48 ROBERT L. CONSTABLE

(Pfenning and Schirmann, 1999] F. Pfenning and C. Schiirmann. Twelf — a meta-
logical framework for deductive systems. In Ganzinger {Ganzinger, 1999), pages 202-

206.

[Pollack, 2000] R. Pollack. Dependently typed records for representing mathematical
structure. In J. Harrison and M. Aagaard, editors, Theorem Proving in Higher Order
Logics: 15** International Conference, TPHOLs 2000, volume 1869 o Lecture Notes
in Computer Science, 461-478. Springer-Verlag, 2000.

Prawits, 1965] D. Prawits. Natural Deduction. Almquist and Wiksell, Stockholm, 1965.
Soott, 1970] D. Scott. Constructive validity. In D. L. M. Laudglt, editor, Sqmptmum
on Automatic Demonstration, volume 5(3) of Lecture Noles in Mathematics, pages
237-275. Springer-Verlag, New York, 1970. :
(Tait, 1967) \,ﬂ,l \‘E’?f'hit. Intensional interpretation of functionals of finite type. Journal
bolic ic, 32(2):189-212, 1967.

[Woiodi! smik. m]%eéij)k. A contemporary implementation of Automath. Talk pre-

sented at the Workshop on 35 years of Automath, Heriot-Watt University, Edinburgh,
tland, April 10-13, 2002.

[zm 19771 3. Zucker. Formalization of elassical miathematics in Automath. In Col-
loque' International de Logique, pages 135-145, Paris, 1977, Colloques Internationaux
du Centre Nationa! de la Recherche Scientifique, CNRS.

ROBERT L. CONSTABLE

RECENT RESULTS IN TYPE THEORY AND
THEIR RELATIONSHIP TO AUTOMATH

The notion of a telescope is basic to Automath’s theory structure; telescopes
provide the context for theorems. A dependent record type is an internal
version of a telescope and is used in to define theories. This paper shows how
A. Kopylov defines these record types in terms of dependent intersections,
a new type constructor.

Definitional equality and book equality are fundamental concepts basic
to Automath. In computational type theories these concepts appear in a
different form, as computational equalities and as gquotient types. Questions
about these concepts have led to interesting discoveries about types and
open problems. This paper presents a new formulation of quotient types by
A. Nogin, and an open question about them.

1 INTRODUCTION

Automath, especially AutQE, introduced several of the basic ideas of con-
structive type theory. N.G. De Bruijn’s 1968 paper on Automath [de Bruijn,
1970] inspired Dana Scott to write his basic article Constructive Validity
[Scott, 1970] in 1970. His paper outlined ideas that appear also in Per
Martin-L6f’s 1973 paper on type theory , An Intuitionistic Theory of Types:
Predicative Part [Martin-Lof, 1973). These ideas in turn influenced Nuprl’s
computational type theory [Constable et al., 1986}, about which I am writ-
ing. Several of the basic ideas arose in other forms, e.g. from Intuitionistic
higher-order logic [Howard, 1980; Prawitz, 1965; Thit, 1967] and from Gi-
rard’s basic work on system F [Girard, 1971), which led to the Coq type
theory ([Coquand and Huet, 1988; Coquand and Paulin-Mohring, 1990).

I will show the influence of two basic ideas from Automath on important
concepts in type theory made precise only in the last three years, specifically
dependent intersections and extensional squash operators. The intersection
operator defines telescopes, and the squash operator is important in treating
some book equalities. The concepts discussed here apply to predicative type
theories, such as Martin L5f’s [Martin-L5f, 1984] and Nuprl [Constable et
al., 1986); and to impredicative ones as well, such as Coq [Dowek et al.,

iggg}; and to logical frameworks such as Twelf [Pfenning and Schiirmaan,

Fairous Kamareddine (ed.),
Thirty Five Years of Automating Mathematics 37-48.
© 2003, Kluwer Academic Publishers. Printed in the Netherlands.

38 ROBERT L. CONSTABLE

2 CONTEXTS, TELESCOPES AND DEPENDENT RECORDS

Jeff Zucker’s paper “Formalization of Classical Mathematics in Automath”
appears in the book Selected Papers on Automath [Nederpelt et al., 1994).
Telescopes are the topic of Section 10.2 of that paper. Zucker compares
them to “generalized " types, which are for us dependent records.

A telescope is essentially a context of cascading type declarations such as

Ty Az Ao(Z1), .- ZTn An(Zh, -, Z0).

For example, G : Type,op : G x G = G,id : G is a telescope setting the
context for theorems about groups in which 2, is G, A, is Type, z, is op,
A2(z,) is G x G = G, and so forth. A sequence of values ay, ..., a, fits into
the telescope if a; € Al,dz € A;(al),

an € An(a’lv .o :an—l)'

We are now going to work up to an elegant definition of telescopes starting
from familiar ideas. We use the notation {z; : A;...;za : Ay} for a record
type with field selectors z; and types A;. This notation is basically from
Pascal [Jensen and Wirth, 1974]. For example, {n : Nat;z : Real} is
a record type whose elements are a natural number named n and a real
number named z. If r is the record, then r.n denotes its natural number
part and r.z denotes its real part.

A record type can be defined as a E-type, or Cartesian product, if we
regard the field selectors as external. So Nat x Real is the type; r.n is an
abbreviation for 1of(r), the first projection, and r.z for 20f (r), the second
projection.

2.1 Records as functions

A better definition of the record type incorporates the field selectors inter-
nally. Let Labels be a discrete type, and consider the subtype {n,z} of two
distinct labels. Now define a function from {n,z} into types by

A(n) = Nat, A(z) = Real.

Then define
{n: Nat;z : Real} asi: {n,z} = A(z),

where i : {n,z} = A({) is the dependent function space, sometimes written
as a II-type, Ili : {n,z}.A(i).

An even more uniform definition arises if we use all elements of Label. We
define a record type as the function space ¢ : Label - A(i), where A maps
Label into types. Normally only a finite number of labels, say z;,...,2n,
are assigned a non-trivial type. We can capture this idea by using the top

RESULTS IN TYPE THEORY AND RELATIONSHIP TO AUTOMATH 39

type, Top, as a default. So we let A(i) = Top for any label i € Label for
whichi#z; j=1,...,n.

The Top type is used in Nuprl and is discussed in Nuprl’s Class Theory
and its Applications [Constable and Hickey, 2000}, as well as in Dependent
Intersections: A New Way of Defining Records in Type Theory [Kopylov,
2003]. The basic property of Top is that it contains all objects, and all
objects are equal in it. So every type A is a subtype of Top, i.e. AC Top.
Generally A C B, provided a = b in A implies that a = b in B.

Another key property is that ANTop = A, where ANB is the type whose
elements are those common to both A and B, and whose equality isa = b
in ANBiffa=bin Aand a = bin B. It is called an intersection type.

For record types we have {z:4; y:B; z:C} C {z:A; y: B}. This follows
immediately from the definition of this type as a dependent function space
over Label. The general subtyping of record types is captured exactly by
the contravariance in function space subtyping

AC A’ and B B' implies (A' - B)C (A - B').

This relies on the polymorphic nature of functions in Nuprl; it is not a
property of set-theoretic function spaces.

2.2 Dependent record types as dependent intersections

Next we want to define dependent records. These are telescopes treated as
internal types. A natural notation is

{z1:Ay; Z2: A2(Z1); ... 5 Zn : An(Z1,. .oy Zne1))-

Kopylov [Kopylov, 2003] discovered an elegant definition of dependent
records in terms of a new type constructor that he discovered: dependent
intersections. Let A be a type and Blz] be a type for all z of the type
A. We define dependent intersection z : A() B|z) as the type containing all
elements a from A such that a is also in Ba]. This is a type that we might
write as {z : A|z € B;}, but z € B, is not a well-formed proposition of
Nuprl unless it is true.

The dependent intersection is not the same as the intersection of a family
of types .4 B[z]- The latter refers to an intersection of types B[z] for all
z in A. The difference between these two type constructors is similar to the
difference between dependent products z : A x B[z] = £..4B|z] and the
product of a family of types I1,.4 B[z} = z : A = Blz].

The ordinary binary intersection is just a special case of a dependent
intersection with a constant second argument A(\B =z : A B.

Let A=Z and B(z] = {y: Z |y > 2z} (i.e. B[z] is a type of all integers
y, such that y > 2z). Then z : A B|z] is a set of all integers, such that
z > 2z.

40 ROBERT L. CONSTABLE

Two elements, @ and a', are equal in the dependent intersection
z : A(] B[z] when they are equal both in 4 and Bla]. The rules for the
new type appear in Table 1. The semantics is as in [Allen, 1987].

Table 1. Inference rules for dependent intersection

'+ AType I';z: A+ Bz} Type
L'k (x: A B[z]) Type

(T'ype Formation)

'FA=A" T;z:Al Bz] = B'[z]
Tt (z: AN Bz]) = (z : AN B'[=z])

(TypeEquality)

'ra€A Ttra€Bla) TFz:ANB[z]Type
I'ta€(z: ANBlz])

{Introduction)

Ftra=d'€A TI'lFa=d' €Bla] Tt\z:A()B[z]Type
Fta=a'€(z: A()B[z])

(Equality)

T;u:(z: AN Blz]); Alu];z : A;y: Blz] t- Clz,y]
Fiu:(z: AN Blz]); Alu] F Clu; u]

(Elimination)

Now we are going to give a method for constructing record types and
their elements. The type is defined by other means in Nupri’s Class Theory
and its Applications [Constable and Hickey, 2000), and there are other quite
different accounts [Betarte and Tasistro, 1999; Pollack, 2000); here we use
Kopylov’s dependent intersection

Records Elements of record types are defined as in [Constable and Hickey,
2000]. They map labels to the corresponding fields. We can build up these
functions component by component starting with an empty record. We
write the extension as r.z := a; think of assigning a to r.x, where z is a
label.

{} == M.l (the empty record)
We could pick any function as a definition of an empty record.

(r.z := @) == (M.if | =z then a else rl) (field update/extension)

RESULTS IN TYPE THEORY AND RELATIONSHIP TO AUTOMATH 41

Now we use a common notation for the elements of record types.

{zi =a1;-..;Zn =@n} == {}. 71 :=a1.22 := G2.....Zy :=a,
These definitions provide that
{z1 = a1;...;Zn = ap} = A.if [=z, then g, else

if | =z, then a,
rz==rz (field extraction, r z is function application).

Record types We will show how to build finite record types by intersec-
tion. First we define a singleton record.

{z:A} =={z} + A (single-field record type; == is definitional equality)

where {z} == {I : Label | ! = z € Label} is a singleton set.!

{R1; R} == Ri[NR2 (independent concatenation of record types)

Thus {n : Nat; z : Real} is {n : Nat} N {z : Real}. Next we include

dependency. .

{self : Ry; Ra[self]} == self : Ry () Ra[self] (dependent concatenation)
Here self is a variable bound in R;. We will usually use the name “self”

for this variable and use the shortening { R, ; Ra{sel f]} for this type. Further,

we will omit “self.” in the body of R, e.g. we will write just z for self .z,
when such notation does not lead to misunderstanding.?

We assume that this concatenation is a left associative operation, and we
will omit inner braces. For example, we will write

{z: A; y: Blself]; z : Clself]}
instead of
{{{z: A}; {y : Blseif]}}; {2 : Clself]}}.
Note that in this expression there are two distinct bound variables self. The
first one is bound in B, and refers to the record itself as a record of the type
{z : A}. The second self is bound in C; it also refers to the same record,
but it has type {z : A;y : B[self]}.

Ye:]A | Plz]} is a standard type constructor in the Nuprl type theory [Constable et
986]).

1
2Note that Stuart Allen's notational devices allow Nuprl to display these terms as
written here [Allen, 1998].

42 ROBERT L. CONSTABLE

The definition of independent concatenation is just a partial case of de-
pendent concatenation, when R, does not depend on self. We can also
define right essociating records, a less natural idea, but nevertheless ex-
pressible:

{s:z: A; R[s]} == self : {z : A} R|self .z)

Here z is a variable bound in R that represents a field z. Note that we
can a-convert the variable s, but not the label z, e.g., {s: £ : A;R[s]} =
{v:z:A;R[y]}, but {s:z: A;R[s]} # {v: 2 : A;R[y]}. We will usually
use the same name for labels and corresponding bound variables.

This connection is right associative, e.g.,

{s:z:A;t:y:Bls];z:Cls,t]}

stands for
{s:z:A;{¢t Y Bls); {z : C[s,t]}}}-

These dependent records can be used to capture theories built in a con-
text. For example, here is how a monoid is defined in MetaPRL:

{ M:Type;;0p: M x M — M;id: M,
assocaz : Yz,y,z : M. op(z, op(y, 2)) = op(op(z,y), 2);
idaz : Vz : M. (op(z,id) = = & op(id, z) = z) }.

Here we use the fact that propositions are types — another key Automath
contribution.

3 AUTOMATH EQUALITIES AND QUOTIENT TYPES

3.1 Definitional and Computational Equality

The formalization of equality reasoning in Automath is novel, and be-
cause equality is so basic to mathematics, the consequences are far-reaching.
De Bruijn introduced a calculus of definitional equality as basic to reasoning.

Definitional equality is the minimal equality relation generated by a, §-
conversion, and é-conversion (the replacement of the left-hand side of a def-
inition by its right-hand side — definiendum by definiens). The conversions
must respect typing: (Az : A)(a) = bla/z] only if a is of type A.

There is no internal notation, such as a 2 o, for definitional equality. It
is not an explicit relation of any theory expressed in Automath, but sub-
stitution of equals for equals in any context is a principle of the Automath
language and thus of every theory.

Martin-Lof type theories also use a concept similar to Automath’s defi-
nitional equality, but these theories relax the typing restriction so that the

RESULTS IN TYPE THEORY AND RELATIONSHIP TO AUTOMATH 43

(Az.b){(a) reduces to bla/z] regardless of types. In Nuprl this reduction rule
generates an equality called computational equality, written a ~ a’. Doug
Howe, in his article Equality in Lazy Computation Systems [Howe, 1989,
proved a very important theorem: that a ~ @’ is a congruence on all closed
Nupr! terms; that is, if a ~ a’ then 7(a) ~ 7(a') for any closed 7.

Howe’s result allows a ~ a’ to be used as in Automath (indeed until Nuprl
4 there was no internal notation for this equality — called also “squiggle
equality”).

The difference between a = a' of Automath and a ~ a’ of Nuprl is that
a ~ a' is typeless and includes all computational reduction rules (including
integer arithmetic) and reduction rules for the ¥ combinator and all untyped
lambda terms. This relation greatly facilitates automated reasoning in type
theory.

Howe's result is an important discovery about type theory that arose by
looking at definitional equality in a computational way. It carries one of
de Bruijn’s pragmatic insights further in a computational setting.

3.2 Book Equality and Quotient Types

Automath also provides a simple mechanism for defining an equality relation
on a type A, denoted IS(A,z,y), meaning z equals y in type A. It is
axiomatized as an equivalence relation. In Nuprl, IS(A,z,y) corresponds
to x = y in A, the equality relation on a type. As in Martin-L&f type theory,
every Nuprl type comes with an equality relation.

In both Automath and Nuprl, £ ~ y implies £ = y in A for the equality
relation defined on A or any other relation defined on A. That is, if R(z) is
a proposition,

z ~ y implies R(z) <= R(y).
In Automath it is possible to introduce additional equality relations on
a type A, say E(A,z,y). The only requirement is that the relation is an
equivalence. In Nuprl, changing the equality relation on a type changes
the type. So if equivalence relation E is to be the equality on A, then the
type is denoted A//E, and it is called the quotient type of A by E. It is

used extensively, in {Constable et al., 1988] for example, to treat equivalence
classes computationally.

The Nuprl rules for A//E are based on these four key semantic notions:
e A/{E=A//FifE F

ea=bin A//E ifa=bin A and E(a,b)

s AC A//E

44 ROBERT L. CONSTABLE

e a function f from A to B belongs to A//E — B iff E(z,y) implies
f(@) =)

The rules for A//E do three jobs:

1. They hide the structure of E since any equivalent F' yields an equal
type.

2. They hide the proof of E since elements of A//E are simply elements
of A, e.g. they are not equivalence classes, and they are not tagged.

3. They identify elements of A.

In his article Quotient Types — A Modular Approach for TPHOLs 2002
[Nogin, 2002], A. Nogin introduces a new formulation of the rules which
divides these tasks into separate rules. His organization is clearer than the
existing quotient rules, and his new rules are useful in other ways, as his
article demonstrates.

One of Nogin’s rules introduces a strong notion of collapsing structure.
In Nuprl it is possible to squash a type, } A = {Top|A}. If A is empty,
then so is | A. If a and b are distinct members of A, they are identified in
1 A. However,

JA=|Bif A=B.
Nogin defines an eztensional squash operator 50 that
J A=y Biff A<= B.

The other key element of A//E that Nogin separates into a rule is the
nondeterministic nature of a function’s behavior over A//E. Essentially, f
can operate on any “element of a virtual equivalence class” of A//E. He

captures this idea by defining
ND ==B//True
where B = {tt, ff}. In B//True, tt = ff. Now let
nd;(a;b) == if = then a else b fi.

To show that a function f maps A//E into B, we need to know that for
a, € A,a2 € A and E(a;,a2), f(a1) = f(az) in B. This will follow from
showing that

f(ndz(ay;a2)) € B forz € ND.
Nogin's new rule organizes such inference compactly. For example, to es-

tablish an implication
u:A//E = C(u)

RESULTS IN TYPE THEORY AND RELATIONSHIP TO AUTOMATH 45

he shows that
z;: A, 22 : A, E(z1,22),y : ND implies C(ndy(z1; z2)).

Nogin's approach might be useful in Alf and Coq as well as in MetaPRL
and Nuprl. It applies to Coq’s notion of setoid. It could also be adapted to
systems such as PVS with a quotient type added, and it raises an interesting
open problem for those type theories, which we discuss next.

3.8 Open Problems

The existing rules for quotient types in MetaPRL or Nuprl do not seem to
be sufficient. Let A = B denote eztensional type equality, i.e. AC B and
B C A; if we then define Zy to be Z//E; where Ey(z,y) iff there is an m
such that x —y = k-m, then we can prove that Z,NZ3; = Zq and in general
we can prove, using existing rules,

ZeNZy = Zlcm(k,u)

where lem(k, n) is the least common multiple. But this reasoning relies on
properties of Z, and not on general considerations that might establish the
following;: .

. A//ENA/J[F = A]|E&F.

Is * in fact true for Nuprl? The equalities on the two types are the same,
and thus * is true in the PER Semantics of Stuart Allen [Allen, 1987, but
the existing rules do not seem to let us prove this. Nogin believes that there
is a model of Nuprl’s rules in which these types are not equal. What new
general rule would let us establish it?

4 CONCLUSION

Modenf type theories and logical frameworks owe a great deal to Automath.
Itp straightforward approach to the natural expression of mathematical dis-
course was bold for its time, and it exerted a force on computer science, as
can be seen in the type theoretic language of major theorem provers such
as Alf, Coq, .HOL, Isabelle, MetaPRL, Nuprl, PVS, Twelf, and others. Au-
tomath was in harmony with the type systems of programnming languages
su.xch as Algol 68, Pascal, and the major dialects of ML. We also see a sig-
mﬁca.nt rolt.z for type theory in a rigorous semantics for the basic concepts
?f object oriented languages such as classes, subtyping, inheritance, and ob-
jects themselves [Abadi and Cardelli, 1996}, and OCaml provides a practical
link between objects and types.

46 ROBERT L. CONSTABLE

I am confident that other basic concepts in Automath, such as its man-
agement of contexts and the notion of a “tree of knowledge”, will continue
to provide insights as the research community in automated mathematics
moves toward the integration of the libraries of formal mathematics created
in various theorem provers [Franke and Kohlhase, 1999].

ACKNOWLEDGEMENTS

I want to thank Stuart Allen, A. Kopylov and A. Nogin for discussions of
this article, and Juanita Heyerman for helping prepare it. I appreciate the
constructive remarks and questions from the referees.

This work was supported by the DoD Multidisciplinary University Re-
search Initiative (MURI) program administered by the Office of Naval Re-
search under Grant N00014-01-1-0765, and by DARPA under Grant F30602-
98-2-0198.

BIBLIOGRAPHY

[Al;;giﬁand Cardelli, 1996] M. Abadi and L. Cardelli. A Theory of Objects. Springer,

[Allen, 1987) S. F. Allen. A Non-type-theoretic Definition of Martin-Lof's Types. In
D. Gries, editor, Proceedings of the 2°¢ IEBE Symposium on Logic in Computer
Science, pages 215-224. IEEE Computer Society Press, June 1987,

{Allen, 1998] S. F. Allen. From dy/dx to []p: a matter of notation. In Proceedings of
the Conference on User Interfaces for Theorem Provers, Eindhoven, The Netherlands,
1998.

(Barendregt and Geuvers, 2001] H. Barendregt and H. Geuvers. Proof-assistants using
dependent type systems. In A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, pages 1149-1238. Elsevier, 2001.

[Betarte and Tasistro, 1999) G. Betarte and A. Tasistro. Extension of Martin Lof’s type
theory with record types and subtyping. In Twenty-Five Years of Constructive Type
Theory, chapter 2, pages 21-39. Oxford Science Publications, 1999.

[Bloo et al., 1996] R. Bloo, F. Kamareddine, and R. Nederpelt. The Barendregt cube
with definitions and generalised reduction. Information and Computation, 126(2):123-
143, 1996. : _

[Constable et al., 1986} R. L. Constable, 8. F. Allen, H. M, Bromley, W. R. Cleaveland,
1. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panan-
gaden, J. T. Sasaki, and S. F. Smith. Implementing Mathematics with the NuPRL
Development System. Prentice-Hall, NJ, 1986.

[Constable and Hickey, 2000] R. L. Constable and J. Hickey. NuPRL’s class theory and
jta applications. In F. L. Bauer and R. Steinbrueggen, editors, Foundations of Secure
Computation, NATO ASl Series, Series F: Computer & System Sciences, pages 91-
116. 10S Press, 2000.

(Constable et al., 1988] R. L. Constable, P. Jackson, P. Naumov, and J. Uribe. Con-
gtructively formalizing automata theory. Proof, Language and Interaction: Essays in
Honour of Robert Milner, 1998.

(Coquand and Huet, 1988] T. Coquand and G. Huet. The calculus of constructions.
Information and Computation, 76:95-120, 1988.

RESULTS IN TYPE THEORY AND RELATIONSHIP TO AUTOMATH 47

[Coquand and Paulin-Mohring, 1980] T. Coquand and C. Paulin-Mohri
de?ned Lg'?es, ,:mlimj:;ﬁryrv:;sion. In COLOG '88, International g;h:fmﬁaé'ﬁ{
uter ¢, volume ture Ny § i
,ée’ or Lo gic, o ure Notes in Computer Science, pagea 50-66. Springer,
(de Bruijn, 1970] N. G. de Bruijn. The mathematical lan
gu Aut th: usage
;n:to s;r:‘g oi) its exte‘nsi?ns. Inl J. P. Seldin and J. R. Hindleayfe editor:!,n ;ympti:‘:;um on
ic Demonstration, volume 125 of Lecture Notes i i
[e etiag, 1670, otes in Mathematics, pages 29-61.
de Bruijn, 1980] N. G. de Bruijn. A survey of the project Automath. In J
. . P
and J. R. Hindley, edi.tom, To H. B. Curry: Essays in Combinatory Logic, hﬁ;ﬁ:
[Cdculu:;Lanniggf;c:imdxm pages 589-606. Academic Press, 1980. ’
Dowek et al., 1 G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. P
3 . . . t
C. Paulin-Mohring, and B. Werner. The Cog Proof Assistant User’s Guide. INRIA.
[by ey s 0q f Assistant User’s Guide. INRIA,
Franke and Kohlhase, 1999) A. Franke and M. Kohlhagse. MATEWESB, an
A . agent-based
communication layer for distributed automated theorem provi ’ anzin
[[Ganzinger, 19]99]. proving. In G 8ot
Ganzinger, 1999] H. Ganzinger, editor. Proceedings of the 16** International Conf
ence on Automated Deduction, volume 1632 of Lecture Notes in Artifici o,
[Berlin, July 7-10 1999. Trento, Italy. m Aréificial Intelligencs,
Gouvers et al., 2001} H. Geuvers, R. Pollack, F. Wiedijk, and J. Zwanenb Th
algebralc hierarchy of the FTA project. In Calculemus 2001 Proceedings, Siens, Italy,
[Glmrd., 1971] J.-Y. Girard. Une extension de Pinte
rard. rpretation de Gdel a 'anal
son applien}lon_a I’ehmi_ ination des coupures dans I'analyse et la theorieada typesym.’ i.l:
2nd Scandinavian Logic Symposium, pages 63-69. Springer-Verlag, NY, 1971.
[Hmme’ lg) w. Hcowudm“;‘Tt:;formulas-a&types notion of construction. In To H.B.
3 ays on Co v.! ic, Lambda-C !
i o Aeu}emlc Proo NV 1950, Logic, Lambda-Calculus and Formalism, pages 479-
Howe, 1989] D. J. Howe. Equality in lazy com: 3
I putation ems. In Proceedsi
45" IEEF Symposium on Logic in Computer Science, 'xm 198-203, porroi it Sy
ference Center, Pacific Grove, California, June 1989. IEEE, IEEE Computer Society
(Howe, 1986] D. J. Howe. Semantic foundations f i
. . 2 or embedding HOL in NuPRL. In
xinvlzl;n{x;glang Mimnt,, e‘;i‘xtors, Algebraic Methodology a;‘;i Software Technology,
[re No in C i
[Bertin: 1996, in Computer Science, pages 85-101. Springer-Verlag,
Jensen and Wirth, 1974] K. Jensen and N. Wirth. PASC.
r . . . 'A
[Springer-Verlag, New York, 1974, L uaer manuel and report
Kamareddine and Nederpelt, 1994) F. Kamareddine and R. P. Nederpel i
. L t. A unified
apgmad:totype theory through a refined lambda-cal Theorets
[KSctfncc, 1361(1):183-216, Deuemgtir r00a, culus. tieal Computer
opylov, 2003] A. Kopylov. Dependent intersection: A n f defin| H
Aheary. | « d : ewW way O ing records in
[2W003. ’I%o?p . :a.r Pmcaad. ings of 18" IEEE Symposium on Logic in Computer Science,
Martin-L5f, 1973] P. Martin-Laf. An intuitionistic
1 3] P. A theory of types: Predicative .In
[M{:t%w félloqmum '73, pages 73-118. North-Holland, Amsterdam, 1973. part
2 ro:;"l‘b' 1984] P. Martin-Lif. Intuitionistic Type Theory. Number 1 in Studies in
(Nodoy eory, Lecture Notes. Bibliopolis, Napoli, 1984.
Pae!penpd o:: :lu, 199-2l l:..o ll:;nNe;isearpeflg :d H. Geuvers, and R. C. de Vrijer. Selected
r e P . b
" ematics. 'i“szv' Wer, s ondan. 1 9;4 . tudies in Logic and The Foundations of Math-
ogin, 2002] A. Nogin. Quotient types: A medular approach. In V. A ii
hﬁ:nu. and S. Tahar, editors, Proceedings of the l‘.,‘i"’" International (é:r':-;mno, - oAn
Nomtea fh CFommp:tge :ns cl'_l;glfgr Oﬂler-2 sl,;_g;cs (TPHOLs 2002), volume 2410 of Lecture
eq -
//nogin. org/papers/quot i,enp:f.hm, 80. Springer-Verlag, 2002. Avallable at http:

