30 Sep 2024 Finishing Strong Duality Running Times for LP	· · · · ·
Annuncements. (1) PSet 1 is graded Regrades avail. Until 10/7	-
(2) PSet 2: meaning of point allocation	
An LP in equational form is simularly witten as max Tx $x \in Ax = b$ (most such $x \ge 0$)	
or as Mat CKIt, + CnXn "shack variable	

 $a_{11}X_1 + \dots + a_{1n}X_n + W_1$ 5.61 $\alpha_{21}X_1 + \ldots + \alpha_{2n}X_n + w_2$ =62 A_{m1} (t) $t = -t a_{m}$ (t)- 5m \mathbf{x}_{i} $\times, \omega \approx 0$

To finish up the duality prof, must be more careful about distinguishing original Variables of the (standard form) LP and stack variables, Equational form will be written as MXX CX $A \times + w = b$ S_{1} X, w 7, 0 We finished the simplex algorithm in one of 3 states. (a) intensible but unbounded (C) feasible map la arbitrarily large $\begin{pmatrix} & & & \\ & & & \\ & & & \end{pmatrix}$ for x satisfying Ax \$6, X=0.) (c) simplex terminates because doj fuz has been remotten in an equivalent form with only von positive coefficients on the variables,

That means: $\vec{c} \cdot \vec{x} = \vec{k} - \vec{\eta} \cdot \vec{x} - \vec{\xi} \cdot \vec{\omega}$ valid for all X/W satisfying $A_{X} + w = b$ からい, 520 (C+7)X+5W = K when Ax+W=5IF Ax' + w' = b = Ax + w then $(c_{1}\gamma)\chi' + \xi w' = k = (c_{1}\gamma)\chi + \xi w$ $JP \quad A(x-x) + (w-w) = 0$ then $(c+\eta)^{T}(x-x) + \xi^{T}(w-w) = 0$ mixing identity $\left[A[I]/[w-w]]=0$ $\begin{aligned} \text{then} \quad \left[(cty)^T \right] \left[\begin{array}{c} x^{l} - x \\ w - w \end{array} \right] = 0 \end{aligned}$ $= \left\{ \begin{array}{c} (c+\eta)^T \left| S^T \right\rangle & \text{is in the suspece} \\ \hline f & \int A \left| 1 \right\rangle \end{array} \right\}$

Column space it $\left(\begin{array}{c} C + 7 \\ S \end{array} \right)^{2} = \left(\begin{array}{c} A \\ A \end{array} \right)^{2} = \left(\begin{array}{c} A \\ A$ $A^{T}\xi = c + \gamma \longrightarrow \xi^{T}A = (c + \gamma)^{T}$ ATE Eand $\xi > 0$ Recall dual LP min $b^{T}y \ge c$ st. $A^{T}y \ge c$ $Ax + w = 6 \implies (c + y) + 5 w = k$ Pecall: JA Ax+w=6 then $S^T A_X + S^T W = S^1 b$

 $\implies (C+\gamma) + \xi = \xi = 5\xi = 5\xi$ =Single algo.thm Onz Lusion: 7 Sottisting PRIMAL M=S Satisfying DUAL PRIMAL OBJ(X)Sit= OuAl OBT (y)both are opt for 0

																																													•		
٠		٠	٠	٠	٠	•	٠			٠			•	۰ ·	. ·	٠		٠	٠		٠			•		•		٠	•			٠			٠	٠	1				٠		0		٠	•	
				·		•				٠			. `	Y	1.	۱.	o'	<u>،</u>	(٠		V	\bigwedge	0	\leq	17	- 7	_		X	Λ	0		٠		4		1	<u> </u>	1	5			٠	•	•
•	•	•	•	•		•	•	٠	•	٠	٠	•	٠	ŀ	Ŷ	C	X-	- J. I			٠		•					_ C,	- J	/			Ļ	*	٠	•	. L	·		•				*	•	• •	•
•	٠	•	•	•		•	•			٠	٠	٠	•	•	•		٠	٠	•	•	٠	•	•					•		0	٠	•	•	*	•	•				٠		•	0		٠	• •	•
•		•	•	•	٠	•	•	•	•	•		٠	٠	•		•	٠	٠	•	•	•	•	•	•		•		٠	٠	٠	•	•	•	•	•	•	٠	٠	•	•		•	٠	•	•	• •	•
•	•	•	•	•	•	•	•	٠	•	٠	٠	•	•	•	•	٠	٠	٠	٠	•	٠	٠	•	٠		•		•	•	•		•		•	٠	٠	٠	٠	٠	٠	•	•	•	•	•	• •	•
•	•	٠	٠	٠	٠	٠	٠		•	•		*	٠	•	•		•		•	•	•	•	•	•		•		•	•		•	۰	•	•	٠	•				•	٠	•	٠	•	•	• •	•
•	•	•	٠	٠	٠	٠	•	•	٠	•	٠	•	٠	•	•	٠	•	•	٠		•	•		•		•		•	٠	٠	•	0	٠	٠		٠	٠	•	•	٠	٠	•			•	• •	•
•	•	•	•	•	•	•	•	٠	•	•	•	٠	•	•	•		٠		•	•		*	•	•		• ·		•	•		•	•		•	٠	•			٠	•	•	•	•	•	•	• •	•
•	•	۰	•	•	٠	•	٠	•	٠	۰	•	•	٠	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	۰	•	•	۰	•	•	•	•	٠	٠	•	٠	•	•	• •	•
٠	•	•	•	٠	٠	٠	•	٠	•	•	٠	•	٠	•	•	•	•		•		•	*	•	•		• ·		•	٠	٠	•	•	•	٠	٠	٠	٠	٠	٠		٠	·	٠	•	•	• •	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	
•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				•	•	•		•		•	•	•	•	•	•	•	•		•	•	•		
				•					•																	• •								•	0										•	0	
																																											•				

 $f_{\mathcal{B}_{\mathcal{V}}} \quad 0 < 8 \ll 1$ Klee-Minty cube: Max $\times_{\mathcal{N}}^{\mathcal{N}}$ $O \leq x_1 \leq 1$ 5.5 $S_{X}, \leq X, \leq 1 - S_{X},$ $S_{X_2} \leq X_3 \leq 1 - S_{X_2}$ $\delta_{X^{-1}} \ll X^{\nu} \leqslant \left[- \delta_{X^{\nu-1}} \right]$ n=1; XZN N = Z;

	$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$
· · · · · · · · · · · · · · ·	$X_{2} = S_{2}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$