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1 A First Random Graph Model: Gn,p

In the most heavily-studied model of random graphs, we start with n nodes and join each
pair by an undirected edge, independently with probability p. We will call this model Gn,p.

Expected degrees. If G is a graph generated using Gn,p, we can compute the expected
degree of one of its nodes v using linearity of expectation. Let Xv be a random variable
denoting the degree of v, and for each other node w, let Xv,w be a random variable equal to
1 if there is an edge joining v and w, and equal to 0 otherwise. We have

Xv =
∑
w

Xv,w

E [Xv] =
∑
w

E [Xv,w]

=
∑
w

p = (n− 1)p.

So if we think of p as c
n−1 for some quantity c, then the expected degree of v is c.

Isolated nodes. Now, if c is a constant, then despite the constant expected degree in G,
there will still be many isolated nodes (that is, nodes with no incident edges). To see this, let
Ev denote the event that v is isolated; this requires that each of its n− 1 potential incident
edges not be present, so we have

Pr [Ev] = (1− p)n−1

=
(

1− c

n− 1

)n−1
=

((
(1− c

n− 1

)n−1
c

)c
.

Now, the part inside the outermost parentheses on the last line is between 1/4 and 1/e as
c

n−1 ranges from 1
2

down toward 0. Thus, Pr [Ev] is between 4−c and e−c, which is a constant
when c is constant.

Using this, we can ask how large c needs to be in order for there to be a high probability
of no isolated nodes. Let E be the event that there is any isolated node in G; then by the
Union Bound we can write

E =
⋃
v

Ev

Pr [E ] ≤
∑
v

Pr [Ev]

≤ ne−c.
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Now we choose c large enough so that e−c is small enough to cancel n. In particular, c = lnn
is not quite enough, but c = 2 lnn will easily do it:

Pr [E ] ≤ ne−2 lnn = n · n−2 = n−1.

Thus, Gn,p is not an appropriate model for considering random graphs in which all degrees
are positive, yet constant — as we’ve just seen, the average degree in Gn,p needs to become
logarithmic before the last isolated node is likely to vanish.

Diameter two. Since we’ll soon be considering the question of short paths in graphs, it’s
interesting to consider one final short calculation in the Gn,p model: determining the value of
p at which we’re likely to obtain a graph of diameter two — that is, a graph in which every
pair of nodes is connected by a path of length at most two.

It’s useful to ask what we should expect p might be, before trying the calculation. First,
if we simply want a graph with very few edges in which every pair of nodes a path of length
at most two, we could use the star graph: a graph on n nodes v1, v2, . . . , vn, in which the
only edges are from v1 to each other vi, for i ≥ 2. Clearly every vi has a two-step path to
every vj through v1; and the star graph has only n− 1 edges, which is the fewest needed for
an n-node graph to even be connected. So if our goal is simply to achieve diameter two with
as few edges as possible, the star graph completely answers this question.

However, the star graph contains a node of enormous degree (i.e., degree n − 1), and
if our goal is instead to achieve diameter two while keeping the maximum degree as small
as possible, we end up with a much more subtle question. First note that if the maximum
degree is d, then a given node v can reach d other nodes in one step, and at best each of
those nodes can reach d − 1 other nodes in a second step. So in two steps, v can reach at
most d + d(d− 1) = d2 other nodes. In a graph of diameter two, v needs to reach all n− 1
other nodes in at most two steps, and so this argument implies that we need d2 ≥ n− 1, or
d ≥
√
n− 1.

A natural question, therefore, is whether there in fact exist graphs of diameter two where
d is close to this small. We now show that Gn,p comes close to this bound, by showing that
a random graph drawn from Gn,p will have diameter two with high probability provided

that p ≥ c
√

log n√
n

for some constant c. Since the expected degree is pn, we can use this to

show that Gn,p produces graphs of diameter two whose maximum degree is proportional to
a constant times

√
n log n.

The proof is once again an application of the Union Bound. Let Ev,w be the bad event
that there is no path of length one or two connecting nodes v and w; so E = ∪v,w∈V Ev,w is
the overall bad event that G does not have diameter two. By symmetry, all of these events
Ev,w have the same probability; let’s call this probability q (which is of course implicitly a
function of the parameters n and p). By Union Bound, we have

Pr [E ] ≤
∑
v,w

Pr [Ev,w]

≤
(
n

2

)
q.
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So for a given n, if we choose p large enough that q ≤ n−3, then the right-hand side of the
last inequality will be ≤ n−1, and we’ll show that the bad event happens with at most this
probability. In other words, G will have diameter two with high probability.

So let’s consider an arbitrary pair of nodes v, w and ask what it would take to get
q = Pr [Ev,w] ≤ n−3. For Ev,w to occur, there needs to be no edge from v to w, and also no
two-step path through any of the other n− 2 nodes u. Therefore,

Pr [Ev,w] = (1− p)(1− p2)n−2

≤ (1− p2)n−2.

Here the first term (1−p) on the right-hand of the first line reflects the probabiity that there
is no edge from v to w, and the second term (1− p2)n−2 reflects that probability that we fail
to put in the two edges from v to u and u to w for each of the n− 2 other nodes u.

For simplicity in the calculations to follow, it’s useful to parametrize p as r/(n − 2) for
some number r. Using this parametrization, we write

Pr [Ev,w] ≤ (1− p2)n−2

=

(
1− r2

(n− 2)2

)n−2

=

((1− r2

(n− 2)2

) (n−1)2

r2


(

r2

n−2

)
.

As in our calculations earlier in this section, we recognize the expression inside the outermost
parentheses as having the form (1− 1

m
)m, and therefore at most 1/e. It follows that

Pr [Ev,w] ≤
(

1

e

)( r2

n−2

)
.

So to get Pr [Ev,w] ≤ n−3, which is what we’re aiming for, we can simply choose r so that
the exponent in this last expression is 3 lnn. Therefore we want

r2

n− 2
= 3 lnn

and so
r =

√
3(n− 2) lnn.

Since we’ve parametrized things so that p = r/(n− 2), this means that

p =

√
3 lnn

n− 2

is sufficient.

3



2 Random Graphs with Fixed Degrees

Suppose we want to completely specify the sequence of degrees in our random graph; that
is, we want the n nodes to have degrees d1, d2, . . . , dn, and then produce a random graph
subject to this constraint. We’ll allow graphs that have self-loops (an edge goes from a node
to itself) and parallel edges (two edges connect the same pair of nodes), which will make it
much easier to construct random graphs with the desired properties. We’ll also assume

∑
i di

is an even number, without which no graph with the desired degrees can exist.
One way to create a random graph with the specified degrees is to first define a set of

nodes labeled 1, 2, . . . , n in which node i has di “half-edges” sticking out of it. We then
simply choose a random pairing on all

∑
i di half-edges, glue the paired half-edges together,

and declare the resulting graph to be our random graph G. (Note how self-loops and parallel
edges may indeed arise from this construction.)

Now, let’s consider the special case of this construction in which all di are equal to some
constant d > 0. Graphs produced by this special case of the construction are called random
d-regular graphs, meaning that all nodes have degree d. When d = 1, the only possible graph
is a perfect matching (i.e. a collection of disjoint edges), and when d = 2, the only possible
graphs are collections of disjoint cycles. But things get much more interesting once d = 3,
and one of the fundamental properties of a random 3-regular is that it has good expansion.

3 Expansion

The expansion of a graph is the minimum “surface-to-volume” ratio of any set of nodes. We
define this more precisely as follows. We use |S| to denote the size of a set of nodes S; we
use S to denote the complement of a set of nodes S; and we use eout(S) to denote the set of
edges with exactly one end in S. We define the surface-to-volume ratio of a set S to be

σ(S) =
|eout(S)|

min(|S|, |S|)
.

The expansion α(G) of a graph G is then defined as the minimum surface-to-volume ratio
of any set of nodes S:

α(G) = min
S⊆V

σ(S).

Since σ(S) = σ(S) by definition, it is enough to take this minimum only over the sets S of
size at most n/2, in which case |S| ≤ |S|:

α(G) = min
S:|S|≤n/2

σ(S).

The most basic non-trivial fact about expander graphs is that they exist at all: there
exist fixed constant values of d and α so that for arbitrarily large values of n, there are
n-node graphs with maximum degree at most d and expansion at least α. The key point is
that neither of the parameters d or α depend on the size n of the graph. To avoid explicitly
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discussing the underlying parameters all the time, one often speaks informally of a class of
graphs having “good expansion properties” if d and α are absolute constants as n goes to
infinity.

Constructing large graphs with good expansion properties — and proving these expansion
properties — is much more difficult than one might imagine. Trying this oneself is the best
way to drive the point home. For example, a

√
n ×
√
n grid graph does not maintain a

constant expansion parameter of α > 0 as n increases: the set S consisting of the leftmost√
n/2 columns has

|eout(S)|/|S| ≤
√
n/(n/2) = 2

√
n/n = 2/

√
n.

Or consider an n-node complete binary tree: it may look like it has good expansion properties
if one views it from the root downward; but if we think of the subtree S below any given
node, it has |eout(S)|/|S| = 1/|S|. One can show that much more sophisticated examples
than these also fail to serve as good expander graphs.

Ultimately, finding an explicit construction of arbitrarily large graphs that could be
proved to have good expansion properties required intricate analysis and sophisticated use of
some deep results from mathematics; while people have discovered more elementary analyses
over time, they are still non-trivial.

In contrast, it is more straightforward to show that a random graph with constant degree
d has expansion at least α, for some absolute constant α > 0, with positive probability.
We will do this later in these notes. First, however, we will establish a basic property of
expansion: that it implies that all pairs of nodes in the graph are connected by short paths.

4 Expansion implies short paths

Intuitively, expansion implies a strong “robustness” to the graph: to split it into multiple
large pieces, one must destroy correspondingly many edges. This property has many other
consequences; later in the course, for example, we’ll that it implies that a random walk
on the graph “mixes” rapidly (approaching its stationary distribution in a small number of
steps). For right now, we prove the following “small-world” property of graphs with good
expansion:

If an n-node graph of maximum degree d has expansion at least α, then every
pair of nodes s and t is connected by a path of length at most O( d

α
log n).

To prove this, we try constructing a path from s to t using breadth-first search (BFS).
Let Sj be the set of nodes encountered anywhere in the first j levels of the BFS outward
from s. To determine the next, (j + 1)st, level of the BFS, we need to follow all the edges
out of Sj; the nodes that these edges lead to, together with Sj, will form the set Sj+1.

As long as Sj consists of fewer than n/2 nodes, the expansion of G implies that it has
at least α|Sj| edges leading out of it. Some of these edges may lead to the same nodes, but
since no node has degree more than d, we can conclude that at least α

d
|Sj| new node are
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discovered by looking one more BFS level out from Sj. In other words,

|Sj+1| ≥ (1 +
α

d
)|Sj|.

This says that the BFS layers out from s grow exponentially, due to the expansion of G, and
so as long as Sj has fewer than half the nodes, we have

|Sj| ≥ (1 +
α

d
)j.

Now, since α < d, we get the following by choosing ` = d
α

log n:

(1 +
α

d
)` = (1 +

α

d
)
d
α
logn > 2logn = n.

Here we go from the second expression to the third using the fact that (1 + 1
k
)k increases

from 2 to e as k ranges from 1 to infinity. So in particular, since α < d, the quantity

(1 +
α

d
)
d
α

is greater than 2.
What’s the point of this calculation? The point is that the size of Sj can never exceed

n, so sometime in the first ` = d
α

log n steps of the BFS, the inequality

|Sj+1| ≥ (1 +
α

d
)|Sj|

must stop holding — and this only happens once Sj contains strictly more than half the
nodes.

Let’s consider the first j ≤ d
α

log n when |Sj| strictly exceeds n/2. If t belongs to this
set Sj, then we have the short path from s to t that we wanted. If t doesn’t belong to this
set Sj, then we do the following: we repeat this construction, but starting the BFS outward
from t. Again, in at most d

α
log n BFS levels from t, we have set Ti that contains strictly

more than half the nodes. Now, Sj and Ti each contain more than half the nodes of the
graph, so there must be at least one node that’s in both; call this node v. By finding a short
s-v path through Sj, and gluing it together with a short t-v path through Ti, we have the
desired short path from s to t.

5 Hypercubes are Expanders

Recall that we only know fairly complex proofs that explicitly defined constant-degree graphs
have constant expansion. As a result, in the next section, we will prove instead that a random
graph of (sufficiently high) constant degree has constant expansion with positive probability.
Before doing this, let’s establish that if we are willing to slightly increase the degree in the
graph — to let it be log n rather than a constant — then it becomes much easier to verify
expansion for certain natural families of graphs. In particular, in this section we will show
that the family of hypercubes has constant expansion.
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Defining hypercubes. We begin by defining this family of graphs. We say that the
hypercube of dimension d, denoted Hd, is the graph whose nodes are all possible d-bit strings,
and where we join two nodes by an edge if their associated strings differ in a single bit.

Thus, the graph Hd has n = 2d nodes. A given node v of Hd is neighbors with every
node that differs from it in one bit position; as a result, v has d = log n neighbors. (All
logarithms in this section will be base-2.) Also, to get from any node v to any other node w
in Hd, we can construct a path by changing the bit string for v to the bit string for w one
bit at a time. This will produce a path of at most d = log n edges; and a path of this length
is necessary when the bit strings for v and w differ in every position. So the diameter of Hd

is exactly log n.
There is a recursive construction of hypercubes that is useful to know, as follows. Suppose

we start with two copies of Hd−1, and for a node v in the first copy, we say that its twin in
the second copy is the node w with the same bit string as v; we will denote this node by t(v),
and for a set S of nodes in the first copy, we will use t(S) to denote the twins of all nodes
in S. Suppose we take the bit strings for the nodes in these two copies of Hd−1, append a
0 to the strings for all nodes in the first copy, append a 1 to the strings for all nodes in the
second copy, and add edges between each node v in the first copy and its twin t(v) in the
second copy. In this way, we’ve produced a copy of Hd: in other words, Hd consists of two
copies of Hd−1 joined together by a perfect matching between twins that differ only in their
final bit.

Building up fro small examples, we see that in particular, H1 consists of two nodes joined
by an edge, H2 consists of the vertices and edges of a square, and H3 consists of the vertices
and edges of a cube. (These small geometric examples are the reason these types of graphs
are called “hypercubes.”)

Hypercubes have expansion 1. Now, let’s consider the expansion of the hypercube Hd.
First, consider its recursive construction from two copies of Hd−1, and let A and t(A) denote
the nodes in these two copies. Since A has exactly n/2 edges with one end in A — i.e., all
edges from a node in A to its twin in t(A) — we see that |A| = n/2 and |eout(A)| = n/2. It
follows that A is a set with surface-to-volume ratio 1, and therefore the expansion α(Hd) is
at most 1 (since the expansion is the minimum surface-to-volume ratio of any set of size at
most n/2).

Now let’s prove that for every set S of at most n/2 nodes in Hd, we have |eout(S)| ≥ |S|;
this would show that every set S of at most n/2 nodes in Hd has surface-to-volume ratio at
least 1, and so α(Hd) ≥ 1. Combined with the fact we’ve already established that α(Hd) ≤ 1,
this will show that α(Hd) is exactly 1.

An inductive proof. We will prove that |eout(S)| ≥ |S| for all sets of at most n/2 nodes
in Hd by induction, using the recursive construction of Hd. First, as a base case, we observe
that this fact holds for H1, since H1 consists of just two nodes joined by an edge. Next,
suppose for the inductive step that this property holds for Hd−1, and recall the two copies
of Hd−1 that we use to construct our copy of Hd, with A and t(A) the sets of nodes in these
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two copies.
Now, consider any set S of at most n/2 nodes in Hd. Let a = |S ∩A| and b = |S ∩ t(A)|

be the number of nodes of S that lie in each of the two copies of Hd−1 that make up our
copy of Hd. Exchanging the roles of A and t(A) if necessary (by symmetry), we can assume
that a ≥ b.

First, notice that we can’t have b > n/4, since then also a > n/4, and since |S| = a+ b,
we wouldn’t have |S| ≤ n/2. So it follows that b ≤ n/4. As a result, we can apply the
induction hypothesis to the set S ∩ t(A) in the copy of the hypercube Hd−1 on t(A): since
S ∩ t(A) is a set of b ≤ n/4 nodes in a graph (Hd−1) with n/2 nodes and expansion 1, there
are at least b edges that leave S∩ t(A) and go to nodes in t(A)−S. Notice that these b edges
all contribute to eout(S), a fact that will be useful in the proof (since we want to establish
that eout(S) is large).

We finish the proof by considering two cases.

• Case 1: a ≤ n/4. In this case, we can use the same argument via the induction
hypothesis in A that we just used in t(A): the set S ∩A consists of at most n/4 nodes
in a graph with n/2 nodes and expansion 1. Therefore, least a nodes leave S ∩ A and
go to nodes in A − S, all of which contribute to eout(S). Adding these to the ≥ b
different edges that contribute to eout(S) in t(A), we see that |eout(S)| ≥ a + b = |S|,
completing the proof in this first case.

• Case2 2: a > n/4. The structure of the argument for this case is depicted in Figure
1. In this case, we can’t apply the induction hypothesis to the set S ∩A in Hd−1, since
S ∩ A consists of more than half the nodes of Hd−1, and guarantees about eout only
apply to sets of at most half the total number of nodes. But instead we can apply it
to the complement A − S in A, which has n/2 − a ≤ n/4 nodes. By the induction
hypothesis, this set contributes at least n/2− a edges in A to eout(S).

Also, S ∩ A has a nodes while S ∩ t(A) has only b nodes, so there are at least a − b
nodes in S ∩A whose twin does not belong to S ∩ t(A). For each of these a− b nodes,
their edge to their twin contributes to eout(S), since its end in A belongs to S and its
end in t(A) does not.

So let’s count up all the edges in eout(S) that we know about in this case, from all our
arguments so far: at least b inside t(A), at least n/2 − a inside A, and at least a − b
crossing between A and t(A). This is a total of at least

b+ (n/2− a) + (a− b) = n/2

edges. Thus, |eout(S)| ≥ n/2 while |S| ≤ n/2, so we have |eout(S)| ≥ |S| in this case as
well.

Having established |eout(S)| ≥ |S| in both cases, we’ve shown that α(Hd) ≥ 1, and this
completes the proof.
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A t(A)

at least 
n/2-a edges

at least 
b edges

a nodes

b nodes

n/2-a nodes

at least
a-b edges

Figure 1: A schematic illustration of Case 2 of the induction proof, in terms of the two copies
of Hd−1 that make up the hypercube Hd.

6 Constant-Degree Random Graphs are Expanders

We will now show that a simple random construction produces good expander graphs with
constant probability. In light of our discussion in the previous sections, this is quite surpris-
ing: it is extremely difficult to verify that an explicitly constructed graph is a good expander,
but it is easy to show that a random graph is likely to be one. The analysis of our random
construction will be quite crude, and will not aim for the best possible values of all param-
eters; rather, its goal is to show how a completely direct use of the Union Bound is enough
to verify good expansion.

Neighborhood expansion. To make the analysis a bit cleaner, we first introduce a varia-
tion on the definition of expansion that will imply our primary definition. First, if G = (V,E)
is a graph, and S ⊆ V , we use N(S) to denote the “neighbors” of S — the set of nodes with
an edge to some node in S. (Note that N(S) may include some nodes in S but not others.)
Now, for any constants c ≤ 1

2
and β > 1, we say that a graph has neighborhood expansion

with parameters (β, c) if for every subset S of at most cn nodes, we have |N(S)| ≥ β|S|.
Let us first establish that a graph with good neighborhood expansion also has good

expansion in the traditional sense.

(1) Choose any constants c ≤ 1
2
and β > 1 for which βc > 1

2
. If G has neighborhood

expansion with parameters (β, c), then it has expansion at least α, where α = 2βc− 1 > 0.
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Proof. First, suppose |S| ≤ cn. Then N(S) − S contains at least β|S| − |S| = (β − 1)|S|
nodes. Since each node in N(S) − S must be the endpoint of a distinct edge in eout(S),
we have |eout(S)| ≥ (β − 1)|S| and hence |eout(S)|/|S| ≥ (β − 1). Since 2c ≤ 1, we have
β − 1 ≥ 2βc− 1, and hence |eout(S)|/|S| ≥ (2βc− 1).

Otherwise, suppose cn < |S| ≤ 1
2
n. In this case, choose an arbitrary set S ′ ⊆ S consisting

of exactly cn nodes. Then |N(S ′)| ≥ β|S ′| = βcn, and hence N(S ′) − S ′ contains at
least βcn − 1

2
n = (βc − 1

2
)n nodes. Again, each of these nodes must be the endpoint

of a distinct edge in eout(S). Thus we have eout(S) ≥ (βc − 1
2
)n while |S| ≤ 1

2
, and so

|eout(S)|/|S| ≥ (βc− 1
2
)/1

2
= 2βc− 1.

The random construction. We start with a set V of n nodes, labeled 1, 2, 3, . . . , n,
and no edges joining any of them. A random perfect matching on V is a set of edges M
constructed by randomly ordering the nodes of V , say as v1, v2, . . . , vn, and defining M to
be the set of n/2 edges (v2i−1, v2i) for i = 1, 2, . . . , n/2.

Here is the full construction of G. We set d = 90; we compute d random perfect matchings
M1,M2, . . . ,Md on the set V , using orders chosen independently for each; and we define the
edge set E = M1 ∪ M2 ∪ · · · ∪ Md. Notice that while G has constant node degree —
independent of the number of nodes — it is quite a large constant; this is in keeping with
our plan to sacrifice better parameters for the sake of the simplest analysis possible. In fact,
random graphs in which each node has degree 3 can be shown to have fairly good expansion
properties as well, but the proof of this becomes somewhat more involved.

(2) With probability at least 3/4, the graph G = (V,E) has neighborhood expansion with
parameters (1/6, 4).

The proof will consist of an extended but completely direct use of the Union Bound,
summing over an exponential number of possible bad events that could prevent G from
being a good expander. In order to make the calculations work out, we first need some
simple bounds on the growth of the factorial function and the binomial coefficients.

(3) For every natural number n, we have n! >
(
n

e

)n
.

Proof. We prove this by induction, the cases n = 0 and n = 1 being clear. For a larger

value of n, we can apply the induction hypothesis together with the fact that
(
1 + 1

n

)n
< e

for all natural numbers n. Thus we have

(n+ 1)! = (n+ 1)n! > (n+ 1)
(
n

e

)n
> (n+ 1)

(
n

e

)n (1 + 1
n

)n
e

=
(n+ 1)n+1

en+1
.

Using this bound, we now prove
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(4) For every pair of natural numbers n and k, where n ≥ k, we have
(
n

k

)k
≤
(
n

k

)
<
(
en

k

)k
.

Proof. By (3) , we have (
n

k

)
<
nk

k!
<

nk

(k/e)k
=
(
en

k

)k
.

Since n
k
≥ n−1

k−1 for any natural numbers n ≥ k, we have(
n

k

)
≥ nk

kk
=
(
n

k

)k
.

Notice that
(
n
k

)
is not defined when k is not a natural number. However, if k is not a

natural number, we can still use (4) to bound
(
n
bkc

)
as follows:

(
n

bkc

)
<

(
en

bkc

)bkc
<
(
en

k

)k
,

where the first inequality is just (4) , and the second follows from the fact that the function
(en/k)k increases monotonically until k = n.

We are now ready for

Proof of (2) . If G fails to have the desired property, it means that there is some set S of at
most n/6 nodes so that N(S) < 4|S|. So for every set S of at most n/6 nodes, and every set
T of size exactly 4|S|, we define the event EST that N(S) ⊆ T . We observe that if the union
of all these events EST does not occur, then every set S expands by a sufficient amount, and
G has the desired neighborhood expansion properties. Thus, it is sufficient to give an upper
bound on

Pr

 ⋃
|S|≤n/6
|T |=4|S|

EST

 .
To think about this, we first define a related set of events as follows. For every pair of sets

S and T with |T | = 4|S|, we define the event E ′ST that in a single random perfect matching
M , all nodes in S are matched to a node in T .

To bound Pr [E ′ST ], we can imagine constructing the perfect matching M as follows. We
define k = |S|, and we name the nodes of S as u1, u2, . . . , uk. We first choose a partner for u1
uniformly at random from the set V . Then (unless u2 is already matched by this first edge),
we choose a partner for u2 uniformly at random from the remaining unmatched nodes. We
continue in this way, always choosing the first node in S that is not yet matched. For at
least k/2 steps, we will not run out of nodes in S; in each of these steps, there are at least
n− k nodes to choose a partner from; and for the process to succeed, we need to choose this
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Figure 2: The event EST in the analysis of the expander construction.

partner from the set T of 4k nodes. Thus in each step, we succeed in choosing a partner
from T with probability at most 4k/(n− k); and since k ≤ n/6, this probability is bounded
by

4k

n− n/6
≤ 4k

5n/6
=

24k

5n
=

4.8k

n
.

For the event E ′ST to occur, we must succeed in choosing a partner from T in each of these
first k/2 steps, and so

Pr [E ′ST ] ≤
(

4.8k

n

)(k/2)

.

Now, the graph G is built from d random perfect matchings, so if k = |S| ≤ n/6 and
|T | = 4k, then

Pr [EST ] = (Pr [E ′ST ])d ≤
(

4.8k

n

)dk/2
.

As promised, we complete the proof with an enormous application of the Union Bound:

Pr

 ⋃
|S|≤n/6
|T |=4|S|

EST

 ≤ ∑
|S|≤n/6
|T |=4|S|

Pr [EST ] .

This sum involves exponentially many terms; to unravel it, we consider separately the terms
for each possible size of the set S. For sets S of size k, there are

(
n
k

)(
n
4k

)
terms, each with

probability at most

(
4.8k

n

)dk/2
. We then upper-bound the binomial coefficients using (4)

and begin canceling as many terms as we can:

∑
|S|≤n/6
|T |=4|S|

Pr [EST ] ≤
n/6∑
k=1

(
n

k

)(
n

4k

)(
4.8k

n

)dk/2

12



<
n/6∑
k=1

(
en

k

)k (en
4k

)4k
(

4.8k

n

)dk/2

=
n/6∑
k=1

e5 · (4.8)5

44

(
4.8k

n

)(d/2−5)
k .

Now we pause to observe that
e5 · (4.8)5

44
< 1500;

also, since k ≤ n/6, we have (4.8k/n) ≤ .8, and with d = 90, we have (.8)d/2−5 = (.8)40 <
1/(7500). Thus we conclude with

n/6∑
k=1

e5 · (4.8)5

44

(
4.8k

n

)(d/2−5)
k <

∞∑
k=1

[
1500 (.8)40

]k
<

∞∑
k=1

(
1

5

)k
=

1

4
.

Thus, with probability at least 3/4, the bad event does not happen, and the graph G has
the desired expansion properties.
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