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Abstract We propose Kleene algebra with domain (KAD), an exten-
sion of Kleene algebra with two equational axioms for a domain and a
codomain operation, respectively. KAD considerably augments the ex-
pressibility of Kleene algebra, in particular for the specification and
analysis of state transition systems. We develop the basic calculus, dis-
cuss some related theories and present the most important models of
KAD. We demonstrate applicability by two examples: First, an algebraic
reconstruction of Noethericity and well-foundedness. Second, an alge-
braic reconstruction of propositional Hoare logic.
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1 Introduction

State transition systems are often modelled in a bipartite world in which propo-
sitions and actions coexist. Propositions express static properties of states, while
actions relate states to model their dynamics. Propositions are usually organized
in a Boolean algebra, whereas the sequential, non-deterministic and iterative
behaviour of actions is often ruled by a Kleene algebra. Reasoning about state
transition systems requires migration between the two parts of the world. This
can be modelled by two mappings. One sends actions to propositions in order to
express properties of actions. The other sends propositions to actions in order to
model propositions as tests, measurements or observations on states, hence as
state-preserving actions. This is needed in particular for programming constructs
like conditionals or while-loops.

There are two prominent, but complementary realizations of this two-world
picture: Propositional dynamic logic and its algebraic variants [18,22,33,34,36,39]
(PDL) and Kleene algebra with tests (KAT) [25]. In PDL, only propositions are
first-class citizens. This gives the approach a logical flavor. While equivalence
of propositions is directly expressible, actions can only be observed indirectly
through propositions; the algebra of actions is implicitly defined within that of



propositions. However, both mappings are present: modal operators from ac-
tions and propositions into propositions and test operators from propositions
into actions. This approach is suited for an extensional world, in which actions
are completely determined by their input/output behaviour, for instance, when
they are modelled as set-theoretic relations. Then, the use of modal operators
allows a very versatile and intuitive reasoning. In KAT, only actions are first-
class citizens. This gives the approach an algebraic flavour. While equivalence of
actions is directly expressible, propositions can only be observed by considering
them as actions; the algebra of propositions is embedded as a subalgebra into
the algebra of actions, which is a Kleene algebra. Thus only the mapping from
propositions to actions is present. The overloading of syntax for propositions
and actions leads to particularly economical specifications and proofs. KAT does
not make any extensionality assumptions and therefore admits a rich class of
models beyond the relational one1. Using PDL or KAT, many properties of state
transition systems can succinctly be expressed and analyzed. Each approach has
its particular advantages and merits. Note, however, that PDL is EXPTIME-
complete [18], while the equational theory of KAT is PSPACE-complete [27].

We propose Kleene algebra with domain (KAD) as an extension of KAT and
as a reconciliation of KAT and PDL with equal opportunities for propositions
and actions. We believe that KAD not only combines the particular advantages
of both previous approaches. It also offers additional flexibility and symmetry
and yields new structural insights. In particular, beyond this reconciliation, our
algebraic abstraction of the domain operation yields a uniform view of hitherto
separate approaches to program analysis and development: formalisms based on
modal logic such as PDL, formalisms based on algebra such as KAT, set-based
formalisms such as B [2] and Z [38], where domain is extensively used, and se-
mantic approaches based on predicate transformers [13]. As in KAT, we embed
propositions into actions. As in PDL, we also provide a mapping from actions
to propositions: the domain operation. Adding domain to KAT is only natural.
Relations are the standard model for state transition systems in KAT and PDL.
Domain is probably the most natural “modal operator” for relations and KAD
supports abstract algebraic reasoning with it. Domain has been already been
defined algebraically in extensions of Kleene algebra like quantales and rela-
tion algebras (cf. [1,11,12,37]). But there is no straightforward transfer to KAT.
Again, KAD offers several benefits. In opposition to relation algebra, it focuses
entirely on the essential operations for state transition systems. Compared with
quantales, our approach is entirely first-order and therefore better suited for
automated reasoning.

Here, our main emphasis is on motivating the definitions, developing the basic
calculational aspects and discussing the most interesting models of KAD. We also
provide two examples that show its applicability. Many interesting questions, for
instance concerning completeness, representability, expressiveness, complexity,
the precise relation to modal algebras and a more extensive investigation of
applications are postponed to further publications.

1 Extensionality is studied under the name separability in the context of PDL [21].
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More precisely, our main results are the following.

– We propose finite equational axiomatizations of a domain and codomain
operator for certain idempotent semirings and Kleene algebras.

– We develop a basic domain calculus for KAD. Our axioms capture many nat-
ural properties of domain in the relational model and provide new structural
insight into the abstract algebraic properties of domain.

– We show that KAD is well-behaved on the standard models of Kleene algebra.
– We define preimage and image operators in KAD. These are very interesting

for the specification and analysis of state transition systems and programs.
– We show that Noethericity and well-foundedness are expressible in KAD. We

derive properties of these notions.
– We show that KAD subsumes propositional Hoare logic; moreover, we argue

that it can serve as the core of abstract axiomatic semantics for imperative
programming languages.

– We derive implementation schemata for efficient reachability algorithms for
directed graphs within KAD.

Besides these main results there are the following interesting contributions. We
show independence of the domain and codomain axioms of KAD. We discuss
show their compatibility with those for quantales and relation algebra. We pro-
vide translations from a class of KAD-expressions to KAT without domain. We
introduce two notions of duality that enable a transfer between properties of do-
main and those of codomain. We show that KAD is not a finitely based variety,
whereas all its subalgebras of propositions and all idempotent semirings with
domain are.

The remainder of this text is organized as follows. Section 2 introduces idem-
potent semirings, Kozen’s Kleene algebra, some extensions and the standard
models for these structures. Section 3 introduces idempotent semirings with
tests, KAT and again the standard models. Section 4 presents an equational ax-
iomatization of domain for idempotent semirings. We show independence of the
axioms, discuss several extensions and provide some examples for the standard
models. Moreover, we outline a basic domain calculus for idempotent semirings.
Another important concept, locality domain and codoman, paves the way to
an incorporation of propositional dynamic logic. Section 5 presents two ways of
basing an equational axiomatization of codomain for idempotent semirings on
that of domain. In Section 6, image and preimage operators are derived from
the domain and codomain operators. In Section 7 we derive properties of do-
main and codomain in KAD. In connection with the Kleene star operator, they
allow an abstract treatment of reachability in directed graphs and state tran-
sition systems. Section 8 contains some simple metaresults on KAD. Section 9
algebraically reconstructs Noethericity and well-foundedness in KAD. Section 10
shows that propositional Hoare logic is subsumed by KAD. Section 11 draws
conclusions and points out further work.
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2 Idempotent Semirings and Kleene Algebra

In this section, we introduce idempotent semirings, Kozen’s variants of Kleene
algebras and certain related structures such as lattice-ordered monoids and quan-
tales. We also present some important models of Kleene algebra, such as the re-
lational model, the language model, the path model, the (min,+)- and (max,+)-
models and some of the small finite Kleene algebras of Conway.

Kleene algebras are a class of algebras that axiomatize the regular operations
of addition, multiplication and Kleene star as they arise in formal languages and
in the analysis of state transition systems and programs. Traditionally, there are
two main approaches to Kleene algebra, one based on semirings, the other based
on lattices.

2.1 Semirings

A semiring is a structure (A,+, ·, 0, 1), such that (A,+, 0) is a commutative
monoid, (A, ·, 1) is a monoid, multiplication is left and right distributive with
respect to addition and 0 is an annihilator with respect to multiplication (a0 =
0 = 0a). As a convention, we always assume that 0 and 1 are elements of A. We
call a semiring trivial if 0 = 1, since then for all a ∈ A

a = a1 = a0 = 0,

i.e., A = {0}. Therefore, henceforth we identify semirings with non-trivial semi-
rings. We also write ab instead of a · b and stipulate that multiplication binds
stronger than addition.

A semiring is idempotent (an i-semiring) if addition is idempotent. The class
of idempotent semirings is denoted by IS.

The relation ≤ defined on an i-semiring A by

a ≤ b ⇔ a + b = b (1)

for all a, b ∈ A is a partial ordering, in fact the only partial ordering on A for
which 0 ≤ a for all a ∈ A and which is (left and right) monotonic with respect to
addition and multiplication. It is therefore called the natural ordering on A. By
(1), inequalities can be understood as abbreviations for equations. We therefore
use the notion of equation freely for both kinds of expressions.

Obviously, every i-semiring is a semilattice with respect to the natural order-
ing with least element 0 and addition as join. Thus

a ≤ c ∧ b ≤ c ⇔ a + b ≤ c. (2)

In calculations with partial orders, we often appeal to the principles of indirect
inequality and indirect equality. Instead of a ≤ b we show ∀ c . c ≤ a ⇒ c ≤ b or
∀ c . b ≤ c ⇒ a ≤ c. Likewise, a = b can be proved by showing ∀ c . c ≤ a ⇔ c ≤ b
or ∀ c . b ≤ c ⇔ a ≤ c.
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2.2 Kozen Semirings

A Kozen semiring (a K-semiring) [23] is a structure (A,+, ·, ∗, 0, 1), such that
(A,+, ·, 0, 1) is an i-semiring, a∗b is the least prefixed point of the function λx.b+
ax and ba∗ is the least prefixed point of λx.b + xa. Formally, the Kleene star ∗

satisfies the equations

1 + aa∗ ≤ a∗, (∗-1)
1 + a∗a ≤ a∗, (∗-2)

and the Horn rules

b + ac ≤ c ⇒ a∗b ≤ c, (∗-3)
b + ca ≤ c ⇒ ba∗ ≤ c, (∗-4)

for all a, b, c ∈ A. The class of K-semirings is denoted by KA.
The expressions a∗b and ba∗ are uniquely defined by (∗-1) and (∗-3), and

(∗-2) and (∗-4), respectively. We now recall some further standard properties
of K-semirings (cf. [23]). Most of them are also familiar from formal language
theory [15].

Lemma 2.1. Let A ∈ KA. For all a, b ∈ A,

1 ≤ a∗, (3)
a∗a∗ = a∗, (4)

∀ i ∈ N . ai ≤ a∗, (5)
a∗∗ = a∗, (6)

(ab)∗a = a(ba)∗, (7)
(a + b)∗ = a∗(ba∗)∗. (8)

For all a, b, c ∈ A,

a ≤ 1 ⇒ a∗ = 1, (9)
a ≤ b ⇒ a∗ ≤ b∗, (10)

ac ≤ cb ⇒ a∗c ≤ cb∗, (11)
ca ≤ bc ⇒ ca∗ ≤ b∗c. (12)

2.3 Lattice-Ordered Monoids and Quantales

A lattice-ordered monoid (an l-monoid) is a structure (A,+,u, ·, 1), such that
(A,+,u) is a lattice, (A, ·, 1) is a monoid and left and right multiplication are
additive. l-monoids are extensively studied in [4]. An l-monoid is bounded if it
has a least element 0 and a greatest element >. It is complete if the underlying
lattice is. A quantale [32] or standard Kleene algebra [9] is a complete l-monoid in
which left and right multiplication is universally additive. Quantales have been
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investigated in contexts like the logic of quantum mechanics [32] and algebraic
models of certain linear logics [41]. A d-monoid and ab-monoid, respectively,
is an l-monoid whose lattice reduct is distributive and Boolean, respectively.
A d-quantale and b-quantale, respectively, is a quantale whose lattice reduct
is distributive, and Boolean, respectively. Remember that a Boolean lattice is
a complemented distributive lattice, we use the notion Boolean algebra as a
synonym. b-monoids and b-quantales have been studied, for instance, in [11,12].
Also the sequential algebras of [19] are particular b-quantales. In quantales, the
Knaster-Tarski theorem guarantees that the Kleene star, which is again defined
as the least pre-fixed point of a monotonic function, always exists. This is in
contrast to KA, where completenes of the underlying semilattice is not assumed.

The main results of this paper are entirely based on i-semirings and not on
quantales. A first reason is that i-semirings are more general than quantales.
Every quantale is an l-monoid; every K-semiring and every l-monoid is an i-
semiring. K-semirings are first-order structures whereas, due to completeness,
quantales are essentially higher-order. However, completeness is the key to using
Galois connections as a very elegant means of defining functions on quantales,
whereas this is not in general possible for i-semirings.

A second reason is that in b-modules and b-quantales there is a notion of
complementation. When reasoning about programs, elements of a b-monoid rep-
resent programs as input/output relations. Hence the complement of such an
element relates all states that are not in the input/output relation. IS has the
advantage of avoiding an ontological commitment to this concept, which is rather
unnatural in this context.

2.4 Example Structures

The classes IS and KA are quite rich. We now present some standard examples.
We will later show that the domain and codomain operations are well-behaved
on all these structures. In the first examples, we present some of the finite K-
semirings with at most 4 elements from Conway’s book (c.f. [9], p.101). We will
later use them, in particular, as counterexamples.

Example 2.1.
1

0

Consider the structure A2 = ({0, 1},+, ·, 0, 1) with addition and multiplication
defined by the tables

+ 0 1
0 0 1
1 1 1

· 0 1
0 0 0
1 0 1

Then A2 is an i-semiring, called the Boolean semiring, since + and · play the roles
of disjunction and conjunction. A2 can uniquely be extended to a K-semiring by
setting 0∗ = 1∗ = 1. ut
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Example 2.2.
a

1

0

Consider the structure A1
3 = ({a, 0, 1},+, ·, 0, 1) with addition and multiplication

defined by the tables
+ 0 a 1
0 0 a 1
a a a a
1 1 a 1

· 0 a 1
0 0 0 0
a 0 a a
1 0 a 1

Then A1
3 is an i-semiring. It can uniquely be extended to a K-semiring by setting

0∗ = 1∗ = 1 and a∗ = a. ut

Example 2.3.
1

a

0

Consider the structure A2
3 = ({a, 0, 1},+, ·, 0, 1) with natural ordering 0 < a < 1

and addition and multiplication defined by the tables

+ 0 a 1
0 0 a 1
a a a 1
1 1 1 1

· 0 a 1
0 0 0 0
a 0 0 a
1 0 a 1

Then A2
3 is an i-semiring. It can uniquely be extended to a K-semiring by setting

a∗ = 0∗ = 1∗ = 1. ut

Example 2.4. Consider the structure A3
3 = ({a, 0, 1},+, ·, 0, 1) which is like A2

3

except for a · a = 0:
+ 0 a 1
0 0 a 1
a a a 1
1 1 1 1

· 0 a 1
0 0 0 0
a 0 a a
1 0 a 1

Then A3
3 is an i-semiring. It can uniquely be extended to a K-semiring by setting

a∗ = 0∗ = 1∗ = 1. ut
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Example 2.5.
b

1

a

0

Consider the structure A1
4 = ({a, b, 0, 1},+, ·, 0, 1) with natural ordering 0 < a <

1 < b and addition and multiplication defined by the tables

+ 0 a 1 b
0 0 a 1 b
a a a 1 b
1 1 1 1 b
b b b b b

· 0 a 1 b
0 0 0 0 0
a 0 0 a a
1 0 a 1 b
b 0 a b b

Then A1
4 is an i-semiring. It can be extended to a K-semiring by setting 0∗ =

a∗ = 1∗ = 1 and b∗ = b. ut

There are 18 four-element K-semirings, up to isomorphism.

Example 2.6. Consider a set A and the structure REL(A) = (2A×A,∪, ◦, ∅,∆),
where 2A×A denotes the set of binary relations over A, ∪ denotes set union,
◦ denotes relational product, ∅ denotes the empty relation and ∆ denotes the
identity relation {(a, a) | a ∈ A}.

Then REL(A) is an i-semiring with set inclusion as the natural ordering.
It can be extended to a K-semiring by defining R∗ as the reflexive transitive
closure of R for all R ∈ REL(R), that is, R∗ =

⋃
i≥0 Ri, where R0 = ∆ and

Ri+1 = R ◦Ri.
We call REL(A) the relational i-semiring or K-semiring over A. ut

Example 2.7. Let (A,+, ·, 0, 1) be a semiring and Q be a finite set Then the
set AQ×Q can be viewed as the set of |Q| × |Q|-matrices with indices in Q and
elements in A. Now consider the structure MAT(Q,A) = (AQ×Q,+, ·, 0,1) where
+ and · are the usual operations of matrix addition and multiplication and 0
and 1 are the zero and unit matrices. Then MAT(Q,A) again forms a semiring,
the matrix semiring over Q and A. MAT(Q,A) is idempotent if A is. In this case,
the natural order the natural order is the componentwise order. If the underlying
semiring A admits infinite sums, Q may also be infinite.

Taking A as the Boolean semiring yields another representation of REL(A)
as MAT(Q,A) in terms of adjacency matrices.

If A is a K-semiring and Q finite then MAT(Q,A) can be extended to a K-
semiring (see [9]) by setting (a, b, c, d may be submatrices of which a and d have
to be square) (

a b
c d

)∗

=
(

f∗ f∗bd∗

d∗cf∗ d∗ + d∗cf∗bd∗

)
,
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where f = a + bd∗c.

Example 2.8. Let Σ∗ be the set of finite words over some finite alphabet Σ and
consider the structure LAN(Σ) = (2Σ∗

,∪, ., ∅, {ε}), where 2Σ∗
denotes the set of

languages over Σ, and the ∪ denotes set union, L1.L2 = {vw | v ∈ L1, w ∈ L2},
where vw denotes concatenation of v and w, ∅ denotes the empty language and
ε denotes the empty word.

Then LAN(Σ) is an i-semiring with natural ordering defined by language
inclusion. It can be extended to a K-semiring, defining L∗ = {w1w2 . . . wn |n ≥
0, wi ∈ L}.

We call LAN(Σ) the language i-semiring or K-semiring over Σ. Remember
that ∪, . and ∗ are often called regular operations and the sets that can be
obtained from finite subsets of Σ∗ by a finite number of regular operations are
called regular subsets or regular events of Σ∗. The equational theory of the
rational subsets is also called the algebra of regular events.

There is a natural homomorphism L from the term algebra over the signature
of K-semirings generated by a set Σ onto the algebra of regular subsets of Σ∗,
given by L(a) = {a} for each a ∈ Σ, L(a + b) = L(a) ∪ L(b) and L(a · b) =
L(a).L(b). Kozen [23] has shown that LAN(Σ) is the free K-semiring on the
generators Σ. ut

Example 2.9. Consider a set Σ of vertices (or states). Then subsets of Σ∗ can be
viewed as sets of possible graph paths (or state sequences in a transition system).
The partial operation of join or fusion product of elements of Σ∗ is defined as

ε ./ ε = ε (13)
ε ./ (y.t) is undefined, (14)
(s.x) ./ ε is undefined, (15)

(s.x) ./ (y.t) =
{

s.x.t when x = y,
undefined otherwise (16)

for all s, t ∈ Σ∗ and x, y ∈ Σ. It describes the gluing of paths at a common end
point. This operation is extended to subets of Σ∗ by

S ./ T = {s ./ t | s ∈ S ∧ t ∈ T ∧ s ./ t defined}.

Then PAT(Σ) = (2Σ∗
,∪, ./, ∅, Σ ∪ {ε}) is an i-semiring that we call the path

i-semiring over Σ. ut

Example 2.10. Using matrices over the language algebra we can also model la-
belled transition systems. Assume a set Q of states and a set Σ of labels. The
matrices in MAT(Q, LAN(Σ)) can be considered as recording possible sequences
of labels (traces) that connect two states; if there is no possible transition be-
tween two states, the corresponding matrix element is the empty language. ut

Example 2.11. The language example can easily be generalized to an arbitrary
monoid (A, ·, 1). Then (2A,∪, ◦, ∅, {1}) is the free i-semiring over (A, ·, 1). In
particular, multiplication (and star) are defined as in Example 2.8. ut
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Example 2.12. Set N∞ = N ∪ {∞} and define the operations min and + in the
obvious way. Then the structure (min,+) = (N∞,min,+,∞, 0) is an i-semiring,
called the tropical semiring [28]. Its natural ordering is the converse of the stan-
dard ordering on N∞. Hence 0—the semiring multiplicative unit—is the largest
element, so that by (9) (min,+) can uniquely be extended to a K-semiring by
setting n∗ = 0 for all n ∈ N∞. ut

Example 2.13. Set N−∞ = N ∪ {−∞} and consider the structure (max,+) =
(N−∞,max,+,−∞, 0)with operations defined in the obvious way. Then(max,+)
is an i-semiring, called the max-plus semiring [17]. Its natural ordering coincides
with the standard ordering on N−∞. Unlike the tropical semiring, the max-plus
semiring cannot be extended to a K-semiring. The reason is that for a > 0 the
set {an |n ∈ N} = {na |n ∈ N} is unbounded, whereas, according to (5), it
should have a∗ as an upper bound. ut

3 Subidentities and Kleene Algebra with Tests

We now take the first step towards the definition of domain and codomain oper-
ations on IS. We discuss the subidentities of IS, KA and related structures. These
are the elements that lie below the multiplicative unit. We also introduce idem-
potent semirings with tests and Kleene algebras with tests. Finally, we discuss
a few important models of these structures.

As a motivation, consider the relational i-semiring from Example 2.6. Here,
the domain of a relation is a set. Abstracting to arbitrary i-semirings, the domain
operation should be a mapping from the i-semiring to some appropriate Boolean
algebra. In the matrix representation for finite relations based on the Boolean
semiring, obviously, a characteristic matrix can be associated with each set A.
Setting n = |A|, the empty set is characterized by the n × n zero matrix, the
set A by the n × n unit matrix and all other sets by matrices smaller than the
unit matrix. Obviously, there are 2n such matrices, which is also the number of
subsets of A. Using this abstraction, we model domain and codomain in an i-
semiring as an i-semiring endomorphism into the set of elements that are smaller
than 1. We now take a closer look at the set of these elements.

3.1 Subidentities

An element a of an i-semiring A is a subidentity if a ≤ 1. We denote the set of
subidentities of A by sid(A).

Lemma 3.1. The set of subidentities of an i-semiring forms an i-semiring.

However, this subsemiring is usually too large for our purposes. In the re-
lational i-semiring or in b-monoids, multiplication of subidentities is a meet
operation; the set of subidentities is a Boolean sublattice (c.f. Section 3.3). In
i-semirings, this need not be the case.

Lemma 3.2. Multiplication of subidentities in IS is a lower bound operation.

10



Proof. Let A ∈ IS and p, q ∈ sid(A). Then p = p1 ≥ pq ≤ 1q = q. Thus pq is a
lower bound of p and q. 2

Lemma 3.3. Multiplication of subidentities in IS (in d-monoids, d-quantales)
is not always idempotent.

Proof. Consider the i-semiring A2
3 from Example 2.3. Obviously, a is a subiden-

titiy that is not multiplicatively idempotent. Since A2
3 is a chain, it is automati-

cally a distributive lattice, hence a d-monoid. Since it is finite, it is automatically
complete, hence a d-quantale. The counterexample is minimal for all these struc-
tures.

2

Consequently, multiplication of subidentities in IS is not in general a greatest
lower bound operation. Additional properties are required to model sets, propo-
sitions or tests in IS.

Lemma 3.4. The set of multiplicatively idempotent subidentities of an i-semi-
ring forms a bounded distributive lattice.

Proof. Let isid(A) be the set of multiplicatively idempotent subidentities of A ∈
IS.

We first show that multiplication restricted to isid(A) is meet, hence a great-
est lower bound operation. It is a lower bound operation by Lemma 3.2. Let
p, q, r ∈ isid(A) with r ≤ p and r ≤ q. Then r = rr ≤ pq, whence pq is the
greatest lower bound of p and q. Consequently, also

pq = qp (17)

for p, q ∈ isid(A).
We now show the closure properties of the subalgebra. 0, 1 ∈ isid(A) is obvi-

ous. Let p, q ∈ isid(A). Then

(p + q)(p + q) = pp + pq + qp + qq

= p + (p u q) + (q u p) + q

= p + q

and, using (17),
(pq)(pq) = ppqq = pq.

We now show that the sublattice is distributive. The first distributivity law

p(q + r) = pq + pr

holds by the semiring laws. The second distributivity law

p + (qr) = (p + q)(p + r)

then follows from the first one by lattice algebra.
Finally, the lattice is bounded, since 0, 1 ∈ isid(A). 2

Instead of following this way (see also the discussion on page 18), we chose
another one which is conceptually much simpler and which is introduced in the
following subsection.
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3.2 Test-Semirings and Kleene Algebra with Tests

Following Kozen’s approach to Kleene algebra with tests, we say that a test-
semiring (a t-semiring) is an i-semiring A with a distinguished Boolean sub-
algebra test(A) of sid(A) with greatest element 1 and least element 0. We call
test(A) the test algebra of A and say that A has tests. We denote the class of
t-semirings by TS. A t-semiring is a Kt-semiring or Kleene algebra with tests,
when the t-semiring is also a K-semiring [25]. The class of Kleene algebras with
test is denoted by KAT.

We will henceforth use letters

a, b, c, . . .

for arbitrary semiring elements (actions) and the letters

p, q, r, . . .

for tests (propositions). Moreover, by p′ we denote the complement of test p in
test(A). Also, p u q denotes the meet of p and q.

Lemma 3.5. IS ⊆ TS.

Proof. Let A ∈ IS. If 0 = 1 then the claim A ∈ TS is trivially satisfied. Otherwise,
let test(A) = {0, 1} with pt q = p + q, pu q = pq for all p, q ∈ testA and 1′ = 0,
0′ = 1. This yields a Boolean subalgebra. 2

We call t-semirings with test algebra {0, 1} discrete.

Lemma 3.6. Let p, q ∈ test(A) for some A ∈ TS.

(i) pp = p.
(ii) pq = p u q.

Proof. By Lemma 3.2, pq ≤ p u q.
(i)

p = p1 = p(p + p′) = pp + pp′ ≤ pp + (p u p′) = pp + 0 = pp ≤ p1 = p.

(ii) Similar to the first part of the proof of Lemma 3.4, using idempotency of
tests. 2

The following lemma collects some properties of TS which will be needed for
computing with abstract image and preimage operations in Section 6.

Lemma 3.7. Let A ∈ TS with a ∈ A and p, q ∈ test(A).

(i) The following properties are equivalent.

pa ≤ aq,

aq′ ≤ p′a,

paq′ ≤ 0,

pa = paq.
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(ii) The following properties are equivalent.

ap ≤ qa

q′a ≤ ap′,

q′ap ≤ 0,

ap = qap.

Proof. We only show (i). The proofs of (ii) are symmetric.
(1) pa ≤ aq ⇒ aq′ ≤ p′a.

aq′ = 1aq′ = (p + p′)aq′ = paq′ + p′aq′ ≤ aqq′ + p′a = a0 + p′a = p′a.

(2) aq′ ≤ p′a ⇒ paq′ ≤ 0.

paq′ ≤ pp′a = 0a = 0.

(3) paq′ ≤ 0 ⇒ pa = paq.

pa = pa1 = pa(q + q′) = paq + paq′ = paq.

(4) pa = paq ⇒ pa ≤ aq.

pa = paq ≤ aq.

2

3.3 Tests in b-Monoids

When A is a b-monoid with uniquely defined complement a for each a ∈ A,
the situation is much simpler. Now complements in sid(A) can be defined as
restrictions of complements in A as p′ = 1 u p. The properties 1′ = 0, 0′ = 1,
p + p′ = 1, pp′ = 0 are easily verified. Using the restricted complement we can
show that all subidentities are multiplicatively idempotent, since

p = 1p = (p + p′)p = pp + p′p = pp + 0 = pp.

Consequently, pq = p u q and the whole set sid(A) is a Boolean subalgebra of A
(c.f. [11]).

The following lemma is the key to our comparison of the domain operations
in t-semirings and b-monoids in Subsection 4.6.

Lemma 3.8. (i) Let A be a b-monoid. Let a ∈ A and p ∈ sid(A). Then

a ≤ p> ⇔ a ≤ pa. (18)

(ii) There is a d-monoid A such that the implication

a ≤ p> ⇒ a ≤ pa

does not hold.

13



Proof. (ad i) a ≤ pa implies a ≤ p>, since a ≤ >.
a ≤ p> implies a ≤ pa. By lattice theory, a ≤ p> iff a = aup>. We calculate

a = a u p>
= a u p(a + a′)
= (a u pa) + (a u pa′)
≤ (a u pa) + (a u 1a′)
≤ (a u pa) + 0
= a u pa

≤ pa.

(ad ii) The i-semiring A1
4 of Example 2.5 is clearly also a d-monoid with

> = b, since the natural ordering is a chain. It satisfies a = ab = a>, but
a 6≤ 0 = aa. 2

3.4 Example Structures

We now consider some models of TS and KAT. First, note that all examples by
Conway from Section 2 (that is, Example 2.1 to Example 2.5 are discrete and
therefore not very interesting.

Example 3.1. In REL(A), there are 2|A| subrelations of ∆. They form a Boolean
algebra with P uQ = P ◦Q and P ′ = ∆− P . For finite relations, in particular,
this can be verified in the matrix representation. ut

Example 3.2. In LAN(Σ), the only subidentities are ∅ and {ε}. They also form
the only possible test algebra; hence LAN(Σ) is always discrete. The example
easily generalizes to arbitrary monoids. ut

Example 3.3. In the tropical semiring, all elements are subidentities. However,
except for 0 and ∞, they are not idempotent. Thus the only possible test algebra
consists of the elements 0 and ∞. ut

Example 3.4. In the max-plus semiring, the only subidentities are −∞ and 0.
These two elements also form the only possible test algebra. ut

Example 3.5. In the path i-semiring PAT(Σ) over Σ (cf. Example 2.9), the
subidenties P ⊆ Σ ∪ {ε} can be considered as modelling sets of nodes or states,
where ε also serves as the only “pseudo-node” or “pseudo-state” in an empty
sequence. ut

4 Domain

In this section, we introduce several equivalent axiomatizations of the domain
operation on TS, among them a purely equational one. For a differentiated pic-
ture, we present two notions of different expressive power:
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– A notion of predomain that suffices for deriving many natural properties of
domain, as we will show in Section 4.4.

– A notion of domain that is important for more advanced applications.

We also show independence of the respective axioms, discuss extensions to b-
monoids, quantales and relation algebras, and provide examples for the standard
models.

4.1 Domain in the Relational i-Semiring

In order to motivate our abstract definitions, consider again the relational i-
semiring of Example 2.6. Let R ⊆ A×A for some set A. Then the domain of R
is given by the set

{a ∈ A | ∃ b ∈ A . (a, b) ∈ R}.

For our abstraction to t-semirings, it should be represented as a binary relation
instead, viz. as the subidentity

δ(R) = {(a, a) ∈ A×A | ∃b ∈ A . (a, b) ∈ R}.

In the following subsections, we will propose algebraic point-free characteriza-
tions of a predomain and domain operation. We leave it to the reader to show
that they are consistent with the relational semiring. But first, let us replace the
set-theoretic characterization of domain by two more algebraic ones.

First, δ(R) is the least solution for X of the inclusion

R ⊆ X ◦R.

Second, using Example 3.1, the complement δ(R)′ of δ(R) in the Boolean lattice
of subidentities of REL(A)— the set of all pairs below ∆ that are not in δ(R) —
is the greatest solution for X of the inclusion

X ◦R ⊆ ∅

under the constraint X ⊆ ∆. Without this restriction, the greatest solution is
V ◦R, where V denotes the universal relation. Interestingly, V ◦R◦δ(R) = ∅, but
δ(R)◦V ◦R 6= ∅, except under special circumstances. So, there is an asymmetry
that is compatible with the definition of domain in terms of a greatest and a
least solution.

Since REL(A) is a complete lattice with respect to set-inclusion, both so-
lutions are unique and the functional notation δ(R) is justified. In particular,
δ(R) ⊆ ∆ is an immediate consequence of the definition in terms of a least
solution. Since, according to Example 3.1, the subidentities of REL(A) form a
Boolean algebra, Lemma 3.7 shows that the two definitions in terms of least and
greatest solutions are indeed equivalent.
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4.2 Preservers and Annihilators

As a first step of the abstraction to semirings, we introduce some auxiliary
concepts. Let A ∈ IS and a, b ∈ A. We say that b left-preserves a if a ≤ ba, and
that a is left-stable under b if ba ≤ a. If a = ba we say that a is left-invariant
under b. The concepts of right-preservation, right-stability and right-invariance
are defined in a similar way. We say that a is a left annihilator of b if ab = 0,
and a right annihilator if ba = 0. These concepts are useful in particular when
a ∈ sid(A). Note that every element of A is left- and right-invariant under 1 and
that 0 is a left and right annihilator of every element of A.

We now use these concepts for abstracting the characterizations of domain
of the previous subsection from the relational semiring to arbitrary idempotent
semirings and test semirings.

Lemma 4.1. Let A ∈ IS. For all a, b ∈ A, the element f(a) is the least left-
preserver of a iff

f(a) ≤ b ⇔ a ≤ ba. (llp)

Proof. We show that (llp) is equivalent to

a ≤ f(a)a, (19)
a ≤ ba ⇒ f(a) ≤ b. (20)

Equation (20) is one direction of (llp). Setting b = f(a) in (llp) yields (19).
Moreover, a ≤ f(a)a ≤ ba follows immediately from (19) and f(a) ≤ b. 2

Lemma 4.2. In IS,

(i) least left preservers are subidentities,
(ii) least left preservers are multiplicatively idempotent,
(iii) the set of least left preservers is a bounded distributive lattice with least el-

ement 0, greatest element 1, addition as join and multiplication as meet
operation.

Proof. (ad i) Set b = 1 in (llp).
(ad ii) f(a)f(a) ≤ f(a), follows from (i).
We have already seen in the proof of Lemma 4.1 that (llp) implies a ≤ f(a)a,

hence a ≤ f(a)f(a)a. Insertion in the right-hand side of (llp) yields f(a) ≤
f(a)f(a).

(ad iii) This follows from (i) and (ii) with Lemma 3.4. 2

An analogous treatment of greatest left annihilators in IS is, however, not
straightforward. By Lemma 3.3, subidentities are in general not multiplicatively
idempotent; meets and therefore complements need not in general exist.

There are two obvious solutions:

1. Greatest left annihilators can be defined in terms of least left preservers if
the distributive lattice of least left preservers can be extended to a Boolean
lattice and if the search for a greatest solution is restricted to this Boolean
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lattice. This extension is possible by the representation theorem for distrib-
utive lattices (cf. [4]) according to which every distributive lattice can be
isomorphically embedded into some field of sets.

2. The considerations can be specialized from IS to TS. Then, least left pre-
servers and greatest left annihilators can be defined as mappings into the set
of tests.

Here, we choose the second alternative because of its simplicity, naturalness and
technical convenience. Then, in particular, least left preservers and greatest left
annihilators are multiplicatively idempotent subidentities by definition. Since do-
main elements are essentially abstractions of sets, they should possess a Boolean
structure.

For the remainder, we will therefore restrict our attention to test-semirings.

Lemma 4.3. Let A ∈ TS. For every a ∈ A and p ∈ test(A), f(a) is the greatest
left-annihilator of a iff

p ≤ f(a) ⇔ pa ≤ 0. (gla)

Proof. We must show that (gla) is equivalent to

f(a)a ≤ 0, (21)
pa ≤ 0 ⇒ p ≤ f(a). (22)

The calculations are similar to those in the proof of Lemma 4.1. 2

It follows from properties of the partial ordering, that least left-preservers and
least left-annihilators are uniquely defined. Moreover, they always exist, since 1
and 0 are solutions of the respective inequalities.

The following lemma shows the relation between the least left-preserver and
the greatest left-annihilator in a test-semiring.

Proposition 4.1. Let A ∈ TS. For all a ∈ A, let f(a) be the least left-preserver
of a in A and let g(a) be the greatest left-annihilator of a in A. Then f(a) = g(a)′.

Proof. Using Lemma 3.7, (llp) and (gla), we calculate

f(a) ≤ p ⇔ a ≤ pa ⇔ p′a ≤ 0 ⇔ p′ ≤ g(a) ⇔ g(a)′ ≤ p.

Thus f(a) = g(a)′ by the principle of indirect inequality. 2

4.3 Defining Predomain

We now define a notion of predomain for test-semirings that uses the notion of
least left preserver. We will show that a characterization in terms of a greatest
left annihilator is equivalent. Moreover, we provide a further equivalent charac-
terization in terms of two simple equations. We also show independence of the
equational axioms and that predomain exists and is uniquely defined for each
test temiring.
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Definition 4.1. A structure (A, δ) is a t-semiring with predomain (a δ-semi-
ring) if A ∈ TS and the predomain operation δ : A → test(A) satisfies (llp), that
is, for all a ∈ A and p ∈ test(A),

δ(a) ≤ p ⇔ a ≤ pa. (llp)

The class of t-semirings with predomain is denoted TSP.

The predomain operation is always uniquely defined, since least elements in a
partial order are always unique.

We distinguish between predomain and domain, since, as already noted, the
weaker definition suffices for deriving many natural properties.

Proposition 4.2. TSP is precisely the class of TS where each A ∈ TSP is
enriched by a mapping δ : A → test(A) that satisfies, for all a ∈ A and p ∈
test(A),

δ(a) ≤ p ⇔ p′a ≤ 0. (gla)

Proof. Immediate from Lemma 4.1. 2

We now present an equational characterization of domain.

Theorem 4.1. TSP is precisely the class of TS where each A ∈ TSP is enriched
by a mapping δ : A → test(A) that satisfies, for all a ∈ A and p ∈ test(A), the
two equations

a ≤ δ(a)a, (d1)
δ(pa) ≤ p. (d2)

Proof. We prove a somewhat stronger statement. First, we show that (d1) is
equivalent to

δ(a) ≤ p ⇒ a ≤ pa, (23)

which is one direction of (llp). Obviously, (23) implies (d1), setting p = δ(a). For
the converse direction, a ≤ δ(a)a and δ(a) ≤ p imply a ≤ pa by monotonicity of
multiplication.

Second, we show that (d2) is equivalent to

a ≤ pa ⇒ δ(a) ≤ p, (24)

which is the other direction of (llp). Obviously, (24) implies (d2), setting a = pa
and using multiplicative idempotence of p. For the converse direction, observe
that a ≤ pa implies a = pa, since p ≤ 1. Thus δ(a) = δ(pa) ≤ p by (d2).

Third, taking the previous parts together, (d1) and (d2) are equivalent to
(llp). 2

Corollary 4.1. TSP is a variety.
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We have thus presented three equivalent axiomatizations for predomain. They
are all of particular interest. The use of the equivalences (llp) and (gla) allows
us to reduce certain TSP-expressions to TS-expressions that do not mention do-
main. Moreover, both capture the basic algebraic intuition behind this concept.
The two equational axioms (d1) and (d2) are perhaps less intuitive, but very
beneficial for several reasons. First, they allow us to classify t-semirings with
domain in Section 8. Second, they enable us to connect δ-semirings with with
modal algebras and logics, which is, however, beyond the scope of this work.
Third, they support a simple check, whether some given mapping in some test-
semiring is a domain operation. The three axiomatizations taken together give
us maximal flexiblity in calculations.

We now show that the equational axiomatization is minimal:

Theorem 4.2. (d1) and (d2) are independent in TS.

Proof. We provide t-semirings in which precisely one of these axioms holds.
Set δ(0) = δ(1) = 1 in the Boolean semiring A2 (Example 2.1). It is easy to

verify that (d1) holds. But δ(01) = 1 6≤ 0. Thus (d2) does not hold.
Set δ(0) = δ(1) = 0 in the same (and only) Boolean semiring. It is easy to

verify that (d2)holds. But 1 6≤ 0 = 01 = δ(1)1. Thus (d1) does not hold. 2

We will see in the following subsection that (d1) and (d2) together imply that
δ(a) = 0 iff a = 0.

We now show that there also is always a meaningful predomain definition for
an i-semiring by choosing the discrete algebra of tests.

Lemma 4.4. A discrete t-semiring admits precisely one predomain operation.

Proof. Let A ∈ TS. The mapping f defined by f : 0 7→ 0 and f : a 7→ 1 for all
0 6= a ∈ A satisfies (d1) and (d2).

For (d1), if δ(a) = 0 then a = 0. Hence δ(a)a = δ(0)0 = 0 = a. Otherwise, if
a 6= 0 then δ(a) = 1. Hence δ(a)a = 1a = a.

For (d2), if δ(pa) = 0 then (d2) holds trivially. Otherwise, if δ(pa) = 1 then
pa 6= 0 and therefore also p 6= 0. Thus p = 1 and (d2) also holds.

Thus δ is a well-defined predomain operation for A.
Finally, uniqueness is immediate from Lemma 4.5 (i), which will be shown in

the next subsection. 2

Let us conclude this section with a remark of general interest. In opposition
to relational semirings, the elements of general test-semirings are intensional,
that is, they are not completely determined by the elements of the associated
test algebra. For a given i-semiring there may be many test algebras that can
be embedded. These and the choice of the associated (pre)domain operation de-
termine the precision of measuring properties of the Kleenean elements. Thus
our definition of domain leaves the possibility of distinguishing not only be-
tween extensional and intensional behavior, but also between different degrees
of intensionality.
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4.4 Predomain Calculus

A look at the relational semiring shows that the domain operation has further
useful and interesting algebraic properties. We will now show that many of them
can already be derived from our simple definition of predomain. We will see,
however, in the remaining sections that an additional equational axiom is needed
for more advanced applications. The statements of this section are useful for a
more intuitive understanding of domain. They also serve as the basic library of
rules in a domain calculus.

Here, we list algebraic properties of domain without discussing their coun-
terparts in the relational model. We leave this exercise to the reader or appeal
to intuition.

Lemma 4.5. Let A ∈ TSP. Let a, b ∈ A, p ∈ test(A) and q ∈ sid(A).

(i) δ is fully strict.
δ(a) ≤ 0 ⇔ a ≤ 0. (25)

(ii) δ is additive.
δ(a + b) = δ(a) + δ(b). (26)

(iii) δ is monotonic.
a ≤ b ⇒ δ(a) ≤ δ(b). (27)

(iv) δ is an identity on tests.
δ(p) = p. (28)

(v) δ is idempotent.
δ(δ(a)) = δ(a). (29)

(vi) δ yields a left invariant.
a = δ(a)a. (30)

(vii) δ satisfies an import/export law.

δ(pa) = pδ(a). (31)

(viii) δ satisfies a decomposition law.

δ(ab) ≤ δ(aδ(b)). (32)

(ix) δ commutes with the complement operation on tests.

δ(p)′ = δ(p′). (33)

Proof. (i) δ(a) ≤ 0 ⇔ a ≤ 0a ⇔ a ≤ 0 follows from (llp). (ii) Using (gla), we
calculate

δ(a + b) ≤ p ⇔ p′(a + b) ≤ 0
⇔ p′a + p′b ≤ 0
⇔ p′a ≤ 0 ∧ p′b ≤ 0
⇔ δ(a) ≤ p ∧ δ(b) ≤ p

⇔ δ(a) + δ(b) ≤ 0.
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The claim then follows from the principle of indirect inequality.
(iii) Using (26), this is a standard result from lattice theory.
(iv) p ≤ δ(p)p ≤ δ(p) follows immediately from (d1) and p ≤ 1. δ(p) =

δ(1p) ≤ p follows immediately from (d2).
(v) δ(δ(a)) ≤ δ(a) ⇔ δ(a) ≤ δ(a)δ(a) is immediate from (llp). δ(a) ≤ δ(a)δ(a)

holds, since δ(a) is a subidentity. Now use (28).
(vi) By (d1) it remains to show that δ(a)a ≤ a, which is evident, since

δ(a) ∈ test(A).
(vii) By Boolean algebra and (26) we have δ(a) = δ(pa) + δ(p′a). Now

pδ(a) = pδ(pa) + pδ(p′a) = δ(pa),

since δ(pa) ≤ p and δ(p′a) ≤ p′ by (d2).
(viii) By (llp) it suffices to show that ab ≤ δ(aδ(b))ab. We calculate

ab ≤ aδ(b)b ≤ δ(aδ(b))aδ(b)b ≤ δ(aδ(b))ab.

(ix) Immediate from (iv). 2

Most of these equations are also useful for simplifying terms on t-semirings
that mention domain.

4.5 Locality and Domain Definition

Our definition of domain for t-semirings is not yet complete. There is a natural
property of domain — called locality — that holds in the relational model but
which is independent of (d1) and (d2). Namely

δ(RS) = δ(R δ(S))

holds for all R,S ∈ A × A, where A is a set. We leave the verification to the
reader. Intuitively, for computing the domain of a relation RS, information about
the domain of S suffices; information about the inner structure or the codomain
of S is not needed.

In TSP, only one half of locality is derivable, as Lemma 4.5 (viii) shows, the
other half is independent.

Lemma 4.6. There is an A ∈ TSP in which

δ(aδ(b)) ≤ δ(ab). (δl)

does not hold for all a, b ∈ A.

Proof. Consider again the discrete t-semiring A2
3 of Example 2.3. Following

Lemma 4.4, the mapping f : 0 7→ 0, f : 1 7→ 1, and f : a 7→ 1 is a predo-
main operation. Then f(af(a)) = f(a1) = 1 and f(aa) = f(0) = 0. That is,
f(aa) ≤ f(a(f(a)) holds, but not f(aa) = f(a(f(a)). 2
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Due to independence of locality, we add (δl) to the predomain axioms to
define the domain operation. However, we would like to distinguish between the
two definitions, since in many applications, (δl) is not needed.

Definition 4.2. A t-semiring with domain (a δ̂-semiring) is a δ-semiring in
which the predomain operation δ̂ : A → test(A) also satisfies

δ̂(aδ̂(b)) ≤ δ̂(ab), (δl)

for all a, b ∈ A. We denote the class of t-semirings with domain by TSD.

We also use the notion of δ-locality to distinguish locality of domain from that
of codomain.

We now impose a necessary and sufficient condition such that a discrete δ-
semiring is also a δ̂-semiring. In analogy to the definition of an integral domain
in ring theory, we say that a semiring A is integral if it has no zero divisors, that
is,

ab ≤ 0 ⇒ a ≤ 0 ∨ b ≤ 0. (34)

holds for all a, b ∈ A.

Lemma 4.7. A discrete t-semiring is a δ̂-semiring iff it is integral.

Proof. Let A be a discrete t-semiring. From Lemma 4.4 we know that f defined
by f : 0 7→ 0 and f : a → 1 for all 0 6= a ∈ A is the unique predomain operation
on A. Thus A is a δ-semiring.

Let A be integral. We must show that f(af(b)) ≤ 0 whenever f(ab) ≤ 0. So
let f(ab) ≤ 0. Then the construction of f implies that ab ≤ 0, hence a ≤ 0 or
b ≤ 0, since there are no zero divisors. In the first case,

f(af(b)) = f(0f(b)) = f(0) = 0,

by construction of f . In the second case

f(af(b)) = f(af(0)) = f(a0) = f(0) = 0,

again by construction of f .
Now assume that f satisfies (δl), that is, f(af(b)) ≤ f(ab), and let ab ≤ 0.

Thus f(af(b)) ≤ f(ab) ≤ 0 and hence af(b) ≤ 0 by construction of f . There are
two cases.

If f(b) = 1 then af(b) = a1 = a. Hence af(b) ≤ 0 implies a ≤ 0.
If f(b) = 0 then b = 0 by construction of f .
Thus ab ≤ 0 implies a ≤ 0 or b ≤ 0, that is, A is integral. 2

We will now show that this condition can be generalized to a sufficient condition
on non-discrete t-semirings.

Lemma 4.8. Every integral δ-semiring is a δ̂-semiring.
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Proof. Let A be integral. Thus ab ≤ 0 implies a ≤ 0 or b ≤ 0. By the principle
of indirect inequality, we show

δ(ab) ≤ p ⇒ δ(aδ(b)) ≤ p.

Using Theorem 4.1 (iii),

δ(ab) ≤ p ⇔ p′ab ≤ 0
⇒ p′a ≤ 0 ∨ b ≤ 0
⇔ δ(a) ≤ p ∨ δ(b) ≤ 0.

In the first case δ(aδ(b)) ≤ δ(a) ≤ p. In the second case,

δ(aδ(b)) = δ(a0) = δ(0) = 0 ≤ p.

2

4.6 Domain in b-Monoids

Definitions for predomain have originally been given for b-monoids and b-quan-
tales. There, the situation is considerably simpler.

First, as we have pointed out in Section 3, the entire set of subidentities of
a b-monoid forms a Boolean sublattice and therefore a suitable test algebra.
Second, predomain can now be defined in terms of the Galois connection

δ(a) ≤ p ⇔ a ≤ p>, (35)

from which the equational axioms

a ≤ δ(a)>, (36)
δ(p>) ≤ p, (37)

(38)

are obtained in a generic way (cf. [11]). Note that (35) and the equations (36)
and (37) are just (llp) and the equations (d1) and (d2), when > is replaced by
a.

In fact, by Lemma 3.8, in b-monoids, (36) is equivalent to (d1) and (37)
is equivalent to (d1). However, (llp) does not express a Galois connection. It
is therefore rather surprising, that (d1), (d2) are equivalent to (llp) in TSP.
Moreover, standard Galois theory would suggest that also (27) is needed as an
equational axiom. The fact that this is not the case in TSP and therefore also
in b-monoids, is rather surprising.

We will now show formally that for b-monoids, the definition of predomain
via least left preservers and that via the Galois connection coincide. We also
show that the requirement on the monoid cannot be much relaxed. This means
that our definition of pre-domain is really non-trivial.

23



Lemma 4.9.

(i) For every b-monoid, (llp) and (35) are equivalent.
(ii) There is a d-monoid in which (llp) holds, but not (35).

Proof. (i) Immediate from Lemma 3.8 (i).
(ii) Let δ(0) = 0 and δ(a) = 1 for all a 6= 0 in the discrete t-semiring A1

4

(Example 2.5). Then clearly (llp) holds, but (35) does not hold by Lemma 3.8
(ii).

2

In a b-quantale, domain is a priori well-defined by the Galois connection.

4.7 Example Structures

We now consider some models in TSP and TSD.

Example 4.1. In the Boolean semiring A2 (Example 2.1), the test algebra coin-
cides with A2. Setting δ(x) = 0 ⇔ x = 0 is compatible with the definition of
f in Lemma 4.4. Thus it satisfies (d1) and (d2). Since A2 is integral, also (δl)
holds. Moreover, this definition is unique. ut

Example 4.2. In A2
3, the test algebra is {0, 1}. Setting δ(0) = 0, δ(a) = 1 and

δ(1) = 1 is compatible with the definition of f in Lemma 4.4. Thus it satisfies
(d1) and (d2). Since A2

3 is integral, also (δl) holds. Moreover, this definition is
unique. ut

Example 4.3. The only possible test algebra of the language i-semiring (Exam-
ple 2.8) is {∅, {ε}}. We set δ(∅) = ∅ and δ(L) = {ε} for all ∅ 6= L ⊆ Σ∗. This is
compatible with the definition of f in Lemma 4.4. Thus it satisfies (d1) and (d2).
Since the language model is integral (since it is free), also (δl) holds. Moreover,
this definition is unique. The example easily generalizes to arbitrary monoids.

ut

Example 4.4. In the path i-semiring (Example 2.9), the test algebra is 2Σ∪{ε}.
For a subset S ⊆ Σ∗, the set δ(S) consists of all starting (pseudo-)nodes/states
of sequences in S. ut

Example 4.5. In the tropical semiring, the test algebra consists solely of 0 and
∞. Taking δ(∞) = ∞ and δ(n) = 0 is compatible with the definition of f in
Lemma 4.4. Thus it satisfies (d1) and (d2). Since the tropical semiring is integral,
also (δl) holds. Moreover, this definition is unique. ut

These examples show that our definition of domain is meaningful in all the
usual models, although non-trivial only in the relational model and the path
model.
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5 Codomain

In this section, we introduce an equational axiomatization of codomain for idem-
potent semirings and two concepts of duality, one based on the opposite of a
semiring, the other one based on the operation of converse, that allow an au-
tomatic transfer between statements about domain and those about codomain
and save half of the work in proofs.

The definition of codomain parallels that of domain. For a set-theoretic rela-
tion R ⊆ A×A, it is defined as

ρ(R) = {b ∈ A | ∃ a ∈ A . (a, b) ∈ R}.

For a t-semiring this suggests to define a codomain operation as a least right
preserver or a greatest right annihilator. Similarly to domain, there is a property
of ρ-linearity that is independent from the other postulates.

5.1 Codomain Definition

As usual in algebra, the opposite of a semiring (A,+, ·, 0, 1) is the structure
(A,+, ·̆, 0, 1) where a ·̆ b = b · a. We denote the opposite of a semiring A by Aopp.

Definition 5.1. (i) A t-semiring with precodomain (a ρ-semiring) is a struc-
ture (A, ρ) such that (Aopp, ρ) is a semiring with predomain.

(ii) A t-semiring with codomain (a ρ̂-semiring) is a structure (A, ρ̂) such that
(Aopp, ρ̂) is a semiring with domain.

Lemma 5.1. Let A be a ρ-semiring.

(i) The mapping ρ has type A → test(A).
(ii) For all a ∈ A, the element ρ(a) is a least right preserver of a, that is, for all

a ∈ A and p ∈ test(A),
ρ(a) ≤ p ⇔ a ≤ ap. (lrp)

(iii) For all a ∈ A, the element ρ(a) is a greatest right annihilator of a, that is,
for all a ∈ A and p ∈ test(A),

ρ(a) ≤ p ⇔ ap′ ≤ 0. (gra)

(iv) ρ satisfies the following two equations.

a ≤ aρ(a), (cd1)
ρ(ap) ≤ p. (cd2)

(iii) A is a ρ̂-semiring if also the following equation holds.

ρ̂(ρ̂(a)b) ≤ ρ̂(ab). (ρl)
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The proof is immediate from the definition and the results for predomain and
domain in Section 4. More generally, all results of this section carry over to
precodomain and codomain. Therefore we will only quote properties of domain
even when talking about the codomain operation.

We call a t-semiring with predomain and precodomain a δρ-semiring and a
t-semiring with domain and codomain a δ̂ρ̂-semiring. When we do not want to
distinguish, we uniformly speak about test semirings with domain and denote
the associated class by TSD.

Lemma 5.2. There is a non-integral δ̂ρ̂-semiring.

Proof. We have seen that (d1), (d2), (δl), and (cd1), (cd2), (ρl), respectively,
hold in the relational model. However it its obvious that set-theoretic relations
need not be integral. Let R relate all even numbers and S all odd numbers on
N. Then R 6= ∅ 6= S, but RS = ∅. 2

5.2 Codomain via Converse

In the relational semiring, it is evident that the domain of a relation is the
codomain of its converse and vice versa. This coupling of domain and codomain
via the concept of converse induces a second notion of symmetry or duality,
besides the one based on opposition. As usual, the operation of converse in an
i-semiring is required to be involutive, additive and contravariant.

Definition 5.2. (i) An i-semiring with preconverse is a structure (A, ◦) such
that A is an i-semiring and ◦ : A → A is an operation that satisfies the
following equations.

a◦◦ = a, (c1)
(a + b)◦ = a◦ + b◦, (c2)

(ab)◦ = b◦a◦. (c3)

(ii) An i-semiring with weak converse is an i-semiring with preconverse such
that all p ≤ 1 satisfy

p◦ ≤ p. (c4)

(iii) An i-semiring with converse [10] is an i-semiring with preconverse that sat-
isfies the equation

a ≤ aa◦a. (c5)

It is easy to show that the properties

1◦ = 1, (39)
0◦ = 0, (40)

a ≤ b ⇔ a◦ ≤ b◦ (41)

hold in every i-semiring with preconverse. The equation

p◦ = p (42)
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holds in every i-semiring with weak converse. Moreover, every i-semiring with
converse is an i-semiring with weak converse.

Using the operation of converse we can express the duality between domain
and codomain within the test-semiring rather than at the meta-level.

Proposition 5.1. Let A be a δρ-semiring (or a δ̂ρ̂-semiring) with weak con-
verse. Then for all a ∈ A,

δ(a◦) = ρ(a), (43)
ρ(a◦) = δ(a). (44)

Proof. We only show (43), verifying thatδ(a◦)satisfies Definition 5.1 of codomain.
(cd1) By (d1), a◦ ≤ δ(a◦)a◦, thus

a = a◦◦ ≤ (δ(a◦)a◦)◦ = a◦◦(δ(a◦))◦ = aδ(a◦).

(cd2) By (d2),
δ((ap)◦) = δ(p◦a◦) = δ(pa◦) ≤ p.

(ρl) By (δl),

δ((ab)◦) = δ(b◦a◦) = δ(b◦δ(a◦)) = δ(b◦(δ(a◦))◦) = δ((δ(a◦)b)◦).

The proof of (44) is dual. 2

We could therefore take (43) as definition of codomain in a t-semiring with
weak converse.

Corollary 5.1. Let A be a δρ-semiring with weak converse. For all a ∈ A,
p ∈ test(A),

δ(a◦p) = ρ(pa), (45)
ρ(a◦p) = δ(pa). (46)

5.3 Equivalence of δ-Locality and ρ-Locality

It may come as a surprise that domain and codomain enjoy perfect symmetry
with respect to locality of composition. We prepare the proof by an auxiliary
property.

Lemma 5.3. A δρ-semiring A satisfies (δl) iff for all a, b ∈ A,

ab ≤ 0 ⇔ ρ(a)δ(b) ≤ 0. (47)

Proof. We first show that (δl) implies (47).

ab ≤ 0 ⇔ δ(ab) ≤ 0
⇔ δ(aδ(b)) ≤ 0
⇔ aδ(b) ≤ 0
⇔ ρ(a) ≤ δ(b)′

⇔ ρ(a)δ(b) ≤ 0.
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The first and third step of the proof use (25), the second step uses (δl), the
fourth step uses (gra) and the last step is by Boolean algebra.

Now we show that (47) implies (δl). First, by (31) ρ(a)δ(b) = ρ(aδ(b)) and
therefore, by (25)

ab ≤ 0 ⇔ aδ(b) ≤ 0. (48)

Using Boolean algebra, (48) thrice and Boolean algebra again, we calculate

δ(ab) ≤ p ⇔ p′δ(ab) ≤ 0
⇔ p′ab ≤ 0
⇔ p′aδ(b) ≤ 0
⇔ p′δ(aδ(b)) ≤ 0
⇔ δ(aδ(b)) ≤ p,

whence δ(ab) = δ(aδ(b)) by the principle of indirect inequality. 2

Since (47) is symmetric in δ and ρ, we obtain

Corollary 5.2. A δρ-semiring is a δ̂-semiring iff it is a ρ̂-semiring.

6 Image and Preimage

In many applications, domain and codomain operations occur more specifically
as image and preimage operations for some given test element. In the relational
semiring, the preimage of a set B ⊆ A under a relation R ⊆ A×A is defined as

R:B = {x ∈ A | ∃ y ∈ B . (x, y) ∈ R}.

We leave it to the reader to verify that this is equivalent to the point-free defin-
ition R:B = δ(RB). Dually, the image of B under R is defined as

B:R = {y ∈ A | ∃x ∈ A . (x, y) ∈ R.},

which is equivalent to the point-free definition by B:R = ρ(BR).
As usual, we abstract this point-free definition from sets to semirings and

define for every A ∈ TSP, the image and the preimage operator, both denoted
by : , as mappings of type test(A)×A → test(A) and A× test(A) → test(A) by

p:a = ρ(pa), (49)
a:p = δ(ap). (50)

for all a ∈ A and p ∈ test(A). We henceforth use this notation and avoid domain
and codomain whenever this is appropriate. In particular, we often use a:1 and
1:a instead of δ(a) and ρ(a). We also overload this notation to definitions with re-
spect to δ̂ and ρ̂. Since the preimage and the image operator are multiplications,
we stipulate that they bind stronger than addition.
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Moreover, since image and preimage are defined by codomain and domain and
since codomain and domain are coupled via the concept of opposition, there is
again an automatic transfer between properties of image and those of preimage.
Like in previous sections, we therefore only mention properties of preimage and
quote preimage properties even when talking about the image operation.

The following lemma connects preimage with least left preservation and an-
nihilation. Like (llp) and (gla), this allows us to eliminate certain occurrences of
preimage and image operators.

Lemma 6.1. Let A ∈ TSP. For all a ∈ A and p ∈ test(A),

a:p ≤ q ⇔ ap ≤ qa, (51)
a:p ≤ q ⇔ q′ap ≤ 0. (52)

Proof. Immediate from (llp), and Lemma 3.7, respectively. 2

From (31) we get the following import/export rule for the preimage.

Corollary 6.1. Let A ∈ TSP. For all a ∈ A and p, q ∈ test(A),

(p:a)q = p:(aq). (53)

Lemma 6.1 has the following consequence, that couples preimage and image
operations.

Lemma 6.2. Let A ∈ TSP. The preimage and the image operation satisfies the
following exchange law. For all a ∈ A and p ∈ test(A),

a:p ≤ q ⇔ q′:a ≤ p′. (54)

Proof. Immediate from Lemma 6.1 and Lemma 3.7. 2

The equivalence (54) and its dual are weak analoga of the Schröder rules from
the relational calculus. Lemma 6.2 has the following immediate consequence.

Corollary 6.2. Let A ∈ TSP. For all a ∈ A and p ∈ test(A),

(p:a)q ≤ 0 ⇔ p(a:q) ≤ 0. (55)

Finally, locality yields the following interaction of domain with preimage and
of codomain with image.

Lemma 6.3. Let A ∈ TSD. Then for all a, b ∈ A,

δ̂(ab) = a:δ̂(b), (56)
ρ̂(ab) = ρ̂(a):b. (57)
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7 Domain, Codomain and Kleene Star

So far, we have only investigated domain and codomain operations in test-
semirings, that is, in absence of the Kleene star operation. In fact, there is
no need for further axioms in presence of Kleene star. Therefore, in this sec-
tion, we only need to investigate the interaction of domain and codomain and
that of image and preimage with the Kleene star. It turns out that only image
and preimage show nontrivial behaviour. In particular we will see that when the
Kleene star is adapted to occur within domain and codomain operators, a finite
equational axiomatization instead of the Horn clauses (∗-3) and (∗-4) is possi-
ble. Moreover, one of these equational axioms can be interpreted as an efficient
reachability algorithm, when interpreted over finite relations; its proof is by a
formal derivation from a less efficient specification.

Henceforth K-semirings are called Kδ-semirings, Kρ-semirings, Kδ̂-semirings,
Kρ̂-semirings, Kδρ-semirings and Kδ̂ρ̂-semirings, when they are extended by the
respective operation(s) and defined by the respective axioms. Moreover, when we
do not want to distinguish, we uniformly speak of Kleene algebra with predomain
or Kleene algebra with domain. We denote the classes by KAP and KAD.

First, the properties of the Kleene star from Lemma 2.1 have some trivial
consequences for domain and codomain.

Lemma 7.1. Let A ∈ KAP. Then for all a ∈ A,

δ(a)∗ = 1, (58)
δ(a∗) = 1. (59)

The Kleene star in combination with images or preimages has a much richer
and more interesting behaviour. The following three statements show that preim-
ages in combination with star satisfy expressions analogous to (∗-1) and (∗-2)
for K-semirings. Like their counterparts in KA, they are the working horses for
many interesting derivations. We give variants for KAD, because presence of (δl),
that is, (ab):p = a:(b:p), allows a more compositional treatment of images and
preimages.

Lemma 7.2. Let A ∈ KAP. For all a ∈ A and p ∈ test(A),

p + a∗:(a:p) ≥ a∗:p ≤ p + a:(a∗:p), (60)

The inequalities become equations, when A ∈ KAD.

Proof. By (∗-1),

a∗:p = (1 + a∗a):p = (1:p) + (a∗a:p) ≥ p + a∗:(a:p).

The last step uses (32). The second half of (60) is shown analogously. The equa-
tions follow by using (δl) instead of (32). 2

Note the analogy to the variants b + a∗ab = a∗b and b + aa∗b = a∗b of (∗-2) and
(∗-1) in KA. By (60), a∗:p is a fixed point of the mapping λx.p + a:x.
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Lemma 7.3. Let A ∈ KAD. For all a ∈ A and p ∈ test(A),

a:p ≤ p ⇒ a∗:p ≤ p. (61)

Proof. Using Lemma 6.1 (11), we calculate

a:p ≤ p ⇔ ap ≤ pa ⇒ a∗p ≤ pa∗ ⇔ a∗:p ≤ p.

2

Lemma 7.3 can also be viewed as an assertion about invariants: an invariant
of a is also an invariant of a∗. Moreover, it has two important consequences.
First, we will use it in the following lemma to derive more efficient variants of
the statements of Lemma 7.2. Second, when the Kleene star is adapted to occur
only within preimages, we will show in the following lemma that there are even
equivalent equational characterizations.

Lemma 7.4. Let A ∈ KAD. Let a ∈ A and p, q ∈ test(A). The following prop-
erties are equivalent and hold in KAD.

a:p ≤ p ⇒ a∗:p ≤ p, (62)
a:p + q ≤ p ⇒ a∗:q ≤ p, (63)
a∗:p ≤ p + a∗:(p′(a:p)), (64)
a∗:p = p + (ap′)∗:(a:p). (65)

Proof. We first show that (62), (63) and (64) are equivalent.
(62) implies (63). a:p + q ≤ p iff a:p ≤ p and q ≤ p and therefore a∗:p ≤ p by

the assumption. Hence also a∗:q ≤ p.
(63) implies (64). For a∗:p ≤ p + a∗:(p′(a:p)) it suffices by (63) to show that

p ≤ p + a∗:(p′(a:p)),
a:(p + a∗:(p′(a:p))) ≤ p + a∗:(p′(a:p)).

The first inequality is trivial. The second one is proved as follows.

a:(p + a∗:(p′(a:p))) = (a:p) + a:(a∗:(p′(a:p)))
= (p + p′)(a:p) + a:(a∗:(p′(a:p)))
≤ p + (p′(a:p)) + a:(a∗:(p′(a:p)))
= p + a∗:(p′(a:p)).

The third step uses p(a:p) ≤ p; the last step uses q = 1:q and (60).
(64) implies (62). Let a∗:p ≤ p + a∗:(p′(a:p)) and assume a:p ≤ p. Then

a∗:p ≤ p + a∗:(p′(a:p)) ≤ p + a∗:(p′p) = p + a∗:0 = p + 0 = p.

We now show that (63) implies (65) and that (65) implies (62). This yields
simpler proofs than a direct circle.
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(63) implies (65). First, p+(ap′)∗:(a:p) ≤ p+a∗:(a:p) = a∗:p by monotonicity
of the Kleene star, the fact that p ≤ 1 and (δl).

For the converse direction, that is, a∗:p ≤ p + (ap′)∗:(a:p), it suffices by (63)
to show that

p ≤ p + (ap′)∗:(a:p),
a:(p + (ap′)∗:(a:p)) ≤ p + (ap′)∗:(a:p).

The first inequality is trivial. The second one is proved as follows.

a:(p + (ap′)∗:(a:p)) = (a:p) + a(p + p′):((ap′)∗:(a:p))
= (a:p) + (ap):((ap′)∗:(a:p)) + (ap′):((ap′)∗:(a:p))
≤ (a:p) + (ap):1 + (ap)′:((ap′)∗:(a:p))
≤ (a:p) + ap′:((ap′)∗:(a:p))
= (ap′)∗:(a:p)
≤ p + (ap′)∗:(a:p).

The first two steps use additivity of domain, the third step uses that (ap)∗:(a:p) ≤
1, the fourth step uses that (ap):1 = a:p, the fifth step uses (61).

(65) implies (62). Assume a:p ≤ p. Then

a∗:p = p + (ap′)∗:(a:p)
≤ p + (ap′)∗:p
= p + (ap′)∗:((ap′):p)
= p + (ap′)∗:0
= p.

The third step uses (61), the fourth step uses that (ap′):p = δ(app′) = δ(0) = 0,
the fifth step uses (25).

Finally, it remains to show that (61), (63), (64) and (65) hold in KAD. This
holds, since, by Lemma 7.3, the expression (61) holds, to which the other ex-
pressions are equivalent. 2

Note the analogy of (63) to b + ac ≤ c ⇒ a∗b ≤ c, that is, (∗-3).

Corollary 7.1. Let A ∈ KAD. For all a, b, c ∈ A and p ∈ test(A),

(ac):p + b:q ≤ c:p ⇒ (a∗b):q ≤ c:p, (66)

Proof. The expression (66) follows immediately from (63), replacing p by c:p, q
by b:q and using (δl). 2

Already (60) describes an unfolding step of the preimage operation. However,
this is not the most efficient way of unfolding. In a∗:p = p+a∗:(a:p), for instance,
it is not necessary to perform a full a-iteration from a:p. Since all steps starting
from p have already been considered, it suffices to perform the a-iteration from
p′-states. This is expressed by (65).

The following example show that the mappings from test sets to test sets in
a KAD again induce a K-semiring.
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Example 7.1. (An algebra of predicate transformers) Let A ∈ KAD and consider
for all a ∈ A the set FA of mappings fa = λx.(a:x). We write fa(p) = a:p and
define addition and multiplication on FA by

(fa ⊕ fb)(p) = fa(p) + fb(p), (67)
(fa � fb)(p) = fa(fb(p)). (68)

for all p ∈ test(A). Then it is easy to verify that (FA,⊕,�, f0, f1) is a t-semiring
with set of tests {fp | p ∈ test(A)}. Moreover, setting

f∗a (p) = a∗:p, (69)

we obtain

f1 ⊕ (fa � f∗a ) = f∗a , (70)
f1 ⊕ (f∗a � fa) = f∗a (71)

from the first half of (60) and

fb ⊕ (fa � fc) ≤ fc ⇒ f∗a ⊕ fb ≤ fc (72)

from (66). Hence (FA,⊕,�, f0, f1, (.)∗) is a “left-handed” K-semiring. ut

8 Kleene Algebras as Varieties

In this section we classify some of our results in the context of universal algebra.
We identify varieties with equational classes. A variety is finitely based if it

can be axiomatized by a finite set of equations. The following lemma is imme-
diate.

Lemma 8.1. TSD is a finitely based variety.

The next lemma is not so immediate. It has been shown in [24,35] that KA with
a residuation operation is a finitely based variety. The same phenomenon might
occur when adding a domain or codomain operation. The following lemma shows
that this is not the case. A similar argument has been used in [20] for algebras
related to PDL.

Lemma 8.2. KAP and KAD are not finitely based varieties.

Proof. In [9], p. 106, Conway gives an algebra Ap for showing that the algebra
of regular events (c.f. Example 2.8) is not finitely based. For every finite set of
equations and every prime p there is a particular valid equation parameterized
by p that is not deducible and there is an algebra Ap parameterized by p that
satisfies the finite set of equations, but not the given additional equation. Ac-
cording to Conway, every expression in the language of KA is equivalent to some
sum of terms each of which is either 0 or 1 or is simultaneously 0-free, 1-free
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and +-free. This implies that in Ap, which is constructed from such normal form
terms, ab ≤ 0 implies that a ≤ 0 or b ≤ 0, thus the integral condition (34) holds.

Now in presence of domain, we consider the discrete t-semiring on Ap. Then
by Lemma 4.4 and Lemma 4.7, the mapping defined by δ(0) = 0 and δ(a) = 1
for all 0 6= a ∈ Ap satisfies (d1), (d2) and (δl). In particular 0 6= 1.

Thus the expansion of Ap satisfies the finite set of equations and the domain
axioms, but not the given additional equation. Consequently, the given finite set
of equation is not complete for KAP and KAD. 2

However, Lemma 7.4 shows that the extensional behaviour of the Kleene star
can be defined equationally using only equations on the test algebra.

Lemma 8.3. The classes of test subalgebras on KAP and KAD are finitely based
varieties.

9 Reconstructing Noethericity

In this section we demonstrate the expressive power and applicability of KAD
in the field of termination analysis of programs. We show that concepts of
Noethericity and well-foundedness can be algebraically reconstructed. We further
show that our concepts subsume those in Cohen’s ω-algebra [8], an extension of
KA with infinite iteration that is defined as a greatest fixed point by expressions
similar to (∗-1), (∗-2), (∗-3) and (∗-4). Moreover we show that for transitive rela-
tions our concept is also equivalent to an algebraic variant of Löb’s formula from
modal logic [5,6]. In particular, this last example is very interesting, since our
proof uses an interaction of images and preimages that could not be modeled, for
instance, in dynamic logic. Finally, we show that some simple and well-known
properties of well-founded relations can be calculated in KAD in a simple and
elegant way.

Intuitively, a set-theoretic relation R ⊆ A × A is well-founded if there are
no infinitely descending R-chains, that is, no infinite chains x0, x1, . . . such that
(xi+1, xi) ∈ R. Moreover, R is Noetherian if there are no infinitely ascending
R-chains, that is, no infinite chains x0, x1, . . . such that (xi, xi+1) ∈ R.

Thus, R is not well-founded if there is a non-empty set P ⊆ A (denoting the
infinite chain) such that for all x ∈ P there exists some y ∈ P with (y, x) ∈ R.
This is equivalent to saying that P is contained in the image of P under R, that
is,

P ⊆ P :R. (73)

Consequently, if R is well-founded, then only the empty set may satisfy (73).

9.1 Noethericity: Definition and Simple Properties

Abstracting to A ∈ TSD we say that a is well-founded if for all p ∈ test(A),

p ≤ p:a ⇒ p ≤ 0. (74)
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Moreover, a is Noetherian if for all p ∈ test(A),

p ≤ a:p ⇒ p ≤ 0. (75)

We now calculate abstract algebraic variants of some simple and well-known
properties of well-founded and Noetherian relations. Again, as in previous sec-
tions, we restrict our attention to Noethericity, which is expressed in terms of
preimages. We do not explicity mention well-foundedness properties that hold
by duality in the opposite semiring.

Lemma 9.1. Let A ∈ KAD. Let a, b ∈ A and let 0 6= 1.

(i) 0 is Noetherian.
(ii) 1 is not Noetherian.
(iii) If b is Noetherian and a ≤ b, then a is Noetherian.
(iv) If a is Noetherian, then 1 6≤ a, that is, a is irreflexive.
(v) If a 6≤ 0 is Noetherian then a 6≤ aa, that is, a is not dense.
(vi) a is Noetherian iff a+ is Noetherian.
(vii) a∗ is not Noetherian.

Proof. (i) Let p ≤ 0:p. Then p ≤ 0, since 0:p = 0.
(ii) The equation p ≤ 1:p holds for all p ∈ test(A), thus in particular for

p = 1. But 1 6≤ 0.
(iii) Let a be Noetherian, that is, p ≤ p:a implies p ≤ 0 and let b ≤ a. Then

p ≤ b:p ≤ a:p ⇒ p ≤ 0.

Thus b is Noetherian.
(iv) Let a be Noetherian and 1 ≤ a. Then, by (iii), 1 is Noetherian, a con-

tradiction.
(v) Let a be dense and Noetherian. a ≤ aa implies a:p ≤ a:(a:p) by monotonic-

ity. Thus a:p ≤ 0 for all p ∈ test(A). The particular case p = 1 yields a ≤ 0, a
contradiction.

(vi) Let a be Noetherian and remember that a+ = aa∗. We calculate

p ≤ a+:p ⇒ a∗:p ≤ a∗:(a+:p)
⇔ a∗:p ≤ a:(a∗:p)
⇒ a∗:p ≤ 0
⇒ 1:p ≤ 0
⇔ p ≤ 0.

The second step uses (δl), a∗a∗ = a∗ and aa∗ = a∗a. The third step uses
Noethericity of a. The fourth step uses 1 ≤ a∗. Thus a+ is Noetherian.

Now let a+ be Noetherian. Then, by (iii) and a ≤ a+, a is Noetherian.
(vii) By (ii), 1 is not Noetherian. Then 1 ≤ a∗ implies that a∗ is not

Noetherian using (iii). 2
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9.2 Noethericity and ω-Algebra

We now show how our definition of Noethericity is related to the property of
Noethericity as it is defined in Cohen’s ω-algebra. We do not introduce the
axioms for this class. Intuitively, while an expression a∗ denotes finite non-
deterministic iteration of a, aω denotes infinite iteration. As an ω-regular ex-
pression, aω therefore denotes a set of words of infinite length or streams. Con-
sequently, in ω-algebra Noethericity of a means absence of infinite iteration of
a; thus aω = 0. In our calculations we only need the following properties of aω.

aω ≤ aaω, (76)
a ≤ aω. (77)

Lemma 9.2. Let A be an ω-algebra that is also a δ̂-semiring. Then for all a ∈ A,
if a is Noetherian then aω = 0.

Proof. Let a be Noetherian. Using (δl) we obtain

δ(aω) ≤ δ(aaω) = δ(aδ(aω)) = a:δ(aω).

Thus δ(aω) = 0 by definition (75) of Noethericity. By strictness of domain
(Lemma 4.5 (i)), this is the case if and only if aω = 0.

The converse implication does not hold. In the language semiring we have
aω = 0 if 1 u a = 0, but also

a 6= 0 ⇒ ∀ p . a:p = p.

Note that ω-algebra can only express Noethericity, whereas TSD can express
both Noethericity and well-foundedness.

9.3 Noethericity and the Löb Axiom

We now investigate an alternative characterization of Noethericity for transitive
relations that is even equational. Remember that an element of a semiring is
transitive if aa ≤ a.

In modal logic, Noethericity of the underlying Kripke frame is characterized
by Löb’s axiom

2(2p → p) → 2p

(cf. [5,6]). Translating p → q as p′ + q and validity of p as 1 ≤ p we calculate as
follows.

1 ≤ 2(2p → p) → 2p ⇔ 1 ≤ (2(2p → p))′ + 2p

⇔ (2p)′ ≤ (2(2p → p))′

⇔ 3p′ ≤ 3((2p)′ + p)′

⇔ 3p′ ≤ 3((2p)p′)
⇔ 3p′ ≤ 3((3p′)′p′).
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Passing now to a multimodal view and replacing diamonds by preimage opera-
tors, we obtain the following representation of Löb’s axiom in KAD.

a:p ≤ a:(p (a:p)′). (78)

We say that a is Löbian if it satisfies (78). In the relational model, Löb’s ax-
iom states that a is transitive and that there are no infinite a-chains. Note the
surprising similarity to (64).

We will now relate Löb’s axiom and our notion of Noethericity. But first we
need a technical lemma.

Lemma 9.3. Let A ∈ TSD. Let a ∈ A and p, q ∈ test(A).

(i) p ≤ (a:q)′ ⇔ p:a ≤ q′.
(ii) aa ≤ a ∧ p ≤ (a:q)′ ⇒ p:a ≤ (a:q)′.

Proof. (i) Immediate from the exchange law (54).
(ii) We calculate

p ≤ (a:q)′ ⇔ a:q ≤ p′ ⇒ a:(a:q) ≤ p′ ⇔ p:a ≤ (a:q)′.

The first and last step use (i), the second step uses transitivity and (δl). 2

The statement of the following theorem is closely related to the correspondence
theory of modal logic. In this view, our property of Noethericity expresses a
frame property, which is part of semantics, whereas our Löb axiom stands for
a modal formula, which is part of syntax. In TSD we are able to express syn-
tax and semantics in the same formalism. Moreover, while the traditional proof
of correspondence uses an (informal) semantic argument, our proof is entirely
calculational.

Theorem 9.1. Let A ∈ TSD and a ∈ A.

(i) If a is Löbian then a is Noetherian.
(ii) If a is Noetherian and transitive then a is Löbian.

Proof. (i) Let p ≤ a:p. Thus equivalently p(a:p)′ ≤ 0 by Boolean algebra. Inser-
tion into (78) yields

p ≤ a:p ≤ a:(p (a:p)′) ≤ a:0 = 0.

(ii) Since the calculation of the Löb axiom is rather involved and depends on
the interaction of images and preimages, we first give an informal account of the
proof. Intuitively, the Löb axiom

a:p ≤ a:(p (a:p)′)

states that whenever there is an a-step into p, then there is also an a-step into
the subset τ(p) = p (a:p)′ of p from which no more a-steps into p are possible
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(the terminal part of p). Thus for all p and forall a-steps into p there is an a-
step into τ(p). Equivalently to (78), q = (a:p)(a:τ(p))′, the set from which some
a-step leads into p and none into the terminal part of p, must be empty. Now,
if a is Noetherian it suffices to show that q ≤ a:q. Is this the case? When a is
transitive, then all predecessors of states that lead into p and τ(p) also lead into
τ(p). Equivalently, all successors of states leading into p, but not into τ(p) must
not lead into τ(p) and must therefore be accessible from q.

We now formally reconstruct this informal argument.
First, note that (78) is equivalent to q = 0 by Boolean algebra. By (75) it

then suffices to show that q ≤ a:q .
Second, note that q ≤ a:p.
Third, let the successors of q in p be given by r = (q:a)p. We now show that

q ≤ a:r.
q(a:r) = δ(qar) = δ(qaρ(qa)p) = δ(qap) = qδ(ap) = q.

The first step uses the definition of preimage and the import/export law (31).
The second step expands r = ρ(qa)p. The third step uses (cd1). The fourth step
uses again import/export. The last step uses q ≤ a:p.

Fourth, it remains to show that r ≤ q and hence, by monotonicity, also
q ≤ a:q.

Since q ≤ (a:τp)′, Lemma 9.3 (ii) yields that q:a ≤ (a:τp)′ and hence also
r ≤ (a:τp)′.

Since q ≤ (a:τp)′, Lemma 9.3 (i) shows q:a ≤ (τp)′, hence (q:a)p ≤ p(τp)′.
But

p = p((a:p) + (a:p)′) = p(a:p) + p(a:p)′ = p(a:p) + τp,

so that p(τp)′ = p(a:p) ≤ a:p and therefore also r ≤ a:p. 2

Further investigations of Noethericity in the context of KAD are are outside the
scope of the present paper.

10 Reconstructing Hoare Logic

In this section we consider another application of KAD: the subsumption of
propositional Hoare logic. This subsumption is a popular exercise for many log-
ics and algebras for imperative programming languages. Hoare logic has, for
instance, already been embedded into PDL [16] and KAT [26]. Since KAD is an
extension of KAT, our subsumption result is no surprise. However we believe that
it is interesting for three reasons. First, in KAD, an encoding of the inference
rules of the Hoare calculus is much more crisp and clear and so are their cor-
rectness proofs. In general, Hoare-style reasoning about programs can be done
in a more flexible way. Second, the properties of the standard partial correct-
ness semantics [29,3] for Hoare logic mirror precisely those of domain, such that
KAD may be considered a natural abstract algebraic semantics for propositional
Hoare logic. Third, Hoare logic is an example where domain expressions can be
completely eliminated from all expressions, using (gla). Even more, we will see
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that all inference rules of Hoare logic can be translated into Horn clauses in
KAT, where all antecedents are of the form p = 0. A technique for hypothesis
elimination [7,26,27] yields decidability of this fragment.

First, we encode the relevant programming constructs in KA.

a ; b = ab (79)
if p then a else b = pa + p′b, (80)

while p do a = (pa)∗p′. (81)

We now briefly recall the syntax and semantics of Hoare logic. The basic formu-
las are partial correctness assertions of the form {p} a {q}, where p and q (the
precondition and postcondition) denote Boolean expressions and a a program.
Intuitively, p models a property of the input states of a program, while q mod-
els a property that is intended to hold at the output states. The program a is
intuitively interpreted as a relation between input and output states. Tradition-
ally, the Hoare calculus uses the following inference rules for reasoning about
programs.

Assignment {p[e/x]} x := e {p},

Composition
{p} a {q} {q} b {r}

{p} a ; b {r}
,

Conditional
{p ∧ q} a {r} {p′ ∧ q} b {r}
{q} if p then a else b {r}

,

While
{p ∧ q} a {q}

{q} while p do a {p′ ∧ q}

Weakening
p1 → p {p} a {q} q → q1

{p1} a {q1}
.

Assignment is a non-propositional inference rule that deals with the internal
structure of states. It is therefore disregarded in the embedding. Following [26],
we call the fragment of Hoare logic without assignments propositional Hoare logic
(PHL). Following [26] further, we define partial correctness assertions in KAT by

{p} a {q} ⇔ paq′ ≤ 0.

Using (52), we can rewrite this definition more directly as

{p} a {q} ⇔ p:a ≤ q. (82)

Accordingly, the inference rules of PHL can be encoded as

Composition p:a ≤ q ∧ q:b ≤ r ⇒ p:(ab) ≤ r,

Conditional (pq):a ≤ r ∧ (p′q):b ≤ r ⇒ q:(pa + p′b) ≤ r,

While (pq):a ≤ q ⇒ q:((pa)∗p′) ≤ p′q,

Weakening p1 ≤ p ∧ p:a ≤ q ∧ q ≤ q1 ⇒ p1:a ≤ q1.
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Theorem 10.1. The encoded rules of PHL are derivable in KAP. Therefore PHL
is sound with respect to this algebraic semantics.

Proof. (i) (Composition)

p:(ab) ≤ (p:a):b ≤ q:b ≤ r.

The first step uses (32), the second one the assumption and monotonicity.
(ii) (Conditional)

q:(pa + p′b) = (pq):a + (p′q):b ≤ r + r = r.

(iii) (While)

(pq):a ≤ q ⇒ q:(pa)∗ ≤ q ⇒ (q:(pa)∗)p′ ≤ qp′ ⇒ q:((pa)∗p′) ≤ p′q.

The first step uses import/export (31) and (61). The third step uses again im-
port/export.

(iv) (Weakening)
p1:a ≤ p:a ≤ q ≤ q1.

Soundness of PHL means in our context that for every partial correctness as-
sertion that can be proved in this calculus there is a calculation in KAD using
translated statements. This follows by induction on the structure of proofs in
PHL and our previous considerations. 2

Thus, given our domain calculus from the previous sections, soundness of PHL
can be proved literally in four lines. Compared to the KAT-based approach in [26],
we believe that our encodings and proofs in KAD are more concise, elegant and
intuitive. Compared to standard set-theoretic proofs in textbooks (c.f [3,29]), our
proof is about ten times shorter, without taking into account the fact that many
logical and set-theoretic assumptions are left implicit in the textbook proofs and
the proofs are only semi-formal.

Moreover, it has already been observed in [26] that all Horn clauses built
from partial correctness assertions in Hoare logic that are valid with respect
to the standard semantics are derivable in KAT. This result holds a fortiori for
KAD. PHL is too weak to derive all such formulas [26].

A further investigation of PHL in KAP, notably a fully algebraic completeness
proof, can be found in [30]. As a conclusion, we can only support [26] that given
Kleene algebra, the specialized syntax and deductive apparatus of Hoare logic are
inessential and can be replaced by simple equational reasoning. We also believe
that KAD offers even further advantages. It allows us to combine the intuitiveness
and readability of specifications in Hoare logic and imperative program semantics
with the computational power of KAT. And finally, Kleene algebra offers at least
an elegant formal calculus and a simple algebraic semantics for reasoning in and
about Hoare logic.

40



11 Conclusion and Further Work

We have presented equational axioms for domain and codomain for certain idem-
potent semirings and extended these notions to KAD. This algebraic abstraction
is intended as a unified view on approaches to program analysis and develop-
ment as different as PDL, KAT, B and Z. We have outlined a calculus for KAD,
defined preimage and image operators and presented two applications of KAD:
an algebraic reconstruction of the notions of Noethericity and the subsumption
of propositional Hoare logic. These and most of the other results in this text
provide the foundations and introduce the basic calculus of KAD. They are the
basis for further interesting work.

On the theoretical side, expressibility, complexity, completeness or repre-
sentability of KAD have not been investigated in this text. The same holds for
the apparent relation to modal algebras and in particular algebraic variants of
PDL (cf. e.g. [14]).

On the practical side, it might be interesting to continue our investigations
of termination analysis and greedy algorithms [31]. Moreover, a combination of
the two methods for total correctness reasoning seems promising. First steps in
this direction with a related Kleene algebra have already been taken in [40]. In
general, the flexibility and naturalness of KAD seems very promising for the spec-
ification and analysis of state transition systems. As often with Kleene algebra,
KAD might offer an abstract, simple, elegant, uniform calculus where different
specialized formalisms and complicated reasoning had to be used before.

Acknowledgment: We would like to thank Manfred Broy, Thorsten Ehm
and Marcelo Fŕıas for discussions and helpful comments.
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