
CS 6840, Spring 2020 Lecture 6: February 3

CS 6840 Algorithmic Game Theory February 3, 2020

Lecture 6: February 3
Instructor: Eva Tardos Scribe: Kyra Wisniewski, Talia Turnham

Last Time

Continuing with last Friday’s discussion, we first recap with the discrete version of routing games. An
instance of a discrete routing game has graph G = (V,E), players i, source-sink si, ti pairs, where each
has a rate of exactly 1, i.e. ri = 1. The delay on an edge e with x users is given by de(x). Each player i
aims to find a path Pi from si to ti that minimizes their user cost. User cost is defined as

∑
e∈Pi

de(f(e)),
where the flow on an edge is given by f(e) = {#i | e ∈ Pi}, i.e. the number of player who have edge e
in their path. We can define social cost as

∑
e f(e)de(f(e)).

Last time, we proved the following Theorem:

Theorem 1. This discrete version of a routing game is a potential game.

Recall the following definition of a potential game:

Definition 1. A potential game is one for which there exists a potential function Φ with the property
that, for every player who deviates from path Pi and switches to path Qi, the change in the potential
function value equals the change in the deviator’s cost.

As a reminder, a potential function is defined as:

Φ(P1, . . . , Pn) =
∑
e

f(e)∑
k=1

de(k)

where P1, . . . , Pn are all paths that players take. If player i switches from path Pi to Qi in a potential
game, the change in the value of the potential function is given by:

Φ(P1, . . . , Pi, . . . , Pn)− Φ(P1, . . . , Qi, . . . , Pn) =
∑
e∈Pi

de(f(e))−
∑
e∈Qi

de(f̂(e))

where f̂(e) is the congestion if i switches to path Qi.

Note that no assumptions on de(x) are needed - it could be monotonically increasing, monotonically
decreasing, or anything.

Decreasing Cost Functions

We will now shift our focus to decreasing cost functions, and examine the cost-sharing game. In a simple
model of the cost-sharing game with decreasing cost, there is a cost ce on every edge e. As before, player
i is choosing a path and taking his share of each edge on his path’s cost. So, we have that de(x) = ce

x
for x users. Note that de(x) is a decreasing cost function (the bigger x is, the smaller de(x) is). This is

1

CS 6840, Spring 2020 Lecture 6: February 3

also an example of Positive Externality (i.e. taking a certain edge benefits the other players taking that
same edge).

Now, we will examine what we can prove about Nash equilibriums of games with decreasing cost func-
tions. As an example, consider the following network, where n > 0 and the cost of each edge is given
beside it:

s t

1 + ε

n

In this network, there are two pure strategy Nash solutions:

1. All n users take the top edge, so the total cost is 1+ε and the user cost is 1+ε
n (this is clearly the

optimum solution)

2. All n users take the bottom edge, so the total cost is n and the user cost is 1

These results tell us that there is such a thing as a bad Nash solution and pushes us to consider how
to evaluate the quality of the best possible Nash. To do so, we consider a measure called the Price of
Stability defined as:

Price of Stability = max
games

mincost(NASH)

OPT

This gives rise to the following theorem, which we use to argue that the Nash that minimizes the potential
function will get us close to the minimal cost solution:

Theorem 2. In a cost-sharing game with ce for e ∈ E, (si, ti) pairs, and de(x) = ce
x , we have that

Price of Stability ≤ Hn ∼ ln(n)

where Hn is the n-th harmonic number.

Proof. Consider paths P1, . . . , Pn minimizing the potential function Φ(P1, . . . , Pn) =
∑
e

∑f(e)
k=1 de(k).

If one player changes paths, the change in the potential function value is exactly the change in that
player’s cost. Since we know that the potential function in minimized by the original paths, we know
that no player can minimize his own cost anymore. Thus, we know that the set of paths P1, . . . , Pn is a
Nash equilibrium.

Note that while our goal is to minimize the social cost, our Nash was found by minimizing the poten-
tial function. Usually, minimizing the wrong function gives the wrong minimum. However, if we can
show that the potential function and the social cost give values that are not too far apart from each
other, then we will know that our solution is not too far off from the optimum. We will first argue that

Φ(f) ≥ SC(f). We can write SC(f) as
∑
e

∑f(e)
k=1 de(f(e)) and perform a term-by-term comparison of

Φ(f) =
∑
e

∑f(e)
k=1 de(k) to SC(f) =

∑
e

∑f(e)
k=1 de(f(e)). We see that de(k) ≥ de(f(e)) for every term,

since de(x) is decreasing. Thus, the sum of the de(k) must be ≥ to the sum of de(f(e)) terms, and so

2

CS 6840, Spring 2020 Lecture 6: February 3

we get that Φ(f) ≥ SC(f) as desired.

Now, we want to look at how much bigger Φ(f) is than SC(f). We claim that Φ(f) ≤ SC(f) · Hn,
where Hn is the n-th harmonic number, namely 1 + 1

2 + · · · + 1
n . To show why this is true, we will

look at any particular edge e and perform an edge-by-edge comparison of Φ(f) =
∑
e

∑f(e)
k=1 de(k) to

SC(f) =
∑
e

∑f(e)
k=1 de(f(e)). Looking at Φ(f), for edge e we have that:

f(e)∑
k=1

de(k) = ce +
ce
2

+ · · ·+ ce
f(e)

= ce

(
1 +

1

2
+ · · ·+ 1

f(e)

)
≤ ce ·Hn

Looking at SC(f), for edge e we have that:

f(e)∑
k=1

de(f(e)) =
ce
f(e)

+
ce
f(e)

+ · · ·+ ce
f(e)

= f(e)

(
ce
f(e)

)
= ce

So, for any edge e, we see that the cost of e in Φ(f) is within a factor of Hn to the cost of e in SC(f).
Thus, summing over all edges, we get that Φ(f) ≤ SC(f) ·Hn.

Now, we have shown that Φ(f) ≥ SC(f) and Φ(f) ≤ SC(f) ·Hn, which gives rise to a final lemma to
complete the proof:

Lemma 1. SC(f) ≤ Φ(f) ≤ SC(f) ·Hn implies that the Nash minimizing Φ is within an factor of Hn

to the optimal solution.

Proof. Letting f = Nash solution, and f∗ = optimal solution minimizing the social cost, we see that:

SC(f) ≤ Φ(f) ≤ Φ(f∗) ≤ SC(f∗) ·Hn

Thus, we get that Φ(f) ≤ (f∗) ·Hn, proving the lemma.

So, since we have shown that SC(f) ≤ Φ(f) ≤ SC(f) · Hn, we know that the Nash minimizing
Φ is within an factor of Hn to the optimal solution by Lemma 1. Price of Stability is defined as

maxgames
mincost(NASH)

OPT , and so we can take the following steps to reach the result of Theorem 2:

Price of Stability = max
games

mincost(NASH)

OPT
=

Φ(f)

SC(f∗)
≤ SC(f∗) ·Hn

SC(f∗)
= Hn

=⇒ Price of Stability ≤ Hn

This concludes the proof of Theorem 2.

3

CS 6840, Spring 2020 Lecture 6: February 3

The general message here is that if we optimize a slightly wrong equation, we get a slightly wrong result.
The result of Theorem 2 gives a bound for just how “slightly wrong” our result is.

Now, we ask: Is it possible to prove a tighter bound? This bound is bad, especially if there are many
users involved. Unfortunately, the answer seems to be no - this bound is tight. To illustrate why, we
consider the following example:

In this network, we have n sources s1, . . . , sn and a single sink t. Each player has two options: (1) use
the edges with cost 0 to go down to the shared node and used the shared path with cost 1 + ε to get
to t, or (2) use the above edges to go directly up to t. In this case, the optimal solution is for everyone
to travel down to the shared node and through the shared path to t, giving a total cost of 1 + ε. This
network has a unique Nash of total cost Hn, where everyone goes directly up to t. Note that if one
person doesn’t take the path going up, his cost will be higher (1

k if he goes up vs. 1+ε
k if he goes down).

Because of this example, we see that Hn is the tightest bound on the Price of Stability that we can
achieve.

4

