23 Sep 2024 Linear Programming $3x_1 + 3x_2$ Running example max $\times_{1} + \times_{\Sigma} \leq 8$ s.t. $2x_{1} + x_{2} \leq 12$ $\chi_1 + 2\chi_2 \leq (4)$ $\times_{1} \times_{2} \geq 0$ 3 pruslems i. LP feasibility: given a system of linear inequalities in n variables, des it have a solution in Rn? LP optimization: given a system of linear inequalities whose solution set is called the "feasible region", What is the mother or minimum Value attained by some given linear stjective tunction on the feasily region?

P search: given on LP Fegsibilitys problem, find a point in the · · · · · · · · · · · · fasible regton if one exists. Or, given an Ll optimization problem, Find a feasible point where the obj Function orthains its max or min.

ways of looking at a CP... 1. Algebraically: Max Cixi + Cixi + ... t KnKn $\alpha_{11} \times_{1} + \alpha_{12} \times_{1} + \dots + \alpha_{1n} \times_{n} \leq 6$ S.E. m_1 + a_1 × + \dots + a_1 × b_m r coefficient vector AX 576 RHS vector Max s.t. Constraint mator Geometrically: a, x, + -- + a, x, 5 b, defines a "halfspace". The solution set consists of a hyperplane in IR together with all the points on one side of it $E, g, \chi, +\chi_2 \leq \chi$ The foasile region defend by Axilb is an intersection of (8,0) finitely many halfspaces =) a palyhedron.

 $2x_1 + 3x_2$ z_1 max $X_{1}^{\prime} + X_{2}^{\prime} = \{ \xi_{1}^{\prime} \}$ s.t. $2 \times 1 + 2 \times 2 + 12$ $\chi_1 + 2\chi_2 \leq (4)$ \times , $\times_2 \geq 0$ (0) \times (0) $\times_2 \geq 22$ 12 (2,0) 7 (٢,٥) (0,0) (8,0) (8,0) (44,0) is expressial-time in higher Brute force d'mensions. It you have n' variables and m inequalities, what is an upper bound on # vertiles of Scasble region! (at least) there vertex every gre le n linear megulities that are hapt (hold with equility) and have linearly independent coefficient vectors. These v linearly indep equations have a unique solution. I distinct vertices have distinct sets of tight S

$(\# \text{ vertices}) \leq (\# \# \text{ n-element subsets})$ of the constraints = (m)
Standard form of an LP: Constrain variables to be ≥ 0 .
max $C \times Min C \times St, A \times 56 \times 60 \times 20$
A UP in standard form has a dual which is also a LP.
max $Z = X$ st. $A = X = X = 0$ $X \ge 0$
min CTX max bTy st, $Ax \neq b$ s.t. $ATy \neq c$ $x \neq 0$ $y \neq 0$
If y is feasible for this problem and ~ is feasible for the problem

then $by \ge (Ax)'y$ weak $= X^{T} A^{T} A^{T} Y$ duality $= \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\sum_{i=1}^{n} A_{ij}^{T} + \sum_{j=1}^{n} A_{jj}^{T} + \sum_{i=1}^{n} A_{ij}^{T} + \sum_{j=1}^{n} A_{ij}^{T} + \sum_{j=1}^{n} A_{jj}^{T} + \sum_{i=1}^{n} A_{ij}^{T} + \sum_{j=1}^{n} A_{$ $\geq \chi^{T}C = CX$ This proves (OPT (DUAL) > OPT (PRIMAL) DUAL :3 Mininisath Men Maximizert Sn. PRIMAL is and

	•	•	•	•	•	•	•	*	•	*	•	•		•	•	*	•			•		•	٠	•		•	•		•			*	•	•	*	•	•	•		•	*	•	٠	٠	•	*	•
	•	٠	٠	٠		•	٠	٠		٠	٠	•	٠	٠	٠		٠	٠			٠		•		٠	٠		٠	٠			٠		•	•	•	•	٠		•		•	٠	٠	•	•	
•	٠	٠	•	•	•		•	•	•	٠	•		•	•	•	٠	•	۰	٠		٠	•	٠	٠			٠	٠	٠			•	•		•	٠	٠	•	•	•	•			٠	٠	٠	•
٠	•	٠	•	•	•		٠	•	•	•	•		•	•	٠	*	•	٠	*		٠	٠	٠	*	•	•	•	٠	٠			•	•		•	•	•	•	•	•	•	•	٠	*	٠	•	•
	•			٠		٠	•		•			٠		۰	•			•		•	•		•			•			٠					٠			•			•		*	•		•		•
	•	•	•	•	•	•	٠	•	•	٠	•	•	٠	•	·		•	•					•	٠	•	•	•		٠		•	٠		•	•	٠	•	•		•	٠	•	٠	•		٠	•
•	•	•	•		•		٠	٠	•	٠	•	•	٠	•	٠	٠	٠	٠	•		٠	•	•	٠	٠	٠		•	•			•			•	٠	•	٠		•	•	٠	٠	•	•	•	•
	•			•		•	•	•	•		•	•	•	•	٠		٠	٠			٠		•			•		•	•			٠		•	•	•	٠	•		•		•	•	•	•	•	•
•	•	•	•	•	•		•	•		•			•		•	•	•	٠	•		٠	•	٠	٠	•	•	•	•	•			•			•	•	•	٠		•	•	•	•	•	•	•	•
٠	٠	٠	٠	•	•		٠	•	•	•			٠		٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•	٠			•			•	•	٠	٠		•		٠	٠	٠	•	•	•
•	٠	0	•	٠	٠	٠	0	•	٠		٠	٠		٠	•		•	•		•	•	•	•	٠	٠	٠		٠	۰	٠	•	۰	•	٠		٠	•	0	•	•	٠	٠	0		٠		
•	٠	۰	•	٠	•	•	•	*	•	٠	*	•	•	•	٠	+	٠	•	•		٠	•	٠	*	•	٠		•	٠	•		*	•	•	٠	•	•	•		•	*	•	0	٠	٠	*	•
٠	٠		٠	٠	•	٠	0	٠	٠		٠	٠		٠	•			•		•	•	٠	•		٠	٠		٠		٠	٠	٠	٠	•		٠	•	0	٠	•	٠	٠	0	٠	٠		•
•	٠	0	•	٠	•	٠	0	٠	•	٠	٠	٠		٠	•		•	•		•		•	•	٠	٠	۰		•	۰	٠	•	٠	•	•	•	٠	•		•	•	٠	٠	0	•	٠		•
•	•	٠	•	٠	•	•	٠	*	•		٠	•	٠	٠	•	•	•	٠	•		•	•	•	٠	٠	٠			٠	•	•		•	•	*	٠	•	٠		•	*	٠	٠	٠		*	•
•	•		*	٠								٠			٠		*	٠	•	•		•	•	۰	•	٠		•	٠					٠		•	٠		•	•		٠			•		•
•	٠	۰	•	٠	•	•	•	٠	•	٠	٠	•		٠	•		•	•			•		•	•	٠	۰		•	۰	•	•	٠	•	•	٠	٠	•	•	•	•	٠	٠	0	۰	•	٠	•
•	•	•	•	٠	•	•	٠	•	•	٠	•	•	•	•	٠	•	٠	٠	•		٠		•	٠	٠	٠	٠	٠	•	•	•	٠	•	•	•	•	•	٠		•	٠	٠	٠	•	•	•	•