8 Nov 2024 Game Playing Usinon Multiplicative Weights Announcements, Remaining workbad in -6820. i. Prob Set 4 — to be released finight bue in 2 weeks. Final project - see upcoming EQ post. L ... Due during eran week. A 440 - player zero sum game is given by two (finte) strategy sets [n] (Player 1) [m] (Player 2) ll, and a "payoff matrix" If P1 chooses ic[n], P2 chooses jf(m] Ptus poyoft it wij PZ's poyoft is -uij Each player aims to maximize their payoff. Rock - Poper - Scissors Uii n = m = 3O= 1

A mired strategy is a vector of probabilities $g \in A([m]).$ pe/([n]) or $\begin{bmatrix} 9 & 2 & 2 & 2 \\ 1 & 1 & 2 & 2 \end{bmatrix}$ $\begin{bmatrix} F_{i} \\ F_{i} \end{bmatrix} \xrightarrow{\Sigma}_{\Sigma} F_{i} = 1$ $\begin{pmatrix} i \\ g \end{pmatrix} = \sum_{j=1}^{\infty} 2^{j-j}$ The expected poyoffer for f1 and P2 are and $\sum_{i=1}^{n} p_{i} g_{J} (-\alpha_{i})$ $\sum_{i,j} p_i g_j u_j$ p Ug $= \frac{1}{2} \int \frac$ We say p is a best response to g, $p \in BR(q)$, $f = mox f = mox f f ll_{q}$. $f \in B(q)$, $f \in B(q)$ Similarly GERR(p) it pug = mingpugg gealm an equilibrium if p=BR(q) p and and $g \in BR(p)$ von Nennenn's Miningx Meoren for all 2PZSGs With finite strategy sets,

min max pUg = max min pUg. g p q = p g p g Furthermore if pt, gt are such that $min \left\{ \left(p^{*} \right)^{T} M_{2} \right\} = max \int p^{T} M_{3} \frac{1}{2}$ then (\$,5%) is a mixed equilibrilm, Should be obvious that min max ptug > max min ptug To prove LHS = RHS it is necessary and site icent to show Vã max ptur > max min ptur p ptur > max min ptur Theat When the the the print of the print of the the the the the the print of the p For the reverse frequality man min programming program Le present an algorithmic construction. Observation 1. M minimax relation invariant under adding a constant to all counters of U.

WLOG Also invariant to scaling. Observention 2 $\omega_{LOG} \quad \bigcirc \leq \omega_{ij} \leq 1 \quad \forall i, j.$ Adopt the perspective of column player, repeatedly playing the game against a row payer. In round to if now player chooses itt), column player experience loss $l_{1(H_{1,j})} = u_{1(H_{1,j})}$ if they choose $j \in [m]$. Organize these bosses toto a sequence of $l_{1} = l_{1}(1) + l_{2} + l_{1}(2)$ vectors $l_t = U_{P_t}$ le la l'a Colum player using HERGE algorithm would choose requence of mined strategies &, gz, . - -, gt & [][m]

Row player choses pt EBR(gt). $\int_{a}^{b} dt = \int_{a}^{b} dt = \int_{a$ $\sum_{t=0}^{T} \mathcal{L}_{t} = \frac{1}{T} \sum_{t=0}^{T} \mathcal{L}_{t}$ $=\frac{1}{7}\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{j=1}^{n}\sum_{i=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{i=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{i=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{i=1}^{n}\sum$

	•	٠		•	•	•	•	*	•	*	•	•		•	•	*	•			•		•	٠	•		٠			•			*	•	•	*	•	•	•		•	*	•	٠	٠		*	•
	•	٠	•	٠		•	٠	٠		٠	٠	•	٠	٠	٠		٠	٠			٠		•		٠	٠		٠	٠			٠		•	•	•	•	٠		•		·	٠	٠	•	•	
•	٠	٠	•	•	•		•	•	•	٠	•		•	•	•	٠	•	۰	٠		٠	•	٠	٠			٠	٠	٠			•	•		•	٠	٠	•	•	•	•	•		٠	٠	٠	•
٠	•	٠	•	•	•		٠	•	•	•	•		•	•	٠	*	•	٠	*		٠	٠	٠	*	•	•	•	٠	٠			•	•		•	•	•	•	•	•	•	•	٠	*	٠	•	•
٠	•			٠		٠	٠		•			٠		۰	•			•		•	•	•	•			•			٠					٠			•			•		*	•		•		•
	•	•	•	•	•	•	٠	•	•	٠	•	•	٠	•	·		•	•					•	٠	•	•	•		٠		•	٠		•	•	٠	•	•		•	٠	•	٠	•		٠	•
•	•	٠	•		•		٠	•	•	٠	٠	•	٠	•	٠	٠	٠	٠	•		٠	•	•	٠	٠	٠		•	•			•			•	٠	•	٠		•	•	٠	٠	•	•	•	•
	•			•		•	•	•	•		•	•	•	•	٠		٠	٠			٠		•			•		•	•			٠		•	•	•	٠	•	•	•		•	•	•	•	•	•
•	•	•	•	•	•		•	•		•			•		•	•	•	٠	•		٠	•	٠	٠	•	•	•	•	•			•			•	•	•	٠		•	•	•	•	•		•	•
٠	٠	٠	٠	•	•		٠	•	•	•			٠		٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•	٠			•			•	•	٠	٠		•		٠	٠	٠	•	•	•
•	٠	0	•	٠		٠	0	•	٠		٠	٠		٠	•		•	•		•	•	•	•	٠	٠	۰		٠	۰	٠	•	۰	•	٠		٠	•	0	•	•	٠	٠	0		٠		
•	٠	۰		٠	•	•	•	*	•	٠	*	•	•	•	٠	+	٠	•	•		٠	•	٠	*	•	٠		•	٠	٠		*	•	•	*	•	•	•	•	•	*	٠	0	٠	٠	*	•
٠	٠		٠	٠	•	•	0	٠	٠		٠	٠		٠	•			•		•	•	٠	•		٠	٠		٠		٠	٠	٠	٠	•		٠	•	0	٠	•	٠	٠	0	٠	٠		•
•	٠	0	•	٠	•	٠	0	۰	•	٠	٠	٠		٠	•		•	•		•		•	•	٠	٠	۰		•	۰	٠	•	٠	•	•	•	٠	•		•	•	٠	٠	0	•	٠		•
•	•	٠	•	٠	•	•	٠	*	•		٠	•	٠	٠	•	•	•	٠	•		•	•	•	٠	٠	٠			٠	•	•		•	•	٠	٠	•	٠		•	*	٠	٠	٠	•	*	•
•	•		*	٠								٠			٠		*	٠	•	•		•	•	۰	•	٠		•	٠					٠		•	٠		•	•		٠			•		•
	٠	۰	•	٠	•	•	•	٠	•	٠	٠	•		٠	•		•	•			•		•	•	٠	۰	٠	•	۰	٠	•	٠	•	•	٠	٠	•	•	•	•	٠	٠	0	۰	•	٠	•
•	•	•	•	٠	•	•	٠	•	•	٠	•	•	•	•	•	•	٠	٠	•		٠		•	٠	٠	٠	٠	٠	•	•	•	٠	•	•	•	•	•	٠		•	٠	٠	٠	•	•	•	•