CS 684 Algorithmic Game Theory Scribe: Craig Bowles
Instructor: Eva Tardos October 21, 2005

Randomized Strategies

We continue with a load balancing framework but now consider strategies that are randomized,
i.e. involve users assigning probabilities to various machines rather than deterministically choosing
one. Note that this is a strictly larger set of player strategies than what we have previously
considered; the deterministic game can be viewed as a player assigned a probability of 1 to a
single machine and 0 to all others. This game is looked at in greater detail by Koutsoupias and
Papadimitriou.

1 Framework

e Jobs j =1,...,n where each job has non-negative weight w;.

e Identical machines i =1,...,m.

Strategy for job j: probability p;; > 0 is the probability of job j going to machine i, where
>im1 pij = 1.

Random variables X;; which is 1 if j chooses machine i and 0 otherwise.

e Load of a machine is random variable L; = Z?Zl Xijw;.

e () is load on machine that j chooses.

In this framework we do not think of jobs having process times but weights because we do not
consider jobs being given an order. All jobs assigned to a machine experience the same delay, which
we can think of as just being the sum of job weights on that machine.

2 Nash Equilibria

What becomes more difficult, given this framework, is creating a definition of a Nash in this
randomized setting. Obviously a player, i.e. a job, has the goal of choosing a machine with a
small load. Though it is completely debatable, we will use the standard probability expectation
function as it does make, at least to some degree, intuitive sense. In particular, a job j wishes to
use machines ¢ that minimize

E(Lilj is on 1) = wj + Zpu’wz- (1)
1%

Given this, since w; is a constant, we define a Nash equilibrium as follows.

Definition 1 A randomized solution is a Nash equilibrium f, for all jobs j and machines i, p;; > 0
if and only if >4, puwy is minimal among all machines.



Figure 1: Nash equilibrium in which the jobs shown are effectively deterministic, i.e. all probabilities
are either 1 or 0.

Example 2 In Figure 1 is the “bad” Nash from before where probabilities are either 1 or 0. This
is still a Nash under the new settings and definitions. The smaller the jobs are on the second and
third machines in the example, the closer the price of anarchy gets to a ratio of 2.

Example 3 Consider the uniformly independently random solution, i.e. p;; = % for all i,5. This
1s referred to just as “Balls and Bins” because everything is so random. This is indeed a Nash
because Zl# pyw; 18 the same for all machines.

Good News: Randomized/Mixed Nash Equilibria always exist (see next lecture).
Bad News: Perhaps they can be worse since it’s a bigger class.

3 Quality of Solution

Koutsoupias and Papadimitriou consider the quality to be measured by the expected max load on
the machines, i.e. £(max; C}), but as we will see, such a metric is not perfect. We will compare with
instead measuring quality by the max expected load on machines, i.e. max;£(Cj). The following
example highlights the difference between the two.

Example 4 Consider again the “Balls and Bins” version, i.e. all jobs and machines are identical
with wj = 1 for all j. Suppose also that n = m. It is easy to see that the only deterministic Nash
1s where every job is assigned a unique machine, in which case the max load is 1, which is optimal.

Consider instead the uniformly independently random solution from before, where p;; = % = %

for all i, j. In this case E(Cy) = w; + >4 puwy = 1 + 2=1 " and thus max; £(C;) < 2. Compare
this to £(max; C;) ~ logn/loglogn. (The details of this derivation we leave to the paper.)

The bound of 2 is the same as in the deterministic game. Is this just unique the the Balls and
Bins situation? It is not, actually.

Theorem 5 Maz expected load, max; E(Cj), in a Nash is at most 2 times that of an optimal
solution.

Proof. This proof is completely analogous to that for the deterministic game. Consider any job
J with strategies, i.e. probabilities p;;, in a Nash equilibrium. Let OPT be the optimal (minimal)
value of max; £(C;) achievable by any solutions. Note the following two facts.

e w; < OPT, and



e L3 w <OPT.

The first point is intuitively clear since no job can get around having to wait long enough for its
own completion. The second point is clear as well because it says that OPT is at least the size of
the average job size, which for the same reason makes sense.

With those small facts realized, all that is left is to remember that £(Cj) = wj +37,; pywy if i
is a machine with p;; > 0, and that p;; > 0 can only happen for the machine ¢ that minimizes this
expression.

Now compare the minimum Zl# piw; to the average over all machines, which is:

1 1
m Zzpz‘lwl = m Zwl,
i 1#] I#j
as the sum of >, p;; = 1 for all machines i. So the two lower bounds together imply that

E(Cj) =w; + Y _ pyw; < 20PT,
15

as claimed.



