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A SEMIRING ON CONVEX POLYGONS AND ZERO-SUM CYCLE
PROBLEMS*

KAZUO IWANOt AND KENNETH STEIGLITZ$

Abstract. Two natural operations on the set of convex polygons are shown to form a closed semiring;
the two operations are vector summation and convex hull of the union. Various properties of these operations
are investigated. Kleene’s algorithm applied to this closed semiring solves the problem of determining
whether a directed graph with two-dimensional labels has a zero-sum cycle or not. This algorithm is shown
to run in polynomial time in the special cases of graphs with one-dimensional labels, BTTSP (Backedged
Two-Terminal Series-Parallel) graphs, and graphs wita bounded labels. The undirected zero-sum cycle
problem and the zero-sum simple cycle problem are also investigated.
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1. Introduction. In this paper, we show that two natural operations on the set of
convex polygons form a closed semiring; the two operations are vector summation
and convex hull of the union. We then investigate the time complexity of each operation
and its effect on the number of edges of the polygons.

Kleene’s algorithm applied to various closed semirings leads to efficient algorithms
for a variety of problems; for example, finding the shortest ,aths for all pairs of nodes
[3], converting a finite automaton into a regular expression, and finding the most
reliable or largest-capacity path [5]. In this paper we use the above closed semiring
to solve the zero-sum cycle problem in doubly weighted directed graphs.

Doubly weighted graphs, which have a two-dimensional weight on each edge,
have been studied by Lawler [19], Dantzig, Blattner, and Kao [7-1, and Reiter [24].
The cost of a path is defined as the sum of weights of edges on the path. The doubly
weighted zero-sum cycle problem is to find a cycle whose cost in each dimension is 0.
In [12], [13], [14], [15], [17], we saw that certain problems in VLSI applications
involving a regular structure can be transformed to problems in two-dimensional infinite
graphs consisting of repeated finite graphs. Repeated use of a doubly weighted digraph,
called the static graph G, forms a dynamic graph G2. As shown in Fig. 1, each label
of the static graph GO indicates the differences between the x- and y-coordinates of
two connected vertices in G2. The absence of a zero-sum cycle in the specified static
graph is then necessary and sufficient for the acyclicity of the associated dynamic
graph. If a two-dimensional regular electrical circuit is associated with a dynamic
graph, acyclicity of the dynamic graph implies that the associated electrical circuit is
free of an electrical "short circuit" [12].

Since the cost of each path between any two vertices can be regarded as a point
in the two-dimensional Euclidean plane, we can associate a pair of vertices v and w
with a convex polygon Cevw as follows" %w is the convex hull of all points associated
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884 K. IWANO AND K. STEIGLITZ

A static graph G

The dynamic graph G

FIG. 1. A static graph G shows how to connect nodes in G2. The shaded area shows a basic cell.

with costs of paths from v to w. We apply the two operations above to the set of these
convex hulls, and use the closed semiring defined by these two operations to solve the
doubly weighted zero-sum cycle problem. We show that this algorithm runs in poly-
nomial time in the special cases ofbounded label graphs, BTTSP graphs (the Backedged
Two-Terminal Series-Parallel graphs), and graphs with one-dimensional labels. The
1-bounded graphs, whose labels are 0, 1, or -1, arise in VLSI applications where the
interconnections between regular basic cells are made locally. The BTTSP graphs are
an extension of the class of Two-Terminal Series-Parallel [1], [8], [26], [27]. When the
extended abstract of the present paper appeared in [16], the question of whether the
zero-sum cycle problem for general graphs is in P remained open. Kosaraju and
Sullivan [ 18] subsequently showed that the zero-sum cycle problem for any dimension
can be formulated in terms of linear programming and is thus solvable in polynomial-
time. Recently Cohen and Megiddo [6] proved that the zero-sum cycle problem for
any fixed dimension belongs to the class NC, and can be solved in the two-dimensional
case in serial time O(nm), the best result to date. We hope the present paper retains
independent interest as a new connection between convex polygons and semirings,
and as a novel application of Kleene’s closure algorithm.

Finally, we discuss variations of the zero-sum cycle problem, the undirected case,
and the zero-sum simple cycle problem.

2. Two operations and a semiring. We define our closed semiring [21] as follows:
Let S be the set of all convex polygons whose vertices have integer coordinates. That
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A SEMIRING 885

is, S={au[a2zz}, where a U indicates the convex hull of a. Notice that this
definition allows polytopes with an infinite number of edges, unbounded area, or zero
area, but does not allow curves. Thus our usage of the term convex polygon is more
general than the conventional one. We conventionally denote an element in S by a
lowercase Greek letter. We regard a point or a line segment as an element of S.

For any two sets a,/3 S, we define the new set called a vector sum of a and fl
as follows: a fl ={(x, y)]there exist elements (ax, ay)G a and (bx, by)eft such that
x- ax-b bx, y- ay-b by}. See [11] for details of this operation. Let 0= {(0, 0)} S and

be the empty set.
We define the operation as the convex lull of the union of two convex polygons

in S; that is, a fl (a fl) for any a, S. In this paper, we call the operation
union-sum. We can naturally define a union-sum of a countable number of convex
polygons as follows: Let I be a countable (finite or infinite) index set and ai S for
all I. Then we define union-sum il Ol’i by O (U il Ogi) bJ. Since U gel Ogi exists
and is unique, its convex hull [ a exists and is unique. Note that ai is the convex
hull of some set in 2ZZ, and thus every vertex of i ai is in 2Zz. Hence t a S,
and thus the union-sum above is well defined.

We now define the + operation as the convex hull of the vector summation of
two convex polygons in S; that is, a + fl (a */3) . By convention, we define a +
+ a . Note as we show later (Corollary 3.4, 3), that a. fl is itself a convex
polygon when a and/3 are convex polygons. Therefore a +/3 (a * fl)= a */3 for
any a,/3 S. Therefore, we identify + with ,, and call the + operation vector-sum.
From the definitions, the vector-sum operation is commutative. Fig. 2 shows an example
of the vector-sum of two convex polygons.

We now have the following theorem.
THEOREM 2.1. The system (S, [, +, , 0) is a closed semiring.

]..:

i !/’ .."

r.:.., z

i..%/..
o

FIG. 2. a + fl is bounded by edges that are aligned with the edges in a or . Aligned edges have the same
numbers.
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886 K. IWANO AND K. STEIGLITZ

Before proving this theorem, we need the following lemma.
LEMMA 2.2. Let ! be a countable index set. Let i 2zz for all L Then we have

(u,, ,,) (u ,, ,).
Proof Let A be the left-hand side of the above equation and B the right-hand

side. Since ai c A for all /, we have U i ci c A. Since A is a convex hull, we have
(U ai) B A.

Note that aB and thus cB for all iL Therefore UI (a/)B, and
moreover, since B is a convex polygon, A (U a) U c B. D

Now we prove Theorem 2.1.

Proof of Theorem 2.1. We show that the system (S, , +, , 0) satisfies the six
properties of a closed semiring.

(1) S, t, ) is a commutative monoid. This is immediate from the definition and
Lemma 2.2.

(2) (S, +, 0) is a monoid. From the definition, this is trivial.
(3) + distributes over (. Let a, /3, 7 S be convex polygons. Since c + (/3 7)

is convex and contains (a +/3) and (a + 7), we have (a +/3) (a + 7) c a + (/3 7)-
For the opposite direction, let x be a point in a + (/3 k 3’). Then x can be expressed

as a+Ab+(1-A)c, where A[0,1]. Then we have x=a+Ab+(1-A)c=
A (a + b) + (1 A )(a + c) (a +/3) (a + 3’). Therefore, + distributes over . Note that
we can also prove that + distributes over finite union-sums by induction.

Since a Lg a (a U a) U a a, + is idempotent.
(4) Let I {i, i2, , ik} be a finite nonempty index set. Let a S for all I.

Then we can prove Lg i a ai, a b_J b_J a by induction on k and Lemma 2.2.
For the empty index set I , we have ai .

(5) The result of union-sum does not depend on the ordering of the factors. The
proof is straightforward from the definition of bJ and Lemma 2.2.

(6) In addition to (3), + distributes over countably infinite union-sums Lg. Let/3 S
and a6S for I={1,2,...}. Then we prove that /3+ita=b_J(ai+/3). Let
Z a and Z+t bJ i (a+fl). We first prove that +Z Z+. Letp=b+x
be an arbitrary point in fl +Z with b 6 fl and x Z. If there exists a finite set of
indexes J such that x[gja, then from (3), p=b+xfl+bJjaj
Lgj (/3 + %)c Z+. If x is not in the union-sum of a finite number of a’s, then x
can be represented as the limit point of a sequence of points, each of which is in some
ai; that is, there exists a countably infinite set of indexes J {j, j2," ",j," ", } such
that x limi_c Xji where x, %,. Then

p b + x b + lim x., lim (b + xj, lim (fl + %,

t (fl +) L (fl + ,,)= z+,.
jJ iI

Therefore fl +Z Z+t.
The converse can be proved similarly, and thus multiplication distributes over

infinite sums. F!
Having established that the structure (S, , +, , 0) is a closed semiring, we can

apply Kleene’s algorithm to solve certain problems related to paths in a graph [2],
[21]. With this goal in mind we next investigate the basic properties of the operations
+ and .

3. Some properties of the + and operations. Before stating some properties, we
need some definitions. For a convex polygon a in S, we denote its edge set by az and
its vertex set by av. Let be an edge of a or a line that does not intersect a. Then we
regard as an oriented line with respect to a and define its direction, denoted by
O(a), in the range 0_-< 0e <27r such that a lies on the right-hand side of when we
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A SEMIRING 887

traverse in its positive direction. Unless specified, 0 means 0e(d) for an edge e
We regard e 6 de as a vector e with the direction of 0e(d). Let dector {el e de}. By
convention, we define the following special cases: When d is either a point or the
entire plane, we regard d as a special symbol and define dector {d}. When d is a
line segment e, we define dector {e,--e}.

Let A= {di}il be a set of convex polygons. We define IAI- ILl i, (di)eaorl, that
is, [A[ is the number of distinct vectors in U,A (d,)ector- We also write IA[ Idl when
A has the single element d. We say that two edges e de andf fie are aligned when

Now we have the following lemma aboul the relationship between two consecutive
edges of a convex polygon and their directi ns.

LEMMA 3.1. Let e andfbe two consecutive edges ofa convex polygon d in clockwise
order. Then Of < Oe or Oe + r <

Proof From the definition, f lies in the right-half plane of e.
COROLLARY 3.2. Let de {e, e2," e,,} be the edges of a convex polygon d in

clockwise order. Let Oe, be the maximum of { Oe,}. Then Oe, > Oe >" > Oe,,,. The set
is called the edge sequence when the elements of de are ordered as above.

Proof The proof is clear from Lemma 3.1.
To analyze how the + operation affects the number of distinct vectors, we will

use the following well-known theorem.
TIJEOREM 3.3 ([11]). Let d, fl be two convex polygons in S. Then for every e

de fie, there exists an edge f(a+ fl)e that is aligned with e; that is, Of= Oe. This
enables us to define afunctionf q (e) from de U fie to (d + )e. Moreover, thefunction
q is onto. Figure 2 illustrates this theorem.

COROLLARY 3.4. Let d, fl be convex polygons. Then + fl a fl fl * t
Proof For the proof see [11], [20], [28].
COROLLARY 3.5. Let d and fl be convex polygons in S such that both have a finite

number of edges and n d + ill. Then the edge sequence of d + fl can be computed in
O(n) steps from two edge sequences de and fie.

Proof From Theorem 3.3, every edge e in d +/3 has an associated edge f in
de U fie such that 0f= 0e. Thus the edge sequence of (d +fl)e can be obtained by
merging the two sets { 0 e de } and { 0e e fie }.

COROLLARY 3.6. Let d, az, and d, be convex polygons in S. Then we have
an onto function q from (d,)e (dz)e ’’" U (d,)e to (d + d2+’" "+ d,)e such that
Oq(e) 0 for any e e (a,)e U (a2)e U" U

Proof The proof is by induction on n and Theorem 3.3.
TI-IEORE 3.7. For any d., S, we have Id+fl[__--<l{d, fl}l--<ldl+lfl I.
Proof The proof is straightforward from Theorem 3.3.
Next we analyze the effect of the operation on the number of distinct vectors.

First we have the following theorem.
THEOREM 3.8. Let d and be bounded convex polygons in S. Then la U ill <-

Before proving Theorem 3.8, we need the following lemma.
LEMMA 3.9. Let d S and Pl, P2," ", P, be points. Then

u p, u u u p.I I 1+ n.

Proof This can be proved by induction on n. Suppose n 1. If d contains p,
then ]d U Pl[ I1. Otherwise, d N p contains at least one edge of d, and thus Id U PI -<

I1 / 1, Suppose the lemma holds for numbers less then n. Let /3
d Pl U p2 N p. Then from the induction hypothesis, It3_,l-< Il/(n-1), and
thus I/3.-ll + 1 _-< + n.
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888 K. IWANO AND K. STEIGLITZ

Proof of Theorem 3.8. Note that a /3 is a U pl p2 p, where /3v
{Pl,P2,’",Pn}. Thus from Lemma 3.9, [a /3[_-<[a[+n =[a]+[/3[.

Theorem 3.11 covers the case when a or/3 is an unbounded convex polygon a*,
which is defined as follows" For a convex polygon a and a nonnegative integer n, we
define a convex polygon a as follows" (1) a=0 and (2) a n= a + a n- for n > 1.
Since a system (S, , +, , 0) is a closed semiring, we can define the convex polygon
ce* by a a U 7-o a i. As shown in Fig. 2, a* is U pc h :>0 hp). Thus a* is
essentially a cone emanating from the origin. As a special case, a* may be the entire
plane, a half plane, a line, a half line, or the origin itself. Now we analyze the effect
of the * operation on the number of di:’tinct vectors.

LEMMA 3.10. For tWO convex polyg ms a and % we have [a + y*[ <_-]a] + 1.

Proof. If 3’* is either the entire plane, a half plane, a line, a half line, or the origin
itself, the proof is straightforward. Otherwise y* is a cone emanating from the origin
and has two edges g and g. Let g (respectively, g) be the support lines at v
(respectively, w) of the convex polygon a such that Og,(a)=Og(y*) and Og2(a)=
Og(y*). If v= w, then [a+ y*[ [y*[_-<2. If v w, then as shown in Fig. 3, there must
be at least one edge of a which is inside a + y*. Thus the lemma is proved.

g2

g .*

FIG. 3. a + 3/* _--< I1 + and a ( + 3’*) (a t ) + 3’*.

The above lemma shows that replacement of a by a + y* does not increase the
number of edges by more than one. Moreover, we have a stronger result in the following
theorem, which shows the same result for any number of such replacements in a series
of U operations. We will use this theorem in 5 and 6.

THEOREM 3.11. Let fli, Yi S for 1, 2, , n. Then we have

I(/, + ’,*) u (/ + v*) u u (/. + ,.*)l--< I, u/ u u/.1 + 1.

Before proving Theorem 3.11, we need some lemmas.
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A SEMIRING 889

LEMMA 3.12. Let ’)/i E S for i= 1, 2,..., n. Then

,),,*+ *+... +,),,* (.,,,, u , u u .)*.

Proof We prove this by induction on n, using k for the index of induction. The
lemma trivially holds for k 1. When k 2, we prove that y* + y2* (y U y2)*. Since
y*, 7* c (, y2)*, we have 7* + y2* C (7 U 72)*. We next prove the opposite direc-
tion. Since 0E y*l+y*2 we have from the distributive law y U y2 (y U "yz)-k-
(’YI* + ’’2*) (’Y1 + 3/1* + "Y2*) U (71 + Y2 + ’Y2*) C Yl* + "Y2*. Thus the lemma holds for k 2.

Assume that the lemma holds for k<n, then y*+yz*+’"+y,*=
(y U y2 U U y,_)*+y,* (y U y U U y,)*. Note that we used the case k=
n- 1 for the first transformation and k 2 for the latter. [3

LEMMA 3.13. Let a, fl, and ), be convex polygons. Then

u (t+*)=( u t)+ *.
Proof For the proof see Fig. 3. Since a c a + y*, we have

u (+*) (+*) u (+*)=( u )+ *.
We now prove the opposite direction; that is, (a U/3)+y*c a U (/3 +y*). Since
/3 + y* c a U (/3 + y*), we only have to prove that a + y* c a U (/3 + y*). Let p a + g
be a point in a + y* with a 6 a and g 6 y*. Let b be an arbitrary point in/3. Let p, be
a point obtained by the following equation when we regard Pn, a, b, and g as points
in the x-y plane: pn=(1-1/n)a+(1/n)(b+ng). Then Pn is on the line segment
a, (b+gn),andthuspna U (fl + y*). Note thatp= limn_pn is also in a U (fl + y*)
and p a + g p. Therefore a + y* a U (/3 + y*).

LEMMA 3.14. Let ai, Yi S for 1, 2, , n. Then

(o, + *,) u (+ *) u u (,, + *,)

=(a, U O U U ln)"" ’/ll-’)/2- ""- ’/o
Proof Denote the left-hand side of the above equation by An, and the right-hand

side by Bn. We prove this by induction on n and use k for the index of induction.
The lemma holds trivially for k=l. When k=2, from Lemma 3.13, Az=
((a -- yl) U a2) -- "f2 (a U a2) t_ yl _- .)/2 B2" Assume that the lemma holds for
k<n. From the induction hypothesis for k= n-l, An Bn-1 U (an+y’n). We then
obtain An =((a, U a U U an-)+(y U y2 U U yn-)*) U (an+y*,) by
applying Lemma 3.12 to Bn_. From the basis of the induction (k=2),

)*+ y,* From Lemma 3.12, we geta (a, U a2 U" U an)+(’)/, U ’)12 U U ")/n--,

An Bn. [’]

We can now prove Theorem 3.11.

Proof of Theorem 3.11. From Lemma 3.12 and 3.14, we have

(/, + v,*) (+ v*) (t. + v.*)

=(/, / t.)+ v,*+ v*+’’ "+Vn*
=(/, t: tn)+(V V- V.)*.

Let A (respectively B) be the left- (respectively right-)hand side of the equation in the
theorem. From Lemma 3.10, IAI_-< I/ U/2 /)1+ 1-IBI+

THEOREM 3.15. Let Il/ltl-n. The operations +, U, and can all be done in

O( n steps.
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890 K. IWANO AND K. STEIGLITZ

Proof. We assume that two edge sequences (a)E and (/3)z are available. From
Corollary 3.5, we know that the + operation takes O(n) time. Given the edge-sequences
of two convex polygons, the convex hull can be found in O(n) time. There is also an

algorithm in [4] that computes f)a in O(log ([a[)) steps where is a line segment
and a is a convex hull Therefore the * operation takes O(log ([a[)) time. lq

4. Application of the closed semiring. In this section, we define the doubly weighted
zero-sum cycle problem and solve it by using the closed semiring defined in 2.

Our instance is a doubly weighted digraph G (V, E, T) where V is its vertex
set, E is its edge set, and T is a two-dimensional labeling such that T(e)= (ex, ey)
Z x Z for every e E. We use n (respectively, m) to denote the number of vertices
(respectively, edges) in a graph. We also use 0 to denote (0, 0). A path P in G is a
sequence of vertices P Vo, Vl," , Vk where ei (vi-1, vi) E and vi V. If all vertices
Vo, vl," , Vk-1 are distinct, a path P is simple. A path P such that Vo vk is called a
cycle. Given a path P= Vo, Vl,"’, vk, we define the cost of the path T(P) by the
component-wise summation of edge-labels on that path; that is, T(P)=k T(ei)--

k k
i=

(i:1 ei., i=1 ei:.). A cycle W with T(W) =0 is called a zero-sum cycle. We can now
define the doubly weighted zero-sum cycle problem as follows:

Problem ZSC. Doubly Weighted Zero-sum Cycle Problem.
Instance: A doubly weighted digraph G (V, E, T) where T is a two-dimensional

labeling such that T(e) (ex, ey) Z Z for every e E.
Question: Does G have a zero-sum cycle? In other words, is there a cycle W such

that T(W) 0?
By using the fact that the two operations defined on convex polygons form a

closed semiring, we can answer this question with the Floyd-Warshall algorithm [2],
[3], [10], [23].

Algorithm ZSC.
Input: A doubly weighted graph G with V {vl, v2," ", v,}.
Output: This algorithm answers "Yes" if the digraph G has a zero-sum cycle;

otherwise the algorithm answers "No."
Method: Let PATH(vi, v, k) denote the set of all paths from vi to v such that

all vertices on the path, except possibly the endpoints, are in the set
k for 1 < i, j < n and 0 < k < n, which is the convex hullWe compute the convex hull a i

of costs of all paths in PATH(vi, vj, k).

procedure zero-sum cycle
begin

o {{T((v,w))}for l_-<i,j_-<n do ai=

for k 1 to n

3.
4.
5.

6.

if (v,w)E
otherwise.

do
for l_--<i,j--<n do

u )* +Oi ij O ij "Jr" O/.

if=lie{1 2,... n}s.t. 0ea k
ii

then exit ("Yes");
od

exit ("No");
end

THEOREM 4.1. Algorithm ZSC works correctly.
Before proving Theorem 4.1, we need the following lemmas.
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A SEMIRING 891

LEMMA 4.2. Ifthere is a zero-sum cycle W, there must be a vertex vi such that 0 a ii.
Proof Let vi be a vertex that is on the cycle W. Since the convex hull a i’ includes

all costs of paths from V to vi, we have 0 (i" [3

LEMMA 4.3. If 0 a i’, there must be a zero-sum cycle W, and the vertex vi is on
the cycle W.

Proof Suppose that 0 a/. Let (a)v {sl, s2, , sl} such that s Z x Z. Since
is a convex polygon, any point z in :Ei can be represented as z ,jc(’l,v ks suchO ii

that k _-> 0. Let C./be a cycle corresponding to s such that T(C/)=s and vi is on the
cycle C. Note that since every s has integral coordinates, k can be chosen rational,
if z Z x Z. Thus there are rational numbers k such that O= jc(,,, )v ks. There is
an integer K such that all K. k are integers. Thus K. 0=0= 2sj(olTi) (K kj)sjo Then
the desired cycle W consists of K. k copies of C for s (ai)v.

Now we prove Theorem 4.1.

Proofof Theorem 4.1. From Lemma 4.2 and 4.3, in order to find a zero-sum cycle,
we only have to check whether or not there exists some such that 06 a’. We can
prove that a k is correctly computed by the algorithm by induction on k (as in [2])6

THEOREM 4.4. Algorithm ZSC uses O(n3) L, +, and operations from the closed
semiring defined above, where n is the number of vertices in G.

Proof Line 4 is executed n times in total.

5. Special cases of the zero-sum cycle problem. In this section, we discuss the
special cases of the zero-sum cycle problem where (1) the graphs have one-dimensional
labels, (2) the graphs are undirected, (3) the graphs have labels with magnitude at
most M, and (4) we are looking for a simple cycle with zero-sum. The first three cases
have low order polynomial algorithms, whereas the fourth is NP-complete.

(1) The one-dimensional zero-sum cycle problem. We can solve the problem
efficiently in the one-dimensional case as follows.

THEOREM 5.1. The-dimensional zero-sum cycle problem can be solved in O( n3) time,
where n is the number of vertices. (This result is implicit in Odin [22].)

Proof. We can apply our algorithm ZSC by ignoring the second labels. Note that
in the one-dimensional case every a k has at most two vertices, since it is either a
point, a line segment, or a line on the x-axis. Thus /I --< 2. From Theorem 3.15, each
operation , +, or takes constant time. Hence from Theorem 4.4, the algorithm ZSC
takes O(n 3) time.

(2) The two-dimensional undirected zero-sum cycle problem. We assume that G
is connected. We will show that the undirected version of the zero-sum cycle problem
can be solved in O(m log m) time, where m is the number of edges. In the undirected
case, a path can traverse an edge in either direction.

An instance of the undirected problem is as follows:
Instance: A connected undirected graph G V, E) with V {v, v2, , vn} and

E--{el, e2,"" ", era}. A two-dimensional labeling T from E to ZZ with T(e)=
(e, ey) for every e E.

Now we have the following lemma:
LEMMA 5.2. Let G and T be defined above. Let H be the convex hull of { T( e) e

E }. A necessary and sufficient conditionfor the existence ofa zero-sum cycle is that exactly
one of the following two conditions holds:

(1) The convex polygon H properly contains the origin.
(2) The origin is on an edge h of the convex polygon Hc. Let Y= {e E T(e) is

on h}. Then there exists an edge e Ysuch that T(e)=0, or there are two edges e, e2 Y
such that el and e are adjacent in G and the origin is on the line segment T(e), T(e2).
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892 K. IWANO AND K. STEIGLITZ

Before proving Lemma 5.2, we need some definitions. Let X {Cele e E} such that
Ce is the cycle vw v where e=(v, w). Then T(Ce)=2T(e).

We call a set of cycles A { li I} nullable if there exists a set of nonnegative
integers Az {hi e Z+ I,.J {0}li I} such that the ni are not all 0 and 2iI niT(Wi) --0.
If (U il Wi) is connected, we say that A is connected.

Note that we can construct a zero-sum cycle from a connected nullable set. Now
we have the following lemmas.

LEMMA 5.3. Let G, T, and X be defined as above. Let A { I/Vili e I} be a nullable
set of cycles. Then we can find a connected nullable set B.

Proof. Since A is nullable, there exists a set of nonnegative integers Az
{hi e Z+ I.J {0}li e I} such that the ni are not all 0 and 2iI niT(Wi) --0. If A is connected,
A is the desired set. Suppose A is not connected. Let vi be an arbitrary point on W
for every e L Since G is connected, there is a cycle Pi that passes through vl and v
for every e I-{1}. Let k be a large positive integer. Let Q be a cycle consisting of
k copies of W and one copy of Pi for every e I-{1}. Let Q1 W. Then

kT(W1) for i= 1,
T(Q,)

kT(Wi)+ T(Pi) for ie I-{1}.

Since the convex hull of {T(W)Iie I} contains 0, the convex hull of {T(Qi)lie I}
contains 0 for some large k. Therefore B {Q/lie I} is nullable for large k. Since
V e il Qi, B is connected. Thus B is the desired set. [3

Now we prove Lemma 5.2.
Proof of Lemma 5.2. Suppose (1) holds. Note that T(Ce)=2T(e), where Ce is

the cycle for every ee E defined as above. Since A={2T(e)lee E} is a nullable set,
we can find a connected nullable set, by Lemma 5.3. Thus there is a zero-sum cycle
in G. When (2) holds, it is obvious that there is a zero-sum cycle in G.

Conversely, suppose there exists a zero-sum cycle W. From the definition, there
exist positive integers ne for e e W such that 2eW neT(e)=0. This means that the
convex hull of {T(e)lee E}, denoted by He, contains the origin. If He contains the
origin properly, (1) holds. Otherwise, there must be an edge e e E such that T(e)=0,
or the origin must be on an edge h of He. Now we assume that T(e) 0 for every
e e E. Let Y {e e E IT(e) is on the edge h}. Since W is nullable, every edge in W is
in Y. Let be an edge in Y. Then for every edge e e Y, there exists ke and T(e) keT(6).
Let W/= {ee W[ T(e)= keT(6), ke > 0}, and let W_= {ee WI T(e)=-keT(Y), ke > 0}.
From the definition of {he}, we have 2eW neT( e) (e w+ neke-eew_ neke)T(-) =0.
Note that W/ and W_ . Since W= W/ U W_ is connected, there must be
connected edges el e W+ and e2e W_. Thus (2) holds, l-]

THEOREM 5.4. The two-dimensional undirected zero-sum cycleproblem can be solved
in O(m log m) time, where m is the number of edges.

Proof We only have to check condition (1) and (2) in Lemma 5.2, which can be
done in O(rn log rn) time. [3

(3) Graphs with bounded labels. A doubly weighted digraph G=(V, E, T) is
called an M-bounded graph if each dimension of every label is an integer in I-M, M].

In many VLSI applications, the communication between regular cells is made
locally: that is, interconnections are made only to neighbors. For example, n n
multipliers can be constructed from arrays of one-bit full adders with carry and sum
signal connections to the neighbors of each cell [12], [13], [14], [15]. Parallel adders
can also be constructed from one-bit full adders with carry connections to the neighbor
of each cell [13]. Many systolic arrays are also implemented with interconnections to
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A SEMIRING 893

neighbors. In such VLSI applications, the associated static digraphs of the regular
structures are all 1-bounded graphs [12].

We have the following lemma about the number of edges of a convex polygon
included in a bounded region.

LEMMA 5.5. Let R be a rectangle of width w and height h. Let H be an arbitrary
convex polygon included in R. Then H] --< 2 max (w, h) + 2.

Proof Without loss of generality, we can assume that max (w, h)= w. Let Hu be
the set of edges in H from its highest leftmost vertex to its highest rightmost vertex
in clockwise order. When we traverse an edge in Hu, we move at least one unit in the
x-direction. Thus the number of edges in H, is at most w. There are at most two
vertical edges in H. Thus HI _-< 2 max (w, h)+ 2.

LEMMA 5.6. Let G be an M-bounded graph with n vertices, then we have
4nM+3.

Proof Let fl k be the convex hull of the costs of all simple paths in PATH(vi, v, k)ij

(see the previous section for the definition). Note that the length of a simple path is
at most nM in each dimension. Thus fig is bounded by the rectangle [-nM, nM] xij

kI-riM, riM]. Therefore, from Lemma 5.5, I/3i] <-- 2 (2nM)+2 4nM+2. From
Theorem 3.11, lal<-lfll+l<-_4nM+3.

THEOREM 5.7. The algorithm ZSC takes O(n4M) timefor M-bounded graphs with
n vertices.

Proof From Theorem 4.4 and Lemma 5.6, the algorithm ZSC takes O(n nM)=
O(n4M) time.

(4) The zero-sum simple cycle problem.
THEOREM 5.8. The zero-sum simple cycle problem (ZSSC) is NP-complete.
Proof Here we use a variant of the reduction from the subset sum to the directed

path problem in the one-dimensional dynamic graphs discussed in [22]. It is obvious
that ZSSC is in NP. We use reduction from the subset sum problem SS to ZSSC, where
the problem SS is defined as follows:

Input: {aeZ+lie I} where I={1, 2, , n} and B Z+.
Question: Is there a subset J of I such that Y.j aj B?
Given an instance Iss of SS, we construct an instance Izssc of the zero-sum simple

cycle problem as follows: A directed graph G (V, E) is shown in Fig. 4 where

V {Vl, v2, Vn, W1, W2, Wn},

E ={e, (v,_,, vi)l i= 1, 2,..., n}

U {f (vi_,, w,)li- 1,2,’"’, n}

U {gi (wi, vi)l 1, 2,..., n}

U {Co (v,,

Let T be a two-dimensional labeling from E to Z Z as follows:

T(ei) T(gi) (0, O)
T(f) (ai, O)

for i= 1, 2,..., n,
for i=l,2,...,n.

Suppose Iss has a solution J such that Yjj aj B. Then Izssc has a solution of
a simple cycle consisting of Co, f and gj for j e J, and e for J.

D
ow

nl
oa

de
d 

04
/2

6/
18

 to
 1

28
.8

4.
21

6.
22

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



894 K. IWANO AND K. STEIGLITZ

Wl w2 w

(-B.O)

fi =( ai,)
vi-1

e =(o,o

wi

g= (o.o)

FIG. 4. The graph above has a zero-sum cycle if and only if there exists a set J I 1, 2, , n} such
that jj a B.

Conversely, suppose that Izssc has a solution; that is, there exists a simple cycle
W such that T(W) 0. Note that W must use el. Let J {j If E W}. Then jcJ aj B.
Thus Iss has the solution J. [3

6. Backedged two-terminal series-parallel multidigraphs. Two-Terminal Series-
Parallel (TTSP) graphs have been well studied: the undirected version in [1], [8], [25],
[27] because of its relationship to electrical networks and the directed version in [26]
because it provides an algorithm to recognize general series-parallel digraphs.

A digraph is called a rnultidigraph if we allow multiple edges between the same
two vertices. The definition of the class of TTSP multidigraphs appears in [26] as
follows:

(1) A digraph consisting of two vertices joined by a single edge is in TTSP.
(2) If G1 and G2 are TTSP multidigraphs, so too is the multidigraph obtained by

either of the following operations:
(a) Two terminal parallel composition: identify the source of G1 with the

source of G2 and the sink of G with the sink of G2.
(b) Two terminal series composition: identify the sink of G with the source

of G2.
Let TTSP (m) be the class of TTSP multidigraphs that have m edges.

From this definition, a TTSP multidigraph has a single source, denoted by s, and
a single sink, denoted by t. Let G be a TTSP graph. A multidigraph, obtained by
adding any number of baekedges to a TTSP graph G, is called a BTTSP (Backedg,ed
Two-Terminal Series-Parallel) multidigraph. An edge (x, y) is called a backedge if there
is a path from y to x in G. The graph G is called the underlying TTSP graph of GB.
Let BTTSP (m) be the class of BTTSP multidigraphs that have m edges. Fig. 5(a)
shows an example of a BTTSP graph GB that consists of a backedge indicated by
dotted lines and the underlying TTSP graph G.

Let G (V, E, T) be a doubly weighted multidigraph with V= {vl, v2," ", v,}.
Then for all v;, v. in V and k E {1, 2,..., n}, we define the convex polygon c(T) in
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A SEMIRING 895

8 12
4 b g

a d
6 14

13

15

FIG. 5(a). A BTTSP multidigraph GB" a backedge is indicated by the dotted line.

sSt

1 aPe

a

aSb bSc

vPb 5

dSg

9 wPf

(e,w,/
10

12

11

14

FIG. 5(b). A binary decomposition tree BDT G). The wide solid line corresponds to the path from v to
w in Fig. 5(a).

FIG. 5(c). ast(L3) <=3.
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896 K. IWANO AND K.. STEIGLITZ

aAb

Tv Tw
FIG. 5(d). aAb aSh and c d. Every path from v to x : T passes through c. Every path from x Tw to

w passes through d c.

/

Bvf

el

Wl

FIG. 5(e). An edge ef is the last backedge from which there is a path to w. Then we apply the induction
hypothesis to the path PsvfBv/,t.

the same way as in the previous section" that is, c(T) is the convex hull of all costs
of paths in PATH(vi, vj, k). In particular, we call a 7(T) the convex polygon of vi-vj
paths and denote it by ceo(T). For any multidigraph G, let A(G)=max,,k,T I/(T)I
and similarly for a class of graphs we write A({G}). That is, A(G) is the maximum
number of edges in a(T) when i, j, k, and T are arbitrary and G is fixed. We then
have the following theorem.

THEOREM 6.1. Let G be a doubly weighted multidigraph defined as above. For any
i, j, k, and T, there exists a two-dimensional labeling T’ such that a ko(T) o( T’).
Therefore, A((7) maxi,j,T Ioij( T)I.

Proof In order to prove the first part of the theorem, we only have to define T’(e)
as follows: (1) if e is on a path in PATH(v, vj, k), then define T’(e) T(e), and (2)
otherwise define T’(e) . We then have Ic (T)I [c0(T’)J.

The second part of the theorem is immediate from the first part. [3

From this result we can restrict attention to c0(T) instead of a k0(T) in what
follows. We now have the following theorem:

THEOREM 6.2. A(TTSP (m)) m.
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A SEMIRING 897

Before proving the theorem, we need some lemmas. Let L,, be the TTSP multidi-
graph consisting of two vertices s and t, and m edges from s to t. (See Fig. 5c.)

LEMMA 6.3. A(L,,)-- m.

Proof Let ei for i= 1, 2,.’., m be the edges of L,, and let T(ei)= vie Z x Z.
Then ast is the convex hull of {vi}, which can clearly have m sides, and no more than
m sides. V]

LEMMA 6.4. Let G be in TTSP (m) with source s and sink t, and let T be a
two-dimensional labeling of G. Let x, y be arbitrary vertices in G such that (x, y) (s, t).
Then there exists a two-dimensional labeling T’ such that laxy( T)I <-_ la.t( T’) I.

Before proving Lemma 6.4, we define the graph Gxy (Vy, Ey) for x, y V by
the following operations on a TTSP graph G (V, E): (1) First, we delete all incoming
edges to x and all outgoing edges from y. (2) We then delete all useless vertices and
their adjacent edges. A vertex v is called useless when there is no v x path or y v path.

Proof of Lemma 6.4. If there is no x-y path in G, we have axy(T)= . Thus
laxy(T)l 0_-< I,(T)I. Choose T as T’.

Otherwise there exists an x-y path in G. Since there exists an s-x path and a
y-t path, let Ps(Py,) be an arbitrary s-x path (y-t path). Let GI=(V1, El) be the
graph consisting of P, Gxy, and Py,. We define a two-dimensional labeling T’ as
follows:

if e E E
T’(e)= 0 if eP,Pyt

T(e) ifeEy.

Then la,y(T)l laL.(T’)I. [3

We can now prove Theorem 6.2.
Proof of Theorem 6.2. We first prove A(TTSP (m))=< m by induction on m. It is

clear that A(TTSP(1)) 1. Assume that the induction hypothesis is true for k < m. Let
G (V, E) be in TTSP (m) with source s and sink t. From Lemma 6.4, we only have
to show la.,(T)[ _<-m for any T. From the definition of TTSP, G must be constructed
either in series or in parallel from Gl 6 TTSP (m) and GTTSP (mz) such that
m m + m2 and ml, m2 > 0. Then we have A(G) =< A(G) + A(G2) -<- ml + m m. Note
that the first inequality uses Theorems 3.7 and 3.8, while the second uses the induction
hypothesis. Thus A(TTSP (m)) _-< m. Since Lm TTSP (m), from Lemma 6.3, A(L,,,)
m, which shows this bound is achievable. [3

We will show the same result for the class of BTTSP multidigraphs. The following
lemma says that every backedge in an s- path in a BTTSP graph lies on a cycle that
lies on the s- path.

LEMMA 6.5. Let GB be a BTTSP graph with source s and sink t, and let P be a path
from s to possibly using some backedges in GB. Then P can be represented as follows:
P P1 cr’p2c PkCk where P1P2" Pk is apathfrom source to sink in the underlying
TTSP graph G, the Ci’s are cycles in GB, and r _-> 0 for _-< _-< k.

Proof For the proof see 7. [3
Ti-izOgZM 6.6. A(BTTSP (m)) m.
Proof Since TTSP m BTTSP m ), we have m A(TTSP (m)) -<_

A(BTTSP (m)). We now prove that for an arbitrary graph G BTTSP (m) with at
least one backedge, A(G) <- m. Let G= (V, El) be the underlying TTSP graph of
G, and let T be a two-dimensional labeling of Gn. Let PB(s, t) be the set of s-t
paths in Gn, and let P(s, t) be the set of s-t paths in G. Let P be an arbitrary path
in Ps(s, t). Then from Lemma 6.5, P can be expressed as P= P1C,PzC... PkCrkk,
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898 K. IWANO AND K. STEIGLITZ

where PP2"" Pk is a path from source to sink in the underlying TTSP graph G, the
Ci’s are cycles in G, and ri _>- 0 for 1 -< -< k. Let p T(PP2" Pk) and yp, T(C)

rlfor l<=i<k. Then T(P)=flp+3/p,+3/pz+’’’+’}/pk. Let P*=
{PC’’r’pzC2r2... PkC,krk[P=PC’P2C PkCkPB(s, t), and niZ+{O} for
1 -< i- k}. Let T(P*) be defined as T(P*) U Qp. T(Q). Since P* c PB(s, t), we have

T(P*) flp+(yp, U yp U U ypk)* + U T(P).
PPB(s,t)

Note that T(P)c T(P*). Therefore ee(.,,,) T(P)= ee(,,,) T(P*). Thus we now
have

I,(T)I-- U T(P) T(P*)
Pe P(s,t) P PB(s,t)

U 13,,+(,,,, U /,, U... U /,,)*
P PB(S,t)

+1 (using Theorem 3.11)

U T(P)
P PB(S,t)

+1

<-last(G)[ + 1 (from the definition)

--< A(TTSP (IE, I)) + 1

lEvi+ 1 (using Theorem 6.2)

because IEI_-<m-1 by the assumption that G has a backedge. Thus
A(BTTSP (m)) <__ m.

COROLLARY 6.7. For BTTSP, the algorithm ZSC runs in O(n3m) time where n is
the number of vertices and m is the number of edges.

Proof The proof is clear from Theorems 4.4 and 6.6.

7. Proof of Lemma 6.5. Let G V, E) be a TTSP multidigraph with source s and
sink t. A binary decomposition tree for G, denoted by BDT (G), which was discussed
in [26], represents the construction process of G by a binary tree. A binary tree
BDT (G) can be created by following the sequence of series and parallel compositions
that construct G. Initially we have a set of singletons {ele E}. Suppose we apply a
two terminal parallel (respectively, series) composition to two TTSP graphs Gy and
G and obtain the new TTSP graph Gb where x, u; a are sources and y, v, b are
sinks. Then we create BDT (Gb) by creating the root Pb (respectively, ,Sb) and make
BDT (Gy) a left subtree and BDT (G,) a right subtree. Thus in BDT (G), every leaf
represents an edge in G and each internal node Pb (respectively, ash) represents a
parallel (respectively, series) composition. Fig. 5(b) shows an example. Note that every
path in G has a corresponding route in BDT (G). For example, the path

P=v-3-b-5-c-7-d-8-e-9-w,
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A SEMIRING 899

shown in bold lines in Fig. 5(a), has the following corresponding route in BDT (G)"

PBD: (V, b) 3 P S S P S S sSt dSt

=(e,w).

Note that the vertices shown in bold face in the path PBDT, (b, c, d, and e), appear in
P in this order.

Let Tw be the smallest subtree in BDT (G) that includes vertices v and w. (Find
the nearest common ancestor and include the appropriate subtree.) Let T (respectively,
Tw) be the subtree of Tw in which v (respectively, w) exists as shown in Fig. 5(d).
We use aAb for representing either ash or aPb. Let Ab, Ae, and dAb be the root of
the subtrees Tw, T, and Tw, respectively. Then we have the following lemma:

LEMMA 7.1. Suppose Ay appears in PBDT" If Ay appears in T, then y is in P. If
Ay appears in Tw, then x is in P.

Proof Suppose Ay appears in T. The vertex v is in the TTSP graph with source
x and sink y. Thus every path from v to a vertex that is not in T must pass through
y. We can prove the other case in the same way.

COROIARY 7.2. Suppose there is a v w path in G and T, T, and T are defined
as above. Let Ab, Ae, and aAb be the roots of the subtrees T, T, and T, respectively.
Then we have the following"

(1) aAb Sb; that is, the root of Tw corresponds to a series composition, and c d.
(2) Every path from v to passes through the vertex c.
(3) Every path from s to w passes through the vertex c.
(4) Any v- path and any s-w path intersect at some vertex.

Proof. (1) If the root of T corresponds to a parallel composition, there is no
path from v to w. Thus Ab --Sb. And the series composition identifies the sink of C
and the source of aAb, thus c- d.

(2) Since there is a w-t path, t T. Therefore, from the proof of the above
lemma, every path from v to passes through the vertex c.

(3) We can prove this in the same way as (2).
(4) This is obvious from (2) and (3). l-I

ProofofLemma 6.5. Let k be the number of backedges in P. Let Bxy (Pxy) denote
an x-y path in G (G). We prove the lemma by induction on k.

Suppose k 1 and let e (w, v) be the backedge in P. Note that there must be a
v-w path in the underlying TTSP graph G. P can be represented as P PweP,. Pw
and P, are paths in G, since k 1, so that from Corollary 7.2, they pass through the
same vertex c. Therefore, we can express P as P PcPwePP,. Thus we obtain the
cycle C P,.weP.

Suppose the lemma holds for numbers less than k. Let E {el, e2,"" ", e} be
the backedges that appear in P in this order. Let e (wi, v) for 1 -< -</. Let ey (w.r, vy)
be the last backedge in En such that there is a path from vy to w in G. Assume that
ey el. (When ey e, we can easily modify the following proof.) Then as shown in
Fig. 5(e), P can be represented as P P,weB,w.resBj.,. Let P,. be an arbitrary s-vs
path in G, and let P1 Psj.B.,. Then P has backedges where <-k-1, because e
is not on P. From the induction hypothesis, P can be formed from an s-t path Ps,
and cycles {C ]j J}. Note that Ps. is part of P,; that is, there exists a vy-t path
such that P., PI.P.,. Suppose not. Let e--(x, y) be the first edge in P.. such that
y P,. Then there exists a backedge (z, x) in B.., and a cycle C such that (z, x) C.
Since there exists an x-v.r path and a vj.-w path in G, there exists an x-w path
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in G. This contradicts the definition of vf, since the backedge (z, x) is in Br, and thus
appears after ef in EB.

Thus Ps, Ps.rPr,, and the path P consists of PwlelB,w.l.ef, PI.,, and cycles
{CIjJ}. Let Pz=Pw, elB,w.efPs,. Since there is a Vr-wl path in G, from
Corollar.y 7.2, Pw, and Ps, intersect at some vertex e. Thus P2 can be expressed as

P2 PcCPc, where C PcwlelB,w.reyPl.. Therefore the path P consists of the path
PscPct, cycle C, and cycles {C [j J}. [-]

8. Conclusion. We showed that the two operations of vector summation (+) and
convex hull of union ([) defined on the set of convex polygons form a closed semiring.
We then investigated some properties of these operations. For example, the + operation
can be done in O(rn) time, where rn is the number of edges involved in the operation.

We then obtained the algorithm ZSC by using Kleene’s closure algorithm on the
above closed semiring. The algorithm ZSC solves the two-dimensional zero-sum cycle
problem, which has a close relationship to the problem of acyclicity in two-dimensional
regular electrical circuits. The complexities of our algorithm ZSC in some special cases
are O(n3) time for the one-dimensional labeling case, O(n4M) time for M-bounded
graphs, and O(n3m) time for BTTSP graphs, where n is the number of vertices and
m is the number of edges. We also showed that the undirected version of the zero-sum
cycle problem can be solved in O(m log m) time and that the zero-sum simple cycle
problem is NP-complete.

We make the following conjecture about the number of edges of the convex
polygons that appear in the algorithm ZSC:

CONJECTURE. Let G, T, and Ogij (T) be defined in the same way as in the text. Then

A(G) max Ioij( T)I :< m,
i,j,T

where rn is the number of edges in G.
If this conjecture is true, then algorithm ZSC runs in O(n3m) time on general

graphs.
After the extended abstract of this paper appeared in 16], Kosaraju and Sullivan

[18] showed that the zero-sum cycle problem for any dimension can be formulated in
terms of linear programming, and thus is solvable in polynomial-time; Cohen and
Megiddo [6] proved that the zero-sum cycle problem for any fixed dimension belongs
to the class NC and can be solved in the two-dimensional case in serial time O(nm).
As mentioned in the Introduction, we hope the results in the present paper are of
interest as a new connection between convex polygons and semirings, and as a novel
application of Kleene’s closure algorithm, even though faster algorithms are now
available for the zero-sum cycle problem.

Acknowledgment. We are grateful to the referees for their careful reading of the
paper and valuable comments that improved the quality of the paper. In particular,
they suggested references [11], [20], [28], a simpler proof for Theorem 2.1 (3), and a
better time complexity in Theorem 3.15.
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