20 Sep 2024 Lovászis Perfect Matching Decision Algorithm Recall G=(V,E) $\int_{\Omega} \int_{\Omega} \int_{\Omega$ Dipartite. $|\mathcal{L}| = |\mathcal{R}| = n$ $\int 1 \quad \text{if } \int u_{i,v_{j}}^{i} Z \in E$ $\int \mathcal{O} \quad \text{if } \int u_{i,v_{j}}^{i} Z \notin E.$ AG = matrix with Def $por(A) = \sum_{\substack{\text{permutations} \ \overline{i} = 1 \$ per(AG) = # perfect matchings of G $det(A_G) \equiv per(A_G) \mod 2$ In plystime we can decide wheter G has an even or odd # of perfect Matchings. Conjuting nxn determinant teikes O(n) arithmetic operations w= "equarent of matrix multiplication" where = inf (): I matrix mult aly ? running in time O(n)?

We know ws 2.373... Hugo open question: $\omega = 2$, Lovasz's Algorithm. Let BG be the metric obtained from A by substituting random numbers χ_{ij} when $\alpha_{ij} = 0$. Let IF be any field leg, rational numbers) and SEF be a set of ent lost 2n distanct elements f F xijf will be independent, uniFormly random elements of S. Algorithm: if det (B,) = 0 output its F det (BG) = 0 output PROBABLY NO $\int (n^{\omega}) d = 0$ Note. Runs Correctness? Will show that if also outputs VES G must have a perfect matching. If G has a parfect matching than fr (output PROBABLY No) < 2 false positive vote = 0 . . . False negative rote < 2. ، ار*و*،

 $det (B_G) = \sum_{\sigma \in S_n} \mathfrak{S}(\sigma) \stackrel{\widehat{\mathsf{T}}}{\underset{\tau=1}{\text{T}}} \times \mathfrak{i}_{\sigma}(\mathfrak{i})$ This can only be ± 0 if $\{(u_i, V_{\sigma(i)})\}$ is a perf matching. Bounding the Falle ngothe rate ... Schwartz-Zippel Lemma: if P(X1,...,Xm) is a non-variate polyhamial with coefficients in a field IF, and d = max exponent of any variable in any monomial of P and if we sample X1,...,Xm independently at random from distributions s.t. max max $Pr(x_i = y) \leq S$, yelf ie[m] then $P(X_{1,...,X_m})=0) \leq mds$ $m = \# E(G) \le n^2$ $S = |S| \le -1$ In LOUNSZ algoithm

•	· ·	•	• •			•	• •		•	•	•	· · ·	•	•	•	•	•	•		•	•	• •	•	9		• • •) , , ,			•		-~~		•	•	• •	• •	· ·	
•	· ·	• • •	• •		•	•	• •	F					et		(f	Š		.))	- - ()) /				· · 1	2 7 1	· · ·	1	•	ź	5		, ,	بر ب		- / - (• •	, . , .	· ·	•
• •	• •	•	· ·	•	•	•		•	•	J		· · ·	C	રડ	•		0-	\sim	3	. (a	 S .	•	0	~	•	· ·	4 2	2	•	•	C C		•	•	•	• •		· ·	•
6 · · ·	• •			•			• •		•	•) e		fe	_ C	}	•	•		ſ	، بر	a)<	h		g -		• •		•	•	•		•	•		•	 		• •	•
	• •	٠																							J.												•			
		•		٠				٠									٠	•						•													•			
	• •	*				*				٠	٠		•	٠			*		٠		٠		٠	*		•		٠		•				٠	•	•		, ,	• •	•
		٠		•				•		٠	•						•	•	•		•						• •					٠					• •			
•	• •	٠		٠	•	٠	• •	٠	•	٠		• •				·	٠	٠	•	•	•			٠	٠	•			٠	•	٠	٠	٠		٠	٠	• •	, ,	• •	٠
						•					•							•		•	•			٠								٠					• •	, .		
																																					•			

Prost of Schwartz- Eippel- Induction on m. m=0 => Pis a von-zero scalar P(P=0)=0=md8m>1 => Consider l'as a polynomial in X whose coeffs are pby 3 in x_{1} , x_{m} $P(x_{1},\ldots,x_{m}) = \sum_{\tau=0}^{2} Q(x_{1},\ldots,x_{m}) \cdot x_{m}^{t}$ $P \neq 0 \implies$ at least one $Q_1 \neq 0$, How could f evaluate to 0? Case 1. We sample X1,12,Xm-1 and End that $Q_i(X_{1,\ldots},X_{m-1}) = 0$ $\forall i$ JND HYP=> Probalility 5 (m-1) d8 Care 2. Qi(x1,...,Xm-1) = () but P evaluates to zero. Al most d distinct XM values calle $P(x_1, ..., x_m) = 0$. Each of them has $P(x_m = y) \leq S$. Probability < d5 up the 2 cases, QED, Svm