18 Nov 2024 Using the Laplacian for lower bounds on sporsest cut edge weighted graph with General Recap symmetric wetstite w(u,v) = w(v,u) > 0if $\{u, v\} \in E(G)$, w(u, v) = G if u = v or $\{u, v\} \notin E$, $\frac{1}{2}$ ϕ \leq h \leq ϕ $(L_{G})_{uv} = \begin{cases} d(u) & \text{if } u \geq U \\ -w(uy) & \text{if } u \neq V \end{cases}$ $X L_G X = \sum_{\{u,v\} \in E} (X_u - X_v) \cdot w(u,v)$ The smallest eigenvalue of LG is always \$, The multiplicity of this eligical is >1 if and only if G is disconnected: normalized This lecture: if Ind smalled A Laplacian engenvalue is far from zero then \$\$1 is for from zero for all S=#Ø st. V-S=Ø. Def. The normalized Laplacian of G is $L_{G} = D_{G}^{-1} L_{G}$

To has diagonal critics NOW Suns typically 7 0 sums Column Algebra review. An inner product on a vector space V is a bilinear function $V \times V \rightarrow I \mathbb{R}$, that is symmetric: $\langle v, \omega \rangle = \langle \omega v \rangle$ We say $\langle \cdot, \cdot \rangle$ is positive definite if $\langle v, v \rangle \ge 0$ is not equality only when V=0. Example. The dot product $\langle V, w \rangle = \sum_{i=1}^{n} v_i w_i$. The degree-weighted innel product $(x,y)_{D} = \sum_{u \in V(G)} d(u) \cdot x_{u}y_{u}$ $= (x, D_{gy})$ Def. If V is a vector space, (, ?, is an inverproduct on V T: V -> V linear transformation ("endemorphism") we say I is self-adjoint write S. J. if Vx, yel (x, Ty) = (Tx, y).

Remark. T is self-adj wirt, standard more product iff the matrix representing T is symmetric. Facts. If a motion A represents almensional self-adjoint and morphism of V with a poss def. Muer product (:,? H then: (i) All eigenvalues of A are real (ii) V has a basis of eigenvectors Mutually orataogonal wirth Sijr $\langle v; v \rangle = 0$ for $i \neq j'$ (iii) If $\lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n$ are the eigenvalues corresponding to VI, ..., in, $\lambda_{1} = \min \left\{ \left\{ x, Ax \right\} \right\}$ $\lambda_{L} = \max_{\{x, x\} = 1} \left\{ \langle x, Ax \rangle \right\}$ (iv) [Courput - Fischer] More generally, $\lambda_{k} = \min \max_{\substack{dim \ W = k}} \{ \{ x, x \} \}$ $W \leq V \qquad x \in W$ λ = max min { (x, Ax) } mk+1 din W=te xew (x,x)=1 { (x, Ax) }

standard inner product on R $E_{ry}, \langle \cdot, \rangle_{r}$ λ_{1} any Br-K+1 IF $W \subset \mathbb{R}^n$ has $\dim(W) = k$ then $\dim (\tilde{w} \cap \mathcal{U}) > 0.$ $\exists x \in \tilde{w} \cap \mathcal{U}, \quad \langle x, x \rangle = 1$ S v $(x, Ax) = \sum_{i=k} \lambda_i x_i^2$ $\frac{1}{2} = \frac{1}{2} \times \frac{1}{2}$

· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	. .
.	(v) $\lambda_{k} = min$	$\left< \begin{array}{c} X \\ X $
· · · · · · · ·	$G = \sum_{v \in V} (v \in V)$	· · · · · · · · · · · · · · · · · · ·
	for IsiKK	Vk is the vactor
	$\langle \mathbf{x}_{\mathbf{x}_{\mathbf{y}}}, \mathbf{x}_{\mathbf{y}_{\mathbf{y}}} \rangle = \frac{1}{2} \mathbf{x}_{\mathbf{y}_{\mathbf{y}}} \mathbf{x}_{\mathbf{y}}} \mathbf{x}_{\mathbf{y}_{\mathbf{y}}} \mathbf{x}_{\mathbf{y}_{\mathbf{y}}} \mathbf{x}_{\mathbf{y}_{\mathbf{y}}} \mathbf{x}_{\mathbf{y}_{\mathbf{y}}} \mathbf{x}_{\mathbf{y}_{\mathbf{y}}} \mathbf{x}_{\mathbf{y}_{\mathbf{y}}} \mathbf{x}_{\mathbf{y}_{\mathbf{y}}} \mathbf{x}_{\mathbf{y}}} \mathbf{x}_{\mathbf{y}_{\mathbf{y}}} \mathbf{x}_{\mathbf{y}_{\mathbf{y}}} \mathbf{x}_{\mathbf{y}_{\mathbf{y}}} \mathbf{x}_{\mathbf{y}_{\mathbf{y}}} \mathbf{x}_{\mathbf{y}_{\mathbf{y}}} \mathbf{x}_{\mathbf{y}_{\mathbf{y}}} \mathbf{x}_{\mathbf{y}_{\mathbf{y}}} \mathbf{x}_{\mathbf{y}} \mathbf{x}_{\mathbf{y}} \mathbf{x}_{\mathbf{y}} \mathbf{x}_{\mathbf{y}$	that attains this
· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	minimum.

Fact. La is self-adjoint wirt. < . Why? We must show $(x, \overline{L}_{g}) = \langle \overline{L}_{g} \times, y \rangle_{D}$ $\{x, \overline{D}_{G}^{\prime} L_{G} y\}_{D}^{\sigma} = \langle \overline{D}_{G}^{\prime} L_{G} x, y \rangle_{D}^{\sigma}$ $\langle x, D_{G}, D_{G}, L_{G}, y \rangle = \langle D_{G}, L_{G}, D_{G}, y \rangle$ $= \left\langle D_{G} D_{G}^{\dagger} L_{G} X_{\gamma} \gamma \right\rangle$ $\langle x, L_{G}y \rangle = \langle L_{G}x, y \rangle$ What is $\lambda_1(\overline{L}_G)$? $\left\{ \begin{array}{c} x \\ x \end{array} \right\} = \left\{ \left\{ x \\ x \end{array} \right\} = \left\{ \begin{array}{c} x \\ x \end{array} \right\} = \left\{ x \\ x \end{array} \right\} = \left\{ \begin{array}{c} x \\ x \end{array} \right\} = \left\{ x \\ x \end{array} \right\} = \left\{ x \\ x \end{array} \right\} = \left\{ x \\ x \end{array} = \left\{ x \\ x \end{array} \right\} = \left\{ x \\ x \end{array} = \left\{ x \\ x \\ x \end{array} \right\} = \left\{ x \\ x \\ x \end{array} = \left\{ x \\$ $(\mathbf{x}_{1}^{\prime}\times\mathbf{x}_{2}^{\prime},\mathbf{$ The minimum is D, attained is purallel to 1. And a

	×	<i>v</i> – <i>v</i>	product		
 				 	• •
 · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			 	• •
	$\lambda_1 = C$	\sum r r r r r r		 	• •
	•			 	
 		· · · · · ·		 	• •
 		/	2	 	• •
 		· · · · · ·		 	
 				 	• •
$\begin{array}{cccc} & & & & \\ & & & \\ + & & \\ \end{array}$		∖≀ <∕ ≀ ≀ ≀		 	• •
		· · · · · · · · ·		 	• •
 	G a start of G	,	· · · · · · · ·	 	
 				 	• •
 		• • • • •	• • • • • • •	 	• •

 $\lambda_{(L_{G})} = \min \left\{ \zeta_{x}, \overline{\zeta_{G}} \right\} \quad \{x, \overline{x}\}_{D} = 0$

								÷			÷					-						-		-																	-					-	
						•			•								•						•								•			•		•	•			•					•		
•	•	*	•	•	•	•	•	•	•	•	•	•	*	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	*	•	*	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•
•	•	*	•	•	•	•	•	*	•	•	•	•	•	•	•	•	•	*	•	•	•	•	•	•	•	•	•	•	•	*	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•			•	•	•	•	•		•	•	•	•				•		•	•		•	•	•	•			•					•	•		•	•				•	•		•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	*	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	*	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	*	•	•	•	•	•	•	•	•	•	•	•	•	•
•				•	•	•			•	•					•	•	•		•	•	•			•			•		•					•	•		•			•					•	•	•
•	•	•		•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•		•	•	•	•	•		•	•		•	•	•	•	•	•
•	•	•	•	•	•	*	•		•	•	•	•		•	•	•	•	•		*	•	•	•	•	•	•	•	•	•	•	•		•	*	•	•	•	•	•	•		•	•		•	•	•
•		•		•			•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
				*																																						•			•		