Markov Chains & Metropolis - Hastings 4 Dec 2024 Def. If p.g. are two pris. distributions on the same finite set SZ their total variation (TV) distance is $\|p-q\|_{TV} = \max |p(S)-g(S)| = \frac{1}{2} \|p-g\|_{1}$ $S < S^2|$. Lemma. (Crupling Lemma) Ilp-gl TV equals int of Pr(x, ty) Joint distribus on pairs (x, y) sit. marginals of x, y are psf

 $\frac{3}{p(i)} = \frac{1}{cot = 0} = \frac{1}{i} = \frac{1}{i}$ Given unnormelited distribution $w: \mathcal{D} \rightarrow \mathbb{R}_{\geq 0}$ $\mathbb{P}^{=} \mathbb{Z}$ normalization of wto solve the w-sampling problem with approximation & means: to design an algorithm that traine singles for a fistribution of st. $\|p - q\|_{TV} \leq \varepsilon$. Typica goal: Run in time poly (log al (bg (2)). Typical method: Design a Markov chain Whose stationary distribution is pi Run the chain for I steps where TZ This (E) E-maxing time and output the Final state. "Marker Chrin Marke Carlo"

Def. A Markov chain with state set S and transition metoda P is a sequence of vandom vañables $= \left\{ \begin{array}{c} \sum_{i=1}^{n} \sum_{i=1$ taking volves in S s.t. $\forall t > 0$ $\forall s_{0}, \ldots, s_{t-1} \in S$ $P_{r}(X_{t}=S_{t}|X_{t}=S_{t},X_{t}=S_{t},\ldots,X_{t-1}=S_{t})$ probability of transitionly from 5 to 5 $2 P_{r} = 1$ E . 1 VIRCHORN

Thur. (Berron Frobenius) This To is up to salling P is irreducible (The graph of pairs (ii) st. P. >0 is stringly concerted) can be chosen sit. and T $Z_{T} = 1$, U = 1, U = 1, This Ti is called Distribution of P. the stationary $\frac{1}{2}$ 012 1/2 010 S_{3} Furthermore if l'is apendate (i.e. JR<A SI, all entries of pk ave > 0 then for all initial state distributions Tto

the sequence of marginals TUP Cronverses for TU $\frac{1}{\sqrt{2}} \xrightarrow{1}{\sqrt{2}} \xrightarrow{1}{\sqrt{2}$ as S_{pock} X_{b} X_{b} is a Maleor when with trans mitz P. Let TI, dente na-ghed dittib of X. Then the The states of the states o

Designing P with a specified stationeer distribution Z Def. P is reversille wirti Ti AF $\forall i,j \qquad \pi, P = \pi, P, j$ Lem. IF P is a Markov tans Mtx reversible mr.t. Than It is Statinary fir P. Prof. Neel to show $\sum_{i\in S} \pi_i P_i = \pi_i$ $\sum_{i \in S} \tau_i P_i; = \tau_i \left(\sum_{i \in S} P_i \right)$ The Metropolis algorithm. Given R and W:SZ-RZO and a symmetric SLSD matrix & with now sums = 1.

The Morker sheir (5, P) hrs $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$ $P_{ij} = K_{ij} \quad \min\{1, w_{ij}\}$

	•	٠		•	•	•	•	*	•	*	•	•		•	•	*	•			•		•	٠	•		٠			•			*	•	•	*	•	•	•		•	*	•	٠	٠		*	•
	•	٠	•	٠		•	٠	٠		٠	٠	•	٠	٠	٠		٠	٠			٠		•		٠	٠		٠	٠			٠		•	•	•	•	٠		•		·	٠	٠	•	•	
•	٠	٠	•	•	•		•	•	•	٠	•		•	•	•	٠	•	۰	٠		٠	•	٠	٠			٠	٠	٠			•	•		•	٠	٠	•	•	•	•	•		٠	٠	٠	•
٠	•	٠	•	•	•		٠	•	•	•	•		•	•	٠	*	•	٠	*		٠	٠	٠	*	•	•	•	٠	٠			•	•		•	•	•	•	•	•	•	•	٠	*	٠	•	•
٠	•			٠		٠	٠		•			٠		۰	•			•		•	•	•	•			•			٠					٠			•			•		*	•		•		•
	•	•	•	•	•	•	٠	•	•	٠	•	•	٠	•	·		•	•					•	٠	•	•	•		٠		•	٠		•	•	٠	•	•		•	٠	•	٠	•		٠	•
•	•	٠	•		•		٠	•	•	٠	٠	•	٠	•	٠	٠	٠	٠	•		٠	•	•	٠	٠	٠		•	•			•			•	٠	•	٠		•	•	٠	٠	•	•	•	•
	•			•		•	•	•	•		•	•	•	•	٠		٠	٠			٠		•			•		•	•			٠		•	•	•	٠	•	•	•		•	•	•	•	•	•
•	•	•	•	•	•		•	•		•			•		•	•	•	٠	•		٠	•	٠	٠	•	•	•	•	•			•			•	•	•	٠		•	•	•	•	•		•	•
٠	٠	٠	٠	•	•		٠	•	•	•			٠		٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•	٠			•			•	•	٠	٠		•		٠	٠	٠	•	•	•
•	٠	0	•	٠		٠	0	•	٠		٠	٠		٠	•		•	•		•	•	•	•	٠	٠	۰		٠	۰	٠	•	۰	•	٠		٠	•	0	•	•	٠	٠	0		٠		
•	٠	۰		٠	•	•	•	*	•	٠	*	•	•	•	٠	+	٠	•	•		٠	•	٠	*	•	٠		•	٠	٠		*	•	•	*	•	•	•	•	•	*	٠	0	٠	٠	*	•
٠	٠		٠	٠	•	•	0	٠	٠		٠	٠		٠	•			•		•	•	٠	•		٠	٠		٠		٠	٠	٠	٠	•		٠	•	0	٠	•	٠	٠	0	٠	٠		•
•	٠	0	•	٠	•	٠	0	۰	•	٠	٠	٠		٠	•		•	•		•		•	•	٠	٠	۰		•	۰	٠	•	٠	•	•	•	٠	•		•	•	٠	٠	0	•	٠		•
•	•	٠	•	٠	•	•	٠	*	•		٠	•	٠	٠	•	•	•	٠	•		•	•	•	٠	٠	٠			٠	•	•		•	•	٠	٠	•	٠		•	*	٠	٠	٠	•	*	•
•	•		*	٠								٠			٠		*	٠	•	•		•	•	۰	•	٠		•	٠					٠		•	٠		•	•		٠			•		•
	٠	۰	•	٠	•	•	•	٠	•	٠	٠	•		٠	•		•	•			•		•	•	٠	۰	٠	•	۰	٠	•	٠	•	•	٠	٠	•	•	•	•	٠	٠	0	۰	•	٠	•
•	•	•	•	٠	•	•	٠	•	•	٠	•	•	•	•	•	•	٠	٠	•		٠		•	٠	٠	٠	٠	٠	•	•	•	٠	•	•	•	•	•	٠		•	٠	٠	٠	•	•	•	•