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Abstract. Languages and families of binary relations are stan-
dard interpretations of Kleene algebras. It is known that the equa-
tional theories of these interpretations coincide and that the free
Kleene algebra is representable both as a relational and as a lan-
guage algebra. We investigate the identities valid in these interpre-
tations when we expand the signature of Kleene algebras with the
meet operation. In both cases meet is interpreted as intersection.
We prove that in this case there are more identities valid in lan-
guage algebras than in relational algebras (exactly three more in
some sense), and representability of the free algebra holds for the
relational interpretation but fails for the language interpretation.
However, if we exclude the identity constant from the algebras
when we add meet, then the equational theories of the relational
and language interpretations remain the same, and the free algebra
is representable as a language algebra, too. The moral is that only
the identity constant behaves differently in the language and the
relational interpretations, and only meet makes this visible.

Keywords: Kleene algebra, Kleene lattice, equational theory, lan-
guage algebra, relation algebra

1. Introduction

Kleene algebras are extensively investigated in language theory and
in programming logics, see, e.g., [3, 4, 5]. There are various definitions
of Kleene algebras in the literature; following [5], by a Kleene algebra
we mean an algebra satisfying a finite set of axioms (that we will not
need in this paper). We will denote the class of Kleene algebras by KA.

The notation for the operations in a Kleene algebra is a bit prob-
lematic. Traditionally, we have + (for addition or join), ∗ (for the
Kleene star), · (for multiplication or composition) and the constants 0
(for the additive identity) and 1 (for the multiplicative identity). How-
ever, since we want to add a full lattice structure, we will use · for
meet and denote the multiplication by ; (following the relation algebra
literature1) — this notation is also used in [6]. Hence the signature
of Kleene algebras is (+, ;, ∗, 0, 1), and Kleene algebras with meet, or
Kleene lattices, have signature (·,+, ;, ∗, 0, 1). Another operation that

Corresponding author: Sz. Mikulás.
1Relation algebraists beware that 1 denotes the identity constant and not the

top element. Also, the expression ‘relation algebra’ in this paper refers to algebras
of binary relations, i.e., ‘representable’ algebras.
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is sometimes added to Kleene algebras is converse (or conversion or
inverse), we will denote it by `. We denote by ω the set of natural
numbers.

As usual in Kleene algebras, we may not mention multiplication ;
explicitly and write x ; y as xy. We will use the standard notation
x0 := 1, xn+1 := xn ; x and the abbreviation x+ for x ; x∗ = x∗ ; x.
We also note that x∗ = x+ + 1 is valid in KA, thus x∗ implicitly uses
the identity 1. Let KA− denote the class of generalized subreducts
of elements of KA to the signature (+, ;, +, 0). That is, we omit 1 and
replace ∗ with +. We call elements of KA− identity-free Kleene algebras.

The two main types of Kleene algebras are language algebras and
relation algebras. They are defined as follows. Let Σ be a set (alphabet)
and Σ∗ denote the free monoid of all finite words over Σ, including the
empty word λ. The class of language Kleene algebras is defined as the
class of subalgebras of algebras of the form

(℘(Σ∗),+, ;, ∗, 0, 1)

where + is set union, ; is complex concatenation (of words)

X ; Y = {xy : x ∈ X, y ∈ Y } , (1.1)

∗ is the Kleene star operation

X∗ = {x0x1 . . . xn−1 : n ∈ ω, xi ∈ X for each i < n} , (1.2)

0 is the empty language and 1 is the singleton language consisting of the
empty word λ. We will denote the class of language Kleene algebras by
LKA. The class of language Kleene lattices, LKL, is defined analogously:
subalgebras of (℘(Σ∗), ·,+, ;, ∗, 0, 1) where, in addition, · is interpreted
as intersection.

The class of relational Kleene algebras is defined as the class of sub-
algebras of algebras of the form

(℘(W ),+, ;, ∗, 0, 1)

where W = U × U for some set U , + is set union, ; is relation compo-
sition

X ; Y = {(u, v) ∈ W : (u,w) ∈ X and (w, v) ∈ Y for some w} , (1.3)

∗ is reflexive-transitive closure, 0 is the emptyset and 1 is the identity
relation restricted to W

1 = {(u, v) ∈ W : u = v} . (1.4)

We will denote the class of relational Kleene algebras by RKA. The
class of relational Kleene lattices, RKL, is defined analogously: again ·
is interpreted as intersection.

We will use similar notation for other similarity types: LKA− and
LKL− denote language algebras, and RKA− and RKL− denote relation
algebras of the similarity types where 1 and ∗ are replaced by +.
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It is well known that the same equations are true in language Kleene
algebras and in relational Kleene algebras:

Eq(LKA) = Eq(RKA) (1.5)

where Eq(K) denotes the set of equations valid in the class K of alge-
bras. In passing we note that they coincide with the equational theory
Eq(KA) of Kleene algebras as well, see [5].

Equation (1.5) can be established by showing that LKA and RKA
have the same free algebra, viz. the algebra of regular languages, see,
e.g., [7] for the argument in the context of dynamic algebras.

One might wonder if we could prove more, e.g., whether the two
classes of algebras coincide up to isomorphisms. If K is a class of
algebras, then let IK denote the class of algebras isomorphic to some
element of K. It is the case that LKA ⊆ IRKA. The proof relies on the
following function (functor) assigning a binary relation to a language
X over an alphabet Σ:

f(X) = {(w,wx) : w ∈ Σ∗ and x ∈ X} .
This function f , called the Cayley representation, respects the Kleene
algebra operations: +, ;, ∗, 0, 1. Consequently, any language Kleene al-
gebra is isomorphic to a relational Kleene algebra, and thus any equa-
tion valid in relational Kleene algebras is also valid in language Kleene
algebras. The converse however fails: RKA 6⊆ ILKA. One trivial reason
for this is that the identity in each language algebra is the one-element
set {λ}, hence is an atom, while in relation algebras this is not so.
This property is reflected in the following equational implications (i.e.,
quasi-equations) distinguishing LKA and RKA:

x ≤ 1→ x ; y = y ; x (1.6)

x ≤ 1→ (x ; y)+ = x ; (y+) (1.7)

where x ≤ y abbreviates y = x+ y.
The next question is whether then those relation algebras in which

the identity is an atom, or whether identity-free relational Kleene al-
gebras are isomorphic to language Kleene algebras. The answer here is
in the negative, too. The following quasi-equation containing only the
operation ; also distinguishes them:

LKA |= x = x3 → x = x2 while RKA 6|= x = x3 → x = x2 . (1.8)

Thus there are fewer language Kleene algebras (up to isomorphism)
than relational Kleene algebras, and their quasi-equational theories are
different, but their equational theories coincide.

The Cayley representation f preserves also meet. Consequently,

Eq(RKL) ⊆ Eq(LKL) .

However, strict inclusion and not equality holds in this case. The rea-
son is that the quasi-equations (1.6) and (1.7) can be translated to
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equations if we have both identity and meet. Indeed, we can replace
x by x · 1 in the consequent of the quasi-equations, e.g., (1.7) can be
equivalently written as ((x · 1) ; y)+ = (x · 1) ; (y+) — see also the iden-
tities (3.2) and (3.3) in Section 3. One of our main theorems in this
paper, Theorem 3.2, states that LKL can be axiomatized over RKL by
these two equations plus one more (so, in a sense, there are only three
equations valid in RKL which are not valid in LKL). The free language
Kleene lattice is no longer representable as a language Kleene lattice,
but it is representable as a relational Kleene lattice, see Theorem 3.1
and the remark following it.

The above quasi-equations and the proofs of the above-mentioned
theorems all exploit that in language algebras the identity behaves
very differently from the relational case: it is a one-element set {λ},
and it cannot be obtained as a concatenation of words distinct from
λ. Indeed, if we omit occurrences of 1 (even implicitly as in x∗), then
the equational theories of language and relation algebras coincide, and
the free algebra is again representable as a language algebra, see The-
orems 4.1 and 4.3.

What is the case with conversion? Well, the Cayley representation
f does not preserve conversion, and indeed there are equations valid
in relation algebras which are not valid in language algebras, e.g., x ≤
x ; x` ; x is such. As one can see from this equation, the culprit is
again the identity in a hidden way (x ;x` contains the domain x ;x` · 1
of x). In passing we note that if we do not have intersection, then
the following axioms: Kleene algebra axioms, (x + y)` = x` + y`,
(x ; y)` = y` ;x`, (x∗)` = (x`)∗, x`` = x and x ≤ x ;x` ;x axiomatize
RKA with conversion, see [4]. In the present paper we state the main
technical lemma (Lemma 2.5) for a similarity type containing converse,
too, but in the rest of the paper we do not deal with converse.

2. Terms, graphs and words

In this section we consider the full signature (·,+, ;, ∗, 0, 1, `) of Kleene
lattices with conversion. RKL` and LKL` denote the classes of rela-
tional and language Kleene lattices with conversion, respectively. We
recall a technique that allows us to concentrate on terms containing
none of +, ∗, 0, and we introduce a graphic representation for these
terms. Then we construct “characteristic” words to these terms, and
we prove our key technical lemma, Lemma 2.5, which we will use in
the subsequent sections.

2.1. Ground terms and continuity. A ground term is one in which
neither of +, ∗, 0 occurs. (Note that variables can occur in ground
terms.) First we define the set Γ(τ) of ground terms for any term τ ,
and then we show that τ can be replaced, in a sense, with Γ(τ). We
use the notation T ∆ S = {τ ∆ σ : τ ∈ T, σ ∈ S} for an operation ∆



KLEENE LATTICES 5

and sets T and S of terms. For a variable x we let Γ(x) = {x}, Γ(0) =
∅, Γ(1) = {1},

Γ(τ + σ) = Γ(τ) ∪ Γ(σ)

Γ(τ · σ) = Γ(τ) · Γ(σ)

Γ(τ ; σ) = Γ(τ) ; Γ(σ)

Γ(τ`) = (Γ(τ))`

Γ(τ ∗) =
⋃
{Γ(τn) : n ∈ ω}

and we let GT =
⋃
τ Γ(τ) denote the set of ground terms. For every

term τ , let τA[k] denote the value of τ in the algebra A under the
evaluation k of variables in A. Now we show a ∗-continuity property
allowing in many cases to concentrate on ground terms only.

Lemma 2.1. For every term τ and language or relation algebra A of
signature (·,+, ;, ∗, 0, 1, `),

τA[k] =
⋃
{σA[k] : σ ∈ Γ(τ)} .

Proof. This is an easy induction on τ , by using complete additivity of
·, ;, `. �

Remark. The above lemma remains true if we replace ∗ by +, and in
this case we have

Γ(τ+) =
⋃
{Γ(τn) : 1 ≤ n ∈ ω} .

�

2.2. Term graphs. Term graphs are a graphic representation for ground
terms. We recall the definition of term graphs; these were introduced
in [1], but we use the notation of [2].

Let X be the set of our variables. An X-labelled graph (or simply
just a labelled graph) is a structure G = (V,E) where V is the set of
vertices and E ⊆ V × X × V is the set of labelled edges. Given two
labelled graphs G1 = (V1, E1) and G2 = (V2, E2), a homomorphism
h : G1 → G2 is a map from V1 to V2 that preserves X-labelled edges: if
(u, x, v) ∈ E1, then (h(u), x, h(v)) ∈ E2. Given an equivalence relation
θ on V , the quotient graph is G/θ = (V/θ, E/θ) where V/θ is the set
of equivalence classes of V and

E/θ = {(u/θ, x, v/θ) : (∃u′ ∈ u/θ)(∃v′ ∈ v/θ)(u′, x, v′) ∈ E} .

A 2-pointed graph is a labelled graph G = (V,E) with two (not neces-
sarily distinct) distinguished vertices ι, o ∈ V . We will call ι the input
and o the output vertex of G, respectively, and denote 2-pointed graphs
as G = (V,E, ι, o). In the case of 2-pointed graphs, we require that a
homomorphism preserves input and output vertices as well.
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Let G1 ⊕G2 denote the disjoint union of G1 and G2. For 2-pointed
graphs G1 = (V1, E1, ι1, o1) and G2 = (V2, E2, ι2, o2), we define their
composition as

G1 ;G2 = (((V1, E1)⊕ (V2, E2))/θ, ι1/θ, o2/θ)

where θ is the smallest equivalence relation on the disjoint union V1∪V2
that identifies o1 with ι2. The meet of G1 and G2 is defined as

G1 ·G2 = (((V1, E1)⊕ (V2, E2))/θ, ι1/θ, o1/θ)

where θ is the smallest equivalence relation on the disjoint union V1∪V2
that identifies ι1 with ι2 and o1 with o2. When no confusion is likely
we will identify an equivalence class u/θ with u, hence ιi/θ with ιi and
oi/θ with oi for i ∈ {1, 2}.

We define term graphs as special 2-pointed graphs by induction on
the complexity of ground terms. Let

G(1) = ({ι}, ∅, ι, ι)

i.e., in this case ι = o. For variable x, we let

G(x) = ({ι, o}, {(ι, x, o)}, ι, o)

where ι 6= o. For terms σ and τ , we set

G(σ · τ) = G(σ) ·G(τ) and G(σ ; τ) = G(σ) ;G(τ)

while G(σ`) is defined by swapping ι and o in G(σ).
As an example consider the term τ = (x1 ; x2

`) · (y1 ; y2). The graph
G(τ) is drawn in Figure 1.

u

ιτ

x1
>>}}}}}}}

y1   A
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>>}}}}}}}}

Figure 1. The graph G(τ) for τ = (x1 ; x2
`) · (y1 ; y2)

The next two lemmas are about the use of term graphs. Let τ be
a ground term and G(τ) = (V (τ), E(τ), ιτ , oτ ). When A is a language
or relational Kleene lattice we will often omit the superscript A and
we will simply write τ [k]. The reason is that in these cases k itself
determines τA[k], this value is the same for all A such that the values
of k are in A. The following is proved in [1, Lemma 3]. We will not
use it in this paper, we include it for seeing the analogy with the next
lemma.
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Lemma 2.2. Let τ be a ground term, U be a set and k be an evaluation
of the variables of τ in ℘(U×U). Then for every (u, v) ∈ U×U , items
(1) and (2) below are equivalent.

(1) (u, v) ∈ τ [k].
(2) There is a map h : V (τ) → U such that h(ιτ ) = u, h(oτ ) = v,

and for every edge (i, x, j) ∈ E(τ), we have (h(i), h(j)) ∈ k(x).

By using Lemma 2.2 one can prove that RKL` |= τ ≤ σ iff there is a
homomorphism from G(σ) to G(τ), see [1, Theorem 1].

We prove an analogous lemma for language algebras. For this we
need to consider the natural partial ordering on G(τ) introduced in
[2, Definition 4.6]. We briefly recall the definition. In G(x) we have
that ιx ≤ ox. In G(τ ; σ) the ordering is the extension of the ones of
G(τ) and G(σ) by stipulating that each node in G(τ) precedes each
node in G(σ). The ordering in G(τ · σ) is just the union of the ones of
G(τ) and G(σ). Finally, the ordering of G(τ`) is the reverse of that of
G(τ). (In the notation of [2], we have that u ≤ v iff τ(u, v) is defined.)
Notation: Let w = w1 . . . wn be a word where w1, . . . , wn are letters.
Then |w| = n denotes the length of w. Let 0 ≤ i < j ≤ n. Then
w(i, j) = wi+1 . . . wj, w(j, i) = w(i, j)` = wj . . . wi+1, and w(j, j) = λ
denote the corresponding subwords of w.

Lemma 2.3. Let τ be a ground term, Σ be an alphabet and k be an eval-
uation of the variables of τ in ℘(Σ∗). Then for every w = w1 . . . wn ∈
Σ∗, items (1) and (2) below are equivalent.

(1) w ∈ τ [k].
(2) There is an order-preserving map h : V (τ)→ n+1 = {0, 1, . . . , n}

such that h(ιτ ) = 0, h(oτ ) = n, and for every edge (i, x, j) ∈
E(τ), we have w(h(i), h(j)) ∈ k(x).

Proof. We proceed by induction on τ . All the cases are straightforward
except perhaps one part of the case of composition where we need the
ordering and the case of converse. We write out these parts of the
proof.

Assume h : V (τ ; σ) → n + 1 is an order-preserving map such that
h(ιτ ;σ) = 0, h(oτ ;σ) = n, and for every edge (i, x, j) ∈ E(τ), we have
w(h(i), h(j)) ∈ k(x). Let q ∈ V (τ ; σ) be the vertex connecting G(τ)
and G(σ) in G(τ ; σ), i.e., q = oτ = ισ. Let u = w(0, h(q)), v =
w(h(q), n) and let g be defined as the restriction of h to V (τ). Then
g : V (τ) → |u| + 1 by the order-preserving property of h. Also, g
is order-preserving and satisfies the rest of the conditions for G(τ).
By the induction hypothesis then u ∈ τ [k]. Let now g be defined
as g(i) = h(i) − |u| for every i ∈ V (σ). As before, g : V (σ) → |v| + 1
satisfies the required conditions and so v ∈ σ[k]. Thus w = uv ∈ τ ;σ[k],
and we are done.

Assume now that w ∈ τ`[k]. We want to show the existence of an
appropriate h : V (τ`) → n + 1 where n = |w|. We have that v ∈ τ [k]
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where v = v1 . . . vn = wn . . . w1. Thus vi = wn+1−i for i ≤ n. By the
induction hypothesis there is an appropriate g : V (τ) → n + 1. We
note that V (τ`) = V (τ) and E(τ`) = E(τ), just the ordering is the
reverse and the endpoints are swapped. We define h : V (τ) → n + 1
by h(i) = n − g(i). Then h is order-preserving from V (τ`) and takes
the endpoints ιτ` = oτ and oτ` = ιτ to 0 and n, respectively. As-
sume that (i, x, j) ∈ E(τ`). Then v(g(i), g(j)) ∈ k(x) by the induction
hypothesis. We show that w(h(i), h(j)) = v(g(i), g(j)). Assume that
h(i) < h(j). Then g(i) > g(j). Now, w(h(i), h(j)) = wh(i)+1 . . . wh(j) =
vn+1−h(i)−1 . . . vn+1−h(j) = vg(i) . . . vg(j)+1 = v(g(i), g(j)). The other
cases are completely analogous, and we are done. �

2.3. Words associated to terms. We now turn to the main con-
struction and technical lemma for obtaining the results in this paper.
To each identity-free ground term τ we will construct a word wτ and
a function fτ : V (τ)→ ω which, in a sense, will be characteristic for τ ,
see Lemma 2.5. Instead of defining wτ and fτ formally, we just state
the existence of these with the desired properties. From the proof of
Lemma 2.4 one can extract an explicit construction for wτ and fτ , but
we will not need these concrete forms.

Lemma 2.4. For every identity-free ground term τ , there are a word
wτ = w1 . . . wn and a map fτ : V (τ) → n + 1 such that the following
conditions (1)–(3) hold.

(1) wτ is repetition-free (i.e., wi 6= wj for all 1 ≤ i < j ≤ n).
(2) fτ satisfies fτ (ιτ ) = 0, fτ (oτ ) = n and fτ is order-preserving

(i.e., if u ≤ v in G(τ), then fτ (u) ≤ fτ (v)).
(3) fτ is strongly injective in the sense that the values of fτ are

separated by at least two letters (i.e., |fτ (u)− fτ (v)| ≥ 2 for all
distinct u, v ∈ G(τ)).

Proof. Let τ be an identity-free ground term and consider its graph
G(τ) = (V (τ), E(τ), ιτ , oτ ). Since τ is identity-free, we can extend the
natural partial ordering on V (τ) to a linear ordering, also denoted by
≤, say, ιτ = q0 ≤ q1 ≤ · · · ≤ qm = oτ . Let wτ = w0w1 . . . w2m−1 be
a repetition-free word (i.e., the letters wi, wj are pairwise distinct).
Define fτ : V (τ)→ 2m+ 1 by fτ (i) = 2i for every 0 ≤ i ≤ m. It is easy
to see that wτ and fτ satisfy the requirements (with n = 2m). �

Example. Consider the term τ = (x1 ; x2
`) · (y1 ; y2). Recall that we

drew the graph G(τ) in Figure 1. Let the linear ordering on V (τ) be
ιτ ≤ v ≤ u ≤ oτ . The map fτ is illustrated in Figure 2. �

The next lemma is about a connection between LKL` and RKL`.
Note that w ∈ τ [k] means that τ is evaluated in a language algebra.

Lemma 2.5. For every identity-free ground term τ , there are a word
wτ and a valuation kτ of the variables of τ such that
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fτ (ιτ ) w0w1

x1

''

y1

==
fτ (v) w2w3

y2

77
fτ (u) w4w5 fτ (oτ )

x2

}}

Figure 2. The word wτ and map fτ for τ = (x1 ; x2
`) ·

(y1 ; y2)

(1) wτ ∈ τ [kτ ] and
(2) for any term σ, wτ ∈ σ[kτ ] implies RKL` |= τ ≤ σ.

Proof. Fix τ , and let wτ = w1 . . . wn and fτ be as in the statement of
Lemma 2.4. For a variable x occurring in τ define

kτ (x) = {wτ (fτ (i), fτ (j)) : (i, x, j) ∈ E(τ)}
and for a variable x not occurring in τ define kτ (x) = ∅. We show that
these wτ and kτ are the ones we are looking for.

First, wτ ∈ τ [kτ ] by Lemmas 2.3, 2.4 and the construction of kτ .
For the second statement, assume wτ ∈ σ[kτ ] where σ is a ground

term. Then all variables of σ must occur in τ , because otherwise σ[kτ ] =
∅ by the construction of kτ . By Lemma 2.3 we have an order-preserving
map h : V (σ)→ n+1 such that h(ισ) = 0, h(oσ) = n and for every edge
(i, x, j) ∈ E(σ), we have wτ (h(i), h(j)) ∈ kτ (x). Recall that conditions
(1)–(3) in Lemma 2.4 are satisfied for wτ and fτ . Since wτ is repetition-
free (condition (1)), each subword of length at least 2 occurs in a unique
way in wτ , i.e., for all i, j, p, q ≤ n such that |i− j| ≥ 2:

if wτ (i, j) = wτ (p, q), then i = p and j = q. (2.1)

Note that the condition |i− j| ≥ 2 is necessary for (2.1), since wτ (i, i+
1) = wτ (i + 1, i) — reading a single letter “backward” is the same
as reading it “forward”. From (2.1) and the definition of kτ we infer
that the range of h lies inside the range of fτ as follows. Assume that
(i, x, j) ∈ E(σ). Then wτ (h(i), h(j)) ∈ kτ (x). Thus wτ (h(i), h(j)) =
wτ (fτ (p), fτ (q)) for some (p, x, q) ∈ E(τ) by the definition of kτ . Since
1 does not occur in τ , then p 6= q, and strong injectivity of fτ (condition
(3)) then gives that |fτ (p) − fτ (q)| ≥ 2. By (2.1) above then h(i) =
fτ (p) and h(j) = fτ (q). An easy induction shows that for every i ∈
V (σ), there are j and x such that either (i, x, j) ∈ E(σ) or (j, x, i) ∈
E(σ), and we have just seen that in both cases h(i) is in the range of
fτ . Now, by letting g = h◦f−1τ we have that g : V (σ)→ V (τ), since fτ
is injective. Finally, we want to show that this g is a homomorphism
from G(σ) to G(τ). Let (i, x, j) ∈ E(σ). We have seen that there is
(p, x, q) ∈ E(τ) such that h(i) = fτ (p) and h(j) = fτ (q), i.e., p = g(i)
and q = g(j), i.e., (g(i), x, g(j)) ∈ E(τ). Then indeed g : G(σ)→ G(τ)
is a homomorphism, since g(ισ) = ιτ , g(oσ) = oτ and g preserves edges
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labelled by variables. Hence τ ≤ σ is valid in relation algebras by [1,
Theorem 1].

Finally, assume wτ ∈ σ[kτ ] where σ is not necessarily a ground term.
By Lemma 2.1 then wτ ∈ δ[kτ ] for some δ ∈ Γ(σ). By the previous
case then RKL` |= τ ≤ δ, and by Lemma 2.1 we have RKL` |= δ ≤ σ.
Thus RKL` |= τ ≤ σ as desired. �

Discussion of Lemma 2.5. We note that Lemma 2.5 does not remain
true if we omit the condition “identity-free” from it. Indeed, let τ
be 1 · (x ; y). Now if wτ and kτ are as in the lemma, then wτ = λ,
λ ∈ k(x) and λ ∈ k(y) must hold by wτ ∈ τ [kτ ]. But then wτ ∈ σ[kτ ]
with σ = (1 · x) ; (1 · y), though RKL` 6|= τ ≤ σ. Compare equation
(3.1) in Section 3. Similarly, the adjective “ground” is essential in
Lemma 2.5. Indeed, take x+ for τ . By Lemma 2.1, there is n ∈ ω such
that wτ ∈ xn[kτ ]. However, RKL` 6|= x+ ≤ xn for any n ∈ ω.

We note that if wτ , kτ and τ are as in Lemma 2.5, then λ /∈ kτ (x) for
any x. Indeed, if λ ∈ kτ (x), then wτ ∈ (1 ·x) ; τ [kτ ], while RKL` 6|= τ ≤
(1 ·x) ;τ for any identity-free ground term τ . Also, we may assume that
kτ (x) = ∅ for any variable x not occurring in τ , because if kτ is not
such, then define k′τ as k′τ (x) = kτ (x) if x occurs in τ , and k′τ (x) = ∅
otherwise. Then wτ , k

′
τ and τ will satisfy Lemma 2.5.

Finally, if we do not allow converse ` in the terms, then we can write
items (1)–(2) in a more concise form as follows:

wτ ∈ σ[kτ ] if and only if RKL |= τ ≤ σ .

For RKL` we cannot use this concise form, because the reverse of
(2) may not hold. Indeed, let wτ , kτ and τ be as in (the proof
of) Lemma 2.5, and let σ be (τ ; τ`)n ; τ where n = |w|. Then
RKL` |= τ ≤ σ. But wτ /∈ σ[kτ ], since (τ ; τ`)n ; τ [kτ ] only contains
words of length at least 4n+ 2. �

3. Equations valid in Kleene lattices

In this section we show that if we add the operation of meet · to the
language of Kleene algebras, then the free language Kleene algebra is no
more representable as a language algebra, and the equational theories
of the language and the relational interpretations differ. We will show
exactly how much they differ.

Theorem 3.1. No free algebra of LKL or RKL with at least one free
generator is representable as a language algebra.

Proof. In the free algebra, the terms 0, x · 1 and 1 are below 1, and all
three of 0, x · 1 and 1 are different. (For example, x · 1 6= 1 in the free
algebra, because if x = 0, then x · 1 = 0 6= 1.) However, in a language
representation 1 is a one-element set which has only two subsets. �
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We note that the free algebra of LKL with no free generator consists
of 0 and 1, so is representable as a language algebra. The same holds for
the free algebra of RKL with no free generator. It is known that the free
Kleene algebra is (isomorphic to) the algebra of regular languages, and
the set of regular languages is closed under meet. So the free algebra of
Kleene algebras endowed with the operation of meet is no more free in
this larger signature. We note that the free LKL-algebras as well as the
free RKL-algebras are all representable as relational Kleene algebras.
The reason is that a free K-algebra is isomorphic to a subalgebra of a
direct product of elements of K, and RKL is closed under subalgebras
and direct products (up to isomorphism)2. Further, LKL is a subclass
of RKL up to isomorphism (we have seen this in the introduction by
using the Cayley representation).

Now we turn to equations valid in Kleene lattices. We have seen, by
using the Cayley representation, that all the equations valid in rela-
tional Kleene lattices (in RKL) are valid in language Kleene lattices (in
LKL), too. However, more equations are valid in language Kleene lat-
tices than in relational Kleene lattices. Namely, consider the following
equations.

(x ; y) · 1 = (x · 1) ; (y · 1) (3.1)

(x · 1) ; y = y ; (x · 1) (3.2)

(z + (x · 1) ; y)∗ = z∗ + (x · 1) ; (z + y)∗ (3.3)

These equations are all valid in the language interpretations, while they
are not valid in the relational interpretations. Equation (3.1) expresses
that λ cannot be written as a concatenation of words distinct from λ,
while equation (3.2) expresses that 1 = {λ} is an atom. It is easy to
check that these equations indeed fail in the relational interpretations,
see the discussion following the proof of the next theorem.

Theorem 3.2. Equations (3.1), (3.2) and (3.3) axiomatize Eq(LKL)
over Eq(RKL):

Eq(RKL) ∪ {(3.1), (3.2), (3.3)} ` Eq(LKL) .

Before proving Theorem 3.2 we prove some lemmas. The following
lemma is interesting in itself. It says that if an equation of form τ ≤ σ
distinguishes LKL and RKL, then 1 must occur in τ (perhaps in the
form of ∗). We say that τ is an identity-free term if τ is in the language
of LKL−, i.e., 1 and ∗ do not occur in τ , but + can occur in τ .

Lemma 3.3. If LKL |= τ ≤ σ such that τ is identity-free, then RKL |=
τ ≤ σ.

2Note that the top element is not part of the signature, hence, unlike for Tarski’s
representable relation algebras, representability on Cartesian squares and on equiv-
alence relations coincide.
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Proof. Assume LKL |= τ ≤ σ such that τ is identity-free. Then Γ(τ)
consists of identity-free ground terms. Let ρ ∈ Γ(τ) be arbitrary and let
wρ and kρ be to ρ as in Lemma 2.5, whence wρ ∈ ρ[kρ]. By Lemma 2.1
we have that LKL |= ρ ≤ τ ≤ σ. Hence wρ ∈ σ[kρ]. Then RKL |= ρ ≤ σ
by Lemma 2.5. Finally, since this is true for all ρ ∈ Γ(τ), by Lemma 2.1
we get that RKL |= τ ≤ σ. �

We note that Lemma 3.3 is not true with τ and σ interchanged.
Indeed, the term (1 · x) ; y ≤ y ; x is valid in LKL, but it is not valid
in RKL. This implies that 1 does not have to occur on both sides in a
“distinguishing” equation: (1 · x) ; y + y ; x = y ; x is a distinguishing
equation, and 1 does not occur on both sides.

The next lemma allows to “separate” the use of 1 in terms. We call
a term τ to be in normal form if τ is of form

η ; τ ′

with either η or τ ′ possibly missing, such that η is of form (x1 ;. . .;xn)·1
with n ∈ ω and x1, ..., xn distinct variables, and τ ′ is an identity-free
term, i.e., 1 does not occur and ∗ occurs only in the form of + in
τ . So this normal form “separates” the use of 1 in a term. We note
that the term η behaves like a “switch” in language interpretations: it
is the identity 1 if the variables are evaluated to languages which all
contain the empty word, and it is zero otherwise. Let E = Eq(RKL) ∪
{(3.1), (3.2), (3.3)}.

Lemma 3.4. Assume E. Each term is provably equivalent to a finite
sum of terms in normal form.

Proof. By induction on the structure of the terms. We will use the
following equation

((x · 1) ; y) · z = (x · 1) ; (y · z) (3.4)

which is easily seen to be valid in RKL, whence it is in E .
A variable x and 0 are in normal form, and also 1 is in normal form

(with n = 0). Join is trivial.
Composition: (η ; τ) ; (ε ; σ) = η ; ε ; τ ; σ by equation (3.2), and η ; ε

can be written in form (x1 ; . . . ; xn) · 1 by equation (3.1).
Meet: (η ; τ) · (ε ; σ) = η ; (τ · (ε ; σ)) = η ; ε ; (τ · σ) by equation (3.4)

above and commutativity of meet.
Kleene star: Assume that τ is equivalent to a finite sum of terms in

normal form, we want to show that τ ∗ is also such. Assume τ =
∑
ηi;τi.

We will prove by induction along the number m of i for which ηi is not
missing (i.e., it is not the empty term). If m = 0, then

∑
ηi ; τi is

identity-free, so τ ∗ = 1 + τ+ where both 1 and τ+ = (
∑
τi)

+ are in
normal form (by the definition). Assume now that the statement holds
for m, and let τ = σ + (ε ; ρ) where ρ is identity-free and σ is a sum
of terms in normal form such that the number of non-missing ηi in σ



KLEENE LATTICES 13

is ≤ m. By the induction hypothesis both σ∗ and (ρ + σ)∗ are finite
sums of terms in normal form. Then so is ε ; (ρ + σ)∗ by the case for
composition. Now, τ ∗ = (ε ; ρ + σ)∗ = σ∗ + ε ; (ρ + σ)∗ by equation
(3.3), and we are done. �

Lemma 3.5. Assume E. Let x1, . . . , xn be variables, τ be an arbitrary
term, and let τ ′ denote the term we obtain from τ by replacing each
occurrence of xi with xi + 1 for i ≤ n. Then E proves

((x1 ; . . . ; xn) · 1) ; τ = ((x1 ; . . . ; xn) · 1) ; τ ′ .

Proof. By induction on the structure of τ . Let η = (x1 ; . . . ; xn) · 1.
The case when τ is the identity constant is trivial.

Variable: We use case distinction according to whether x occurs
among x1, . . . , xn. If x is distinct from every x1, . . . , xn, then the two
sides of the equation coincide. Next we assume that x = xi for some 1 ≤
i ≤ n. Clearly η ;xi ≤ η ;xi+η ;1 = η ;(xi+1). For the other direction we
have to show that η ;1 = η ≤ η ;xi. Recall that η = (x1 ;. . .;xi ;. . .;xn)·1.
By equation (3.1) we have η = (x1 · 1) ; . . . ; (xi · 1) ; . . . ; (xn · 1) and
η ;xi = (x1 ·1);. . .;(xi ·1);. . .;(xn ·1);xi. Since (xi ·1);(xi ·1) = (xi ·1) and
the commutativity of composition of sub-identity elements are valid in
RKL, we get that η = η ; (xi · 1) ≤ η ; xi.

Composition: η ; τ1 ; τ2 = η ; η ; τ1 ; τ2 = η ; τ1 ; η ; τ2 = η ; τ ′1 ; η ; τ ′2 =
η ; η ; τ ′1 ; τ ′2 = η ; τ ′1 ; τ ′2 = η ; (τ1 ; τ2)

′. We used η ≤ 1 and identity (3.2).
Meet: η ; (τ1 ·τ2) = (η ;τ1) ·τ2 = (η ;τ ′1) ·τ2 = η ; (τ ′1 ·τ2) = η ; (τ2 ·τ ′1) =

(η ;τ2) ·τ ′1 = (η ;τ ′2) ·τ ′1 = η ; (τ ′2 ·τ ′1) = η ; (τ1 ·τ2)′. We used identity (3.4).
Kleene star: First we show that the following equation

(η ; τ)+ = η ; τ+ (3.5)

holds. By letting z = 0, x · 1 = η and y = τ in (3.3) we get

(η ; τ)∗ = 1 + η ; τ ∗ . (3.6)

From this we get (η ; τ)+ = (η ; τ) ; (η ; τ)∗ = (η ; τ) ; (1 + η ; τ ∗) =
(η ; τ) + (η ; τ) ; (η ; τ ∗) = (η ; τ) + (η ; τ ; τ ∗) = (η ; τ) + (η ; τ+) =
η ; τ+. We are ready for our induction step. η ; (τ)∗ = η ; (1 + τ+) =
η + η ; τ+ = η + (η ; τ)+ = η + (η ; τ ′)+ = η ; (τ ′)∗.

Join: η ;(τ1+τ2) = η ;τ1+η ;τ2 = η ;τ ′1+η ;τ ′2 = η ;(τ ′1+τ ′2) = η ;(τ1+τ2)
′

by the additivity of composition. �

We are ready to prove Theorem 3.2.

Proof of Theorem 3.2. Assume that LKL |= τ ≤ σ. By Lemma 3.4,
E proves that τ is equivalent to a sum of terms in normal form, say,
τ =

∑
ηi ; τi. By the equations for join + in E expressing that +

is supremum then it is enough to prove for each i that ηi ; τi ≤ σ.
We know that LKL |= ηi ; τi ≤ σ. Let η′i, τ

′
i and σ′ be the terms we

obtain from ηi, τi and σ by replacing all the variables xj occurring
in ηi with xj + 1. Then LKL |= η′i ; τ ′i ≤ σ′, because we get this if
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we choose any evaluation for the variables occurring in η such that
they contain the identity. Since all operations are monotone, we have
that LKL |= 1 ≤ η′i and LKL |= τi ≤ τ ′i . Thus LKL |= τi ≤ σ′. By
Lemma 3.3 then RKL |= τi ≤ σ′, since τi is identity-free. Hence also
RKL |= ηi;τi ≤ ηi;σ

′. So E proves ηi;τi ≤ ηi;σ
′ by Eq(RKL) ⊆ E . Also, E

proves ηi;σ
′ = ηi;σ by Lemma 3.5. Now, we get ηi;τi ≤ ηi;σ

′ = ηi;σ ≤ σ.
The last inequality is by Eq(RKL). �

Discussion of Theorem 3.2. Equation (3.1) does not follow from Eq(RKL)∪
{(3.2), (3.3)}. Indeed, let U be any set with at least two elements and
let A consist of 0, Id = {(u, u) : u ∈ U}, Di = {(u, v) : u, v ∈ U, u 6= v}
and U ×U . Then A is closed under all the operations of RKL (i.e., un-
der ·,+, ;, ∗, 0, 1). Equation (3.1) is not true in this algebra under the
evaluation x = y = Di. However, equations (3.2) and (3.3) are true
because Id is an atom in this algebra. Indeed, this means that x · 1
must be either 0 or 1, and in both cases (3.2) and (3.3) trivially hold.

Equation (3.2) does not follow from Eq(RKL)∪{(3.1), (3.3)}. Indeed,
let U = {u, v} be a two-element set, a = {(u, u), (u, v)}, b = {(u, u)}
and A = {0, a, b, 1, a + 1}. Then A is closed under the operations of
RKL. Equation (3.2) does not hold in this algebra, take x = y = a.
Then (a · 1) ; a = {(u, u), (u, v)} 6= {(u, u)} = a ; (a · 1). It can be
checked that (3.1) and (3.3) hold.

We show that equation (3.3) does not follow from equation (3.1) in
RKL. Let U = {0, 1, 2} and let A = {X ⊆ U×U : (∀u, v)[(u, v) ∈ X →
u ≤ v}. Then A is closed under the operations of RKL, and (3.1) is true
in A because one cannot create a new identity pair with composition.
However, (3.3) is not true in A as the choice of x = {(0, 0)}, y =
{(0, 1), (1, 2)}, z = ∅ shows.

However, (3.3) does follow from (3.2) in RKL, i.e., the equational
implication

(x · 1) ; y = y ; (x · 1)→ (z + (x · 1) ; y)∗ = z∗ + (x · 1) ; (z + y)∗

holds in RKL, as is easy to see as follows. One can show by using the
definition of ∗, equation (3.2), (x · 1) ; (x · 1) = x · 1 and (x · 1) ;w ≤ w
that both (z + (x · 1) ; y)∗ and z∗ + (x · 1) ; (z + y)∗ are equal to the
(infinite) sum of products of form a0 ; . . . ; an where n ∈ ω, for every
1 ≤ i ≤ n, ai ∈ {z, y}, and a0 = (x · 1) if at least one of a1, . . . , an is y
and a0 = 1 otherwise.

This motivates the following questions.

Problem 3.6. Is Eq(RKL)∪{(3.1), (3.2)} ` (3.3) true? Can we use the
simpler equation (3.5) introduced in the proof of Lemma 3.5 in place
of the more complicated (3.3)?

We also note that Lemmas 3.4 and 3.5 are true for terms containing
converse. �
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One can check that the proof of Theorem 3.2 is highly modular,
so it is true for the star-free reduct of Kleene lattices. A finite set
Ax(·,+, ;, 0, 1) is given in [2, Theorem 4.1] axiomatizing the equational
theory of the star-free relational interpretations.

Corollary 3.7. The equational theory of the star-free language inter-
pretations is axiomatized by Ax(·,+, ;, 0, 1) ∪ {(3.1), (3.2)}.

4. Equations valid in identity-free Kleene lattices

In this section we prove that the equational theories of the identity-
free language and relational Kleene lattices coincide and that the free
algebra is representable as a language algebra. This shows that we
can include meet into the language of Kleene algebras without losing
equality of the equational theories if we omit 1 from the language at
the same time. So, indeed the differences that we saw in the previous
section are caused by the interaction of · with 1.

The following theorem says that if the identity constant is not present,
even implicitly in the ∗-operation, then the same equations hold in lan-
guage and in relational interpretations.

Theorem 4.1. The equational theories of LKL− and RKL− coincide:

Eq(LKL−) = Eq(RKL−) .

Proof. It is enough to see that the same inequalities τ ≤ σ hold in
RKL− and LKL−. Assume RKL− |= τ ≤ σ. Then LKL− |= τ ≤ σ,
since we have seen, by using the Cayley representation, that every
LKL−-algebra is isomorphic to an RKL−-algebra. On the other hand, if
LKL− 6|= τ ≤ σ, then RKL− 6|= τ ≤ σ by Lemma 3.3. �

One can check that the proof of Theorem 4.1 is again modular, so it
works for the star- and identity-free reduct of Kleene lattices. A finite
set Ax(·,+, ;, 0) is given in [2, Theorem 4.1] axiomatizing the equational
theory of the star- and identity-free relational interpretations.

Corollary 4.2. The equational theory of the star- and identity-free
language interpretations is axiomatized by Ax(·,+, ;, 0).

Theorem 4.3. The free algebras of LKL− are representable as language
algebras.

Proof. Let X be any set, T be the term algebra generated by X, and
let GT− denote the set of identity-free ground terms with variables
from X. For each ground term τ , let wτ and kτ be as in Lemma 2.5 on
alphabets Στ such that these alphabets are disjoint for distinct terms.
Let Σ be the (disjoint) union of these, i.e., Σ =

⋃
{Στ : τ ∈ GT−}. We

will represent F, the free algebra of LKL− generated freely by X, on
the alphabet Σ. We have seen in the discussion after Lemma 2.5 that
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we may assume that kτ (x) = ∅ for all variables x not occurring in τ .
For each x ∈ X define

k(x) =
⋃
{kτ (x) : τ ∈ GT−} .

Then k : X → ℘(Σ∗). Let k also denote the homomorphism from T to
L, the language algebra on Σ, extending this function. We will show
that for all terms τ, σ ∈ T,

k(τ) = k(σ) iff LKL− |= τ = σ . (4.1)

This will show that the range of k, which is a subalgebra of L, is a free
algebra of LKL− generated freely by X, hence isomorphic to F. Now,
to prove (4.1), assume that LKL− |= τ = σ. Then clearly k(τ) = k(σ),
since L ∈ LKL− and since k(δ) = δ[k] for all terms δ. Conversely,
assume that LKL− 6|= τ = σ. Then LKL− 6|= τ ≤ σ or LKL− 6|= τ ≥ σ,
wlog we may assume the former. By Lemma 2.1 then there is a ground
term δ ∈ Γ(τ) such that LKL− 6|= δ ≤ σ. Now, take the word wδ.
We have that wδ ∈ δ[kδ] by Lemma 2.5. By using disjointness of the
alphabets Στ , one can prove by an easy induction that for all ground
terms η,

k(η) ∩ Σ∗η = η[kη] . (4.2)

Then wδ ∈ k(δ) ⊆ k(τ). By LKL− 6|= δ ≤ σ, Theorem 4.1 and
Lemma 2.5, we have that wδ /∈ σ[kδ]. Since the alphabets Σδ and
Σσ are disjoint, we have wδ /∈ k(σ) by (4.2). That is, k(δ) 6≤ k(σ).
Hence k(τ) 6⊆ k(σ), finishing the proof. �

The question arises whether it was necessary to exclude the occur-
rences of 1 implicit in ∗ in order that we get the positive result Theo-
rem 4.1, or we only needed this in the proof (to ensure that the ground
terms in G(τ) are identity-free). The following equations (4.3), (4.4)
show that indeed it was necessary to omit ∗ from the signature of
identity-free Kleene lattices.

Consider the following equation:

z∗ · x ; y = (z∗ · x) ; (z∗ · y) + (z+ · x ; y) . (4.3)

This equation holds in language algebras (i.e., in LKL), since z∗ = z++1
and 1 = {λ} is an atom in language algebras. But it does not hold in
relation algebras (i.e., in RKL). In fact, the ≤-part of equation (4.3)
does not hold in RKL as the following example shows. Let us consider
the full relation algebra over the base set U = {0, 1}, i.e., the elements
of our algebra are all the binary relations over U . Let x = z = {(0, 1)}
and y = {(1, 0)}. Then x ; y = {(0, 0)}, z∗ = {(0, 0), (1, 1), (0, 1)}
and z ; z∗ = {(0, 1)}. Hence z∗ · x ; y = {(0, 0)}, but z∗ · y = ∅ and
z ; z∗ · x ; y = ∅. Thus equation (4.3) does not hold in this algebra. We
can see that equation (4.3) is a corollary of (3.1) involving 1, which
is valid only in language algebras. Thus indeed the reason for the
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distinguishing equation (4.3) to work is that the constant 1 implicitly
occurs in the operation ∗. Another equation similar to (4.3) is the
following one:

(z∗ · x) ; y + y ; (z+ · x) = (z+ · x) ; y + y ; (z∗ · x) . (4.4)

This is a corollary of equation (3.2).
Let us consider Kleene lattices where we omit explicit use of 1 but

we do not omit implicit use of 1, i.e., we do not omit ∗. Let RKL∗ and
LKL∗ denote the classes of relation and language algebras, respectively,
of similarity type (·,+, ;,∗ ). We omitted 0 from the similarity type,
because 1 = 0∗ is valid in these algebras, so 0 would bring back 1.

Problem 4.4. Is the equational theory of LKL∗ finitely axiomatizable
over the equational theory of RKL∗?
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