9 Dec 2024 Matchings Sampling 1~21 Recall. Glauber dynamics samples (colonings of a griph with n vertices, max degree D, by repeatedby selecting random vertex, random color in [G], recoloring vtx if it doesn't match any neighbor's Color. Upshot of Fri Leerure, IF n(t) denotes Harming dist of 2 colorings X, X't, then $\mathbb{E}\left[n(t+i)\mid n(t)\mid \leq n(t) - \left(1 - \frac{4n}{2}\right)n(t)\right]$ $= \left(1 - \left(1 - \frac{4\Delta}{2}\right)\frac{1}{n}\right) \cdot n(t),$ IF G>4D, then I- 4A > 1/2 $\mathbb{E}\left[n(t+1) \mid n(t)\right] \leq \left(1 - \frac{1}{2n}\right) \cdot n(t)$ $E(n(t+1)) \leq (1-\frac{1}{3}n) E(n(t))$ $\mathbb{E}\left(n(t)\right) \leq \left(\left(-\frac{1}{gn}\right)^{2} \cdot n(0)\right) \leq \left(\left(-\frac{1}{gn}\right)^{2} \cdot n(0)\right)$

To make lr(n(+) > 0) < e, choose $t \ge qn \ln(n/\epsilon)$. t upper bound on T. Then $\left(\left|-\frac{1}{\xi^{n}}\right|^{t} \le \left(\left|-\frac{1}{\xi^{n}}\right|^{2n}\right)^{t} \le \left(\left|-\frac{1}{\xi^{n}}\right|^{2n}\right)^{n} \ln\left(\frac{1}{\xi^{n}}\right)$ $\leq \left(\frac{1}{e}\right)^{ln} \left(\frac{n}{e}\right)^{ln} = \frac{e}{n}$ We've seen if Try = init state distrib. tt = marghal time t distrib. then $\pi_{t}^{T} = \pi_{t}^{T} P^{t}$ 5. If TI denotes stationary distrib, then estimating mixing times boils down to asking how first $T_0^T P^T \longrightarrow T_0^T$ in $\|\cdot\|_1$. (Markov trans mbc) Lemma. JF eigenvalues of P $\int = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$ $\frac{1}{1-\lambda_{2}}$ · $ln(\frac{1}{\epsilon_{1}})$ $t_{mix}(\varepsilon)$ min f TL(X) $\pi(\infty) > 0\frac{1}{2},$ dennes statbur

Proof. Application of Cauchy-Schwarz $\frac{P_{r-sf}}{\pi_{\chi}} = \pi_{\chi} P_{yz} \implies \frac{P_{xy}}{\pi_{\chi}} = \frac{P_{yx}}{\pi_{\chi}}$ If v is any vector, and $\frac{v}{\pi}$ durites the vector $\left(\frac{V}{T}\right)_{\chi} = \frac{V_{\chi}}{TC_{\chi}}$, then $\left[P \cdot \left(\frac{\nu}{\pi c} \right) \right]_{\chi} = \sum_{y} \frac{P_{yy} \nu_{y}}{\pi_{y}} = \sum_{y} \frac{P_{yx} \nu_{y}}{\pi_{\chi}} = \frac{1}{\pi} \left(P^{T} \right)_{\chi}$ $P.\left(\frac{\gamma}{\pi}\right) = \frac{P'\nu}{\pi}$ If To, TL, TZ, -- cre the marg distribut of the state at time 9,2,... $\pi_{t} = (P^{T})^{t} \pi_{t}$ $\frac{\pi_{t}}{\pi_{t}} = \frac{(p^{T})^{t} \pi_{0}}{\pi_{t}} = p^{T} \left(\frac{\pi_{0}}{\pi_{t}} \right).$ P.1-1. Recall $1 - \frac{\pi_t}{\pi} = P^t \left(1 - \frac{\pi_o}{\pi} \right),$ $\| \pi_{t} - \pi \|_{TV} = \frac{1}{2} \sum_{x} \left[\pi_{t,x} - \pi_{x} \right]$ $= \frac{1}{2} \sum_{x} \pi_{x} \left| \frac{\pi_{tx}}{\pi_{x}} - 1 \right|$ $\frac{1}{2} \left(\sum_{x} \pi_{x} \left(\frac{\pi_{t,x}}{\pi_{x}} - 1 \right) \right)^{2}$ $\frac{1}{2}$ $\left\langle \frac{\pi_{\pm}}{\pi} \right\rangle$

 $\leq \frac{1}{2} \quad \sum_{n=1}^{\infty} \left\| \frac{\pi_{n}}{\pi} - 1 \right\|_{\Gamma}$ $\leq \frac{1}{2} \lambda_{1}^{t} \frac{1}{\tau_{min}}$ Tintz (2) in the lemma ensures RHS < E Non suppose me have Markor chan with N states $(N = 2^{O(n)})$ tronsition matrix ?, seversite wirt. It We want to be able to show $\frac{1}{1-\lambda_2} \leq pdy(n),$ An observationi let $(x, y) = Z \pi i x y$. Observe, by soversibility, $\left(\times, \mathbb{P}_{\mathcal{Y}} \right) = \sum_{i \in \mathcal{S}} \pi_{i} \times \left(\sum_{j \in \mathcal{S}} \mathbb{P}_{i} \times \left(\sum_{j \in \mathcal{S}} \mathbb{P}_{i} \right) \right)$ $\sum_{i \in \mathcal{N}} \sum_{x_i} (\pi_i P_i y_i)$ $\sum_{j \in \mathcal{N}} T_{j} \left(\sum_{i \in \mathcal{D}} P_{i}, \chi_{i} \right) y_{j}$

 $=\langle P_{\times}, Y \rangle_{\pi}$ P is self-adjoint wird, TL. $n = \frac{1}{N} - \frac{1}{15}$ self - $\frac{1}{5}$ bit with TT. In fact 1,-P is the normalized Liplacian of a graph with V=52 edge weights $w(i,j) = \pi_i P_{i,j}$ Charger => $(1-\lambda_2) \ge \frac{1}{5}(\min sparsite)$. Can bound min sparsity away From Ø by Finding a (concurrent MCF of rate polyth) Canonical paths method" (Jerrum & Sinclair) emptys this method to analyze on MC For sampling typartite matchings,