort of monotonic operator
on, in this case, pairs of properties and relations with the aim of designating
the least fixed point as the pair of definienda.

What is intended is that we are somehow to understand that “whenever”
a type is defined, its membership (equality) is completely defined as well. If
we were to work out the other clauses of this definition we would find that
whenever member equality is used, only its restriction to “already” defined
types is needed, and the right hand sides of the clauses are (strictly) posi-
tive in typehood. Let us call the vague principle that licenses such inductive
definition half-positive induction. Beeson gives a half-positive inductive def-
inition in [Beeson 82] for his recursive realizability interpretation of [HAN].
He then indicates how to give a standard inductive definition of the model
(by means of a device he attributes to Aczel), but this definition depends
upon excluded middle. In {Beeson 85| he also mentions the stratification of
typehood and member equality using classical set-theoretic ordinals; this is
the classical transfinite analog of the w-order stratification that was used to
define FIN in section 2.1.

The approach we shall take here is to make precise the nature of the half-
positive induction. It is simply this: the half-positive recursive definition of
“T type” and “t = s€T" is a less than clear definition of the relation

T is a type with equality ¢,

ge—
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which can be defined by ordinary induction using an operation on such re-
lations which is strictly positive, hence monotonic, in its argument. Then
let t = s€ T mean that for some ¢, T is a type with equality ¢ and tos.*?
In the author’s opinion, this form of definition is clearer than the original
half-positive form as well the other suggested classical “translations.”

Since type equality in our example will be extensional, let us restrict our
attention to such. We may characterize an extensional type system by a
relation 77T¢ between terms (T') and two-place relations on terms (¢) such
that

T=.5iff 3¢. 7T & r5¢
and
t=s€.Tiff 3¢. 7T & tohs.

We shall use o and 7 as variables ranging over such relations, which we shall
call possible type systems. Our intention will be to characterize extensional
type systems by 7T¢ that define partial functions in T, that is, 7 such that

VT o' ¢pis @ if TTo & 7T .

To define our universe hierarchy, we shall define u(e) as the least fixed-
point of an operator, TyF(o;7), which is monotonic in 7. The types of
TyF(o;7) are those of o plus those gotten by applying the non-universe type
constructors to the types of 7. We will pass the universes in as base types
through o.

We begin the definition by setting out the type formation methods. This
is done by defining the relations N», N,T,F &, IT and W. Each of these is
an operator on possible type systems,” whose value (a possible type system)
has only the types that evaluate to a certain form.

The types N, and N have no constituent types.

NoT¢ iff In. Np—T & VY a b. agb iff Im < n. my—a,b.
Define N-equality by

Neq is the strongest ¢ such that
Yab. apb if 0—a,b or Fa' b'. suc(a')—a & suc(b')—b & a'pb'.

iThe same sort of definition could be used in the construction of Frege structures in 'g <
[Aczel 80] (instead of the one given there using classical ordinals) by giving an ordinary
inductive definition of

z is a proposition which is true iff ¢,

Then, choosing some object a, let “z true" mean that z is a proposition which is true iff
ai=:a:
5We may consider possible type systems themselves to be zero-place operators.
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NT¢ iff N—T & ¢ is Neq.

The rest of the non-universe type constructors have constituent types,
and so the type formation operators need, as a parameter, a possible type
system from which to get these constituent types. In the definitions of Iand
¥, a and 8 range over two-place relations on terms.

I(r)T¢if IAaab. (A a,b)—T & rda & aaa & bab
&Vt tet iff r—t,t' & aabd.

Hr)T¢if 3AdaBp. A+B~T & rAa & TBB
&Vt tot' iff Jad. i(a)—t & i(a')—t' & aad
or 3b¥. j(b)—t & j(b')—t' & bBY'.

Now we proceed with the type constructors having families of constituent
types. In the definitions below, a ranges over two-place relations between
terms and v ranges over three-place relations between terms. The application
of ¥ to terms is indicated by tv,s.

Fam(t; A;a;z; B;y) iff TAa & Vad'. if aaa’ then v, is vy
& r Bla/z} 74
& 7 Blad'/z] vy-

Note that Fam(r; 4; a; z; B; v) is strictly positive in 7.

$(r)T¢if 3Aaz By. (Ez2€ A)B—T & Fam(r; 4;a:z; B:7)
&Vt topt iff Jabad' V. (a,b)—t & (d,b')—1
& aaa' & by,b'.

fi(r)T¢
if 34daz By. (lz€ A)B—T & Fam(r; A; a;z; B;v)
Vet topt' if Subu'b. (Au)b—t & (Mu')b'—¢'
& Vaa'.bla/uivs b'la'/u'] if aaa'.

Let us define the equality for W types.

Weq(a; ) is the strongest ¢ such that
Vit tpt'if Ja fusa' f'u's. sup(a, f)—t & (Au)s—f
& sup(d', f)—t' & (Au')s'—f'
& aaa' & Vb s[b/u|ds'[b'/u'l if bysb.

W(r)T¢
if IAaz By. (Wze A)B—T & Fam(r; 4;a:z; B;v) & ¢ is Weq(ex; 7).
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In each of these definitions of type formation, the definition of the member
equality of a type depends only on the member equalities of its constituent
types.

We may now define type formation under these constructors plus any
base types.

TyF(o;7)Té iff ¢Té or N2T¢ or NT¢ ot I(r)T¢ or H7)T¢
or £(7)T¢ or fi(r)T¢ or W(r)T.

The relation TyF(o;7)T¢ is strictly positive, hence monotonic, in 7. Let us
introduce a convenient notation for closure under TyF(e;).

CTyF(o;7)if VT ¢. 7T if TyF(o;7)T¢.
Now we define p.
u(o) is the strongest 7 such that CTyF(o;7).

Before discussing the validity of this definition, let us finish up the definition
of the hierarchy. We define our hierarchy using universes U; and generator
B.

HAN, is g (1.U;)n.
Defining spine, by
spine,To iff Im < n. Un—T & ¢ is =HANp,

we may say that HAN, is u(spine,).

Returning to the definition of g, it is clearly valid set-theoretically (in
a theory with the power set axiom such as ZF or IZF); the terms can be
represented as members of a set 7, and for any subset & of T x Pow(T x T),
TyF(o; ) is monotonic in 7 on the subsets of 7 x Pow(T x T), hence

p(@)is N{r €T x Pow(T x T)|TyF(o;7) C 7}.

Standard intuitionistic theory of inductive definition directly licenses in-
ductive definitions of

the strongest P such that VZ. PZ if é(z; P),

where 8(Z; P) is a relation between individuals and properties of individuals
that is (strictly) positive in P. The definition of (o) does not quite conform
to this standard since it is not a relation between individuals, but rather,
for each o, p(c) is a relation between individuals and two-place relations
between individuals. Still, the intuitionist might be convinced of the validity
of our definition since TyF(o;7)T¢ is strictly positive in 7; it might also
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help to note that the equality of each type depends only on the equalities of
constituent types.

Notice that the notion of type system, as opposed to possible type system,
does not enter into the definition of HAN,. Although it may already be clear
that HAN,, is a reflective hierarchy of type systems, we are in a position to
prove it explicitly by using induction on type formation. We shall not carry
out that proof here, but the three key lemmas are that u(c) is TyF(o; u(0)),
that u(o) is monotonic in ¢, and that if every type of o evaluates to some
Ui, then p(o)T¢ defines a partial function in T if oT'¢ does.

In [HAN] such a hierarchy is not the end result of the type definitions. All
the universes are taken as types of a single system whose non-type-theoretic
analog would be p(Upspine,,), which we may call HAN,,. For future reference,
let us use spine,, to mean U,spine,. It turns out that HAN, is UsHAN,. This
would not be so if, say, there were a term constructor univ(e), with principle
argument e, such that Up—univ(0) and U1 —univ(suc(t)) if U;—univ(t); in
that case, (IT z € N)univ(z) would be a type of HAN,, but would not be a type
of UnHAN,,. The argument to be presented here turns on the fact that the
U; are, in a sense, computationally inert. In the course of evaluating a term
that has a value, occurrences of U; are just dragged around or abandoned
without any notice taken of which term is being used, and their lineage can
always be traced back to occurrences of U; in the original term. We shall see
that if all indices of universes occurring in a type T of HAN,, are less than
n, then T is a type of HAN,,.

We shall exploit the fact that there are inert canonical terms that are
not types of HAN, and in which universes do not occur. One such term is
1(0,0,0). Let ¢t —n be the term gotten from t by replacing each occurrence
of Up4; (for every i) by 1(0,0,0). Let us say that terms t and s are variants
up from n, or tvar, s, when t—n is s—n, that is, when ¢ and s differ only in
occurrences of [(0,0,0) and universes at or above U,. Clearly,

t(s/Z| vary t'[5'/Z] if tvar, t' & Svar, ¥,
where 3 var, § is the obvious analog of ¢ var, t'. By induction on evaluation,
if te—svargs' then 3t'. t'—s' & tvar,t'.

We shall now characterize a certain kind of immunity to variation up
from n which types of HAN, may have. Define VAR, T'¢ by

VAR, T¢ iff VT'. HAN,T'¢ if T' var,, T
& Vis. if tds then Vs'. t¢s' if s' var, s.

In fact, every type of HAN, has this immunity (and so, since every term is
a variant of itself, HAN, is VAR, ):
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if HAN,T¢ then VAR, T'¢.

It is enough to show (but we will not) that Yn. CTyF(spine,; VAR, ), which
may be proved by induction on n.® The inductive hypothesis (for numbers
less than n) is applied only in a certain case of the induction over type
formation, namely, when showing that VAR, T4 if spine,T¢. This is also the
only point in the proof at which is applied the fact that universes below Uy,
are left intact under variation up from n. If spine,T'$ then 3Im < n. Up—T.
Any variation T' of T (up from n) must evaluate to a variation of Up. But
Um is the only variant of itself, thus, spine,T'$. Since equality in Up, is
=HANm, the elimination of the inductive hypothesis on m establishes the
second conjunct of VAR, T'¢.

It follows from the monotonicity of u(e) in o that UsHAN,, is as strong
as HAN,. Thus, since T is T —n for some n, to show that HAN,, is UyHAN,
it is enough to show that

if HAN,T¢ & T is T —n then HAN,T$,

for which in turn it enough to show that CTyF(spine,; BD, ), where BD, T'¢
means that HAN,T¢ if T is T —n. The only interesting aspect of the proof
is a lemma,

if Fam(BD,; A;;2; B;y) & Ais A~n & Bis B-n
then Fam(HAN,; 4; a;z; B; 7).
Proof:
arb n, A,a,z,B,7 s.t. the antecedent holds.
HAN,Ada since BDp, da & A is A-n.
arb a,d' s.t. aad'.
Ya is Yy1-
enough to show HAN, Bla/z]v. & HAN, Bla'/z| v,
aa(a'-n) & (a—n)aa' since HAN, is VAR,.
Ya IS Yan & ot 15 YVoi_p Since aa(a—n) & a' a(a'-n).
enough to show HAN,, Bla/z| e & HAN, Bla'/z] 74y

HAN, Bla—n/2] 7a-n & HAN, Bla' —n/z| 7,1, by the first assumption,
since (a—n)a(a'—n).

QED.since HAN, is VAR, .

6 A helpful observation is that

if Fam(VARa: d;a;2: 8;7) & A'var, A & B’ var, B then Fam(HAN,; A';a;2; B';7).
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Finally, we shall see that Fnyan, is HFn(n.HAN,). As was indicated
in the previous section, it is enough that, for all A, if Fngan, A then
In. Fngan, A. And this reduces to showing that

FnHANn Aif FnHANu A-n,

(where A —n is the obvious analog of ¢t —n) since for every A there is an n
such that A is A —-n.

Proof by induction on the length of A:

We shall abbreviate HAN, and HAN,
by n and w in subscripts to Fn, =, and €.

arb n:

The base case is trivial.

arb A s.t. the inductive hypothesis holds for |A|.

arb 4,B,z s.t. Fn, (A,B:z A)-n.

(A-n) =, (B-n).

(A-n) =, (B—n) since HAN,, is a subrelation of BD,, .
A =, B since HAN, is VAR,,.

arb a,b s.t. a = b€ ,A.

show Fn, Ala;b/z].

enough by the inductive hypothesis
to show Fn, (A -n)la—n;b-n/z|.

a-n=b-ne,A —nsince HAN, is VAR, .
a-n=b-n€e A -n.

QED.

4.3 Universe Polymorphism

Normally, we may expect to design reflective hierarchies whose constituent
type systems are very similar. The principal similarity is that there will be
certain type constructors under which every level of the hierarchy is closed.
Let us call such type constructors uniform. Beyond this, there is the regular-
ity of universe construction. Often our assertions relating several universes
depend not on the particular universes mentioned, but rather, only on cer-
tain simple arithmetical relations between the indices of those universes. For
example, we know that for any i and j,

HFn(n.HAN,) Ui: X Uj: Y X +Y € Upay(iy)-



