25 Nov 2024 Max Cut and SDP <u>Obs.</u> If G is and it graph with $w(u,v) = \int_{0}^{1} f(u,v) dv$ and $\chi \in \{\pm, 1\}^{V}$ then $\langle x, L, x \rangle = \sum_{\{v,v\} \in E} (x_u - x_v)$ = 4. Cut(z) where $Curt(x) = \# \text{ of edges labeled with <math>1+1, -1$ } by X. 50 Mox Cut(G) = mox $\left\{ \frac{1}{2} \times \frac{1}{6} \times \frac{1}{3} \right\}$. Som apply random thresholding to the eigenvector X corresponding to $\lambda_{max}(L_G)^2$ clique on n vertices E_{ig} . $G = K_{h}$ $\begin{bmatrix} n & n \\ n$

<td< th=""><th></th><th></th><th>$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$</th><th>-d</th><th>· · · · · · · · · · · · · · · · · · ·</th></td<>			$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	-d	· · · · · · · · · · · · · · · · · · ·
. 	Male	$(\mathcal{U}, \mathcal{V}) = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 1 & 2 \end{pmatrix}$	if we v	OV = V	· · · ·
· · · · · · ·	· · · · · · · · · · · ·		· · · · · · · · · · ·	· · · · · · · · · · · ·	· · · ·

For this G $L_{G} = \begin{bmatrix} 2G_{-1} & -2 & -2 & -2f_{-2} \\ -2 & -1 & -2 & -2f_{-2} \\ -1 & -1 & -2f_{-2} \end{bmatrix} = \begin{pmatrix} n_{+1} \end{pmatrix} \begin{bmatrix} 2f_{-1} & -1f_{-1} \\ -1f_{-1} & -1f_{-1} \end{bmatrix}$ where $y^{+} = \left(\frac{h-2}{2}\right)$ Now the inon eigenvector is nearly parallel to e, and very misaligned with genetice mexicat vectors. $\langle x, L, x \rangle = x^T L_G x$ Observation. $= \operatorname{T}_{Y}\left(\operatorname{L}_{G}\times \operatorname{X}^{\mathsf{T}}\right).$ So mont $\left\{ \left(x, L_{G} x \right) \right\} \left\{ \left(x, x \right) \in n \right\}$ as ' The ()Tr(LGX) max $\chi = \chi_{\rm s}$ $X \in \mathbb{R}^{2}$ Tr(X) = ni, e, X is PSD) XXO $\operatorname{rank}(X) = 1$

Instead try to solve: Tr (LG'X) X EIR^{han}, symmetoric, PSD (program. (GWSDP) max, s.t. Tr(X) = n [redundant] $x_{ii} = 1$ $\forall i \in [n]$ rank (X)=1 SDP: Maximize/minimize on linear Sunction of the states of a square matrix subj. to: the matrix is symmetric PSD - anyo number of additional linear inequality constraints on the matrix entries. GW-SDP. Solve X = W W.Let clumns of W. fwi, why be let 1 $\mathcal{X}_{i} \in \langle \omega_i, \omega_j \rangle$

Sample unit vector uEIR uniformly at random. $S = d \lambda | \langle v \rangle \rangle > 0 \langle v \rangle$ $V - S = \left\{ \lambda \right\} \left(W'_{1}, u \right) \leq 0 \right\},$ Why dees this work?

	•	٠	•	•	•	•	•	*	•	*	•	•		•	•	*	•			•		•	٠	•		٠			•			*	•	•	*	•	•	•		•	*	•	٠	٠	•	*	•
	•	٠	٠	٠		•	٠	٠		٠	٠	•	٠	٠	٠		٠	٠			٠		•		٠	٠		٠	٠			٠		•	•	•	•	٠		•		·	٠	٠	•	•	
•	٠	٠	•	•	•		•	•	•	٠	•		•		•	٠	•	۰	٠		٠	•	٠	٠			٠	٠	٠			•	•		•	٠	٠	•	•	•	•			٠	٠	٠	•
٠	•	٠	•	•	•		٠	•	•	•	•		•	•	٠	*	•	٠	*		٠	٠	٠	*	•	•	•	٠	٠			•	•		•	•	•	•	•	•	•	•	٠	*	٠	•	•
	•			٠		٠	•		•			٠		۰	•			•		•	•		•			•			٠					٠			•			•		*	•		•		•
	•	•	•	•	•	•	٠	•	•	٠	•	•	٠	•	·		•	•					•	٠	•	•	•		٠		•	٠		•	•	٠	•	•		•	٠	•	٠	•		٠	•
•	•	•	•		•		٠	٠	•	٠	•	•	٠	•	٠	٠	٠	٠	•		٠	•	•	٠	٠	٠		•	•			•			•	٠	•	٠		•	•	٠	٠	•	•	•	•
	•			•		•	•	•	•		•	•	•	•	٠		٠	٠			٠		•			•		•	•			٠		•	•	•	٠	•		•		•	•	•	•	•	•
•	•	•	•	•	•		•	•		•			•		•	•	•	٠	•		٠	•	٠	٠	•	•	•	•	•			•			•	•	•	٠		•	•	•	•	•	•	•	•
٠	٠	٠	٠	•	•		٠	•	•	•			٠		٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•	٠			•			•	•	٠	٠		•		٠	٠	٠	•	•	•
•	٠	0	•	٠	٠	٠	0	•	٠		٠	٠		٠	•		•	•		•	•	•	•	٠	٠	٠		٠	۰	٠	•	۰	•	٠		٠	•	0	•	•	٠	٠	0		٠		
•	٠	۰	•	٠	•	•	•	*	•	٠	*	•	•	•	٠	+	٠	•	•		٠	•	٠	*	•	٠		•	٠	•		*	•	•	٠	•	•	•	•	•	*	•	0	٠	٠	*	•
٠	٠		٠	٠	•	٠	0	٠	٠		٠	٠		٠	•			•		•	•	٠	•		٠	٠		٠		٠	٠	٠	٠	•		٠	•	0	٠	•	٠	٠	0	٠	٠		•
•	٠	0	•	٠	•	٠	0	٠	•	٠	٠	٠		٠	•		•	•		•		•	•	٠	٠	۰		•	۰	٠	•	٠	•	•	•	٠	•		•	•	٠	٠	0	•	٠		•
•	•	٠	•	٠	•	•	٠	*	•		٠	•	٠	٠	•	•	•	٠	•		•	•	•	٠	٠	٠			٠	•	•		•	•	*	٠	•	٠		•	*	٠	٠	٠		*	•
•	•		*	٠		٠						٠			٠		*	٠	•	•		•	•	۰	•	٠		•	٠					٠		•	٠		•	•		٠			•		•
•	٠	۰	•	٠	•	•	•	٠	•	٠	٠	•		٠	•		•	•			•		•	•	٠	۰		•	۰	•	•	٠	•	•	٠	٠	•		•	•	٠	٠	0	۰	•	٠	•
•	•	•	•	٠	•	•	٠	•	•	٠	•	•	•	•	٠	•	٠	٠	•		٠		•	٠	٠	٠	٠	٠	•	•	•	٠	•	•	•	•	•	٠		•	٠	٠	٠	•	•	•	•